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Abstract

This document describes a mechanism that, through the use of opportunistic Transport Layer

Security (TLS), enables encryption of Remote Procedure Call (RPC) transactions while they are in

transit. The proposed mechanism interoperates with Open Network Computing (ONC) RPC

implementations that do not support it. This document updates RFC 5531.
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1. Introduction 

In 2014 the IETF published a document entitled "Pervasive Monitoring Is an Attack" ,

which recognized that unauthorized observation of network traffic had become widespread and

was a subversive threat to all who make use of the Internet at large. It strongly recommended

that newly defined Internet protocols should make a genuine effort to mitigate monitoring

attacks. Typically, this mitigation includes encrypting data in transit.

The Remote Procedure Call version 2 protocol has been a Proposed Standard for three decades

(see  and its antecedents). Over twenty years ago, Eisler et al. first introduced

RPCSEC_GSS as an in-transit encryption mechanism for RPC . However, experience has

shown that RPCSEC_GSS with in-transit encryption can be challenging to use in practice due to

the following:

Parts of each RPC header remain in cleartext, constituting a loss of metadata confidentiality. 

Offloading the Generic Security Service (GSS) privacy service is not practical in large multi-

user deployments since each message is encrypted using a key based on the issuing RPC user.

However strong GSS-provided confidentiality is, it cannot provide any security if the challenges

of using it result in choosing not to deploy it at all.

Moreover, the use of AUTH_SYS remains common despite the adverse effects that acceptance of

User Identifiers (UIDs) and Group Identifiers (GIDs) from unauthenticated clients brings with it.

Continued use is in part because:

Per-client deployment and administrative costs for the only well-defined alternative to

AUTH_SYS are expensive at scale. For instance, administrators must provide keying material

for each RPC client, including transient clients. 

[RFC7258]

[RFC5531]

[RFC2203]

• 

• 

• 
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Encryption by Default:

Encryption Offload:

Securing AUTH_SYS:

Decoupled User and Host Identities:

Compatibility:

GSS host identity management and user identity management typically must be enforced in

the same security realm. However, cloud providers, for instance, might prefer to remain

authoritative for host identity but allow tenants to manage user identities within their

private networks. 

In view of the challenges with the currently available mechanisms for authenticating and

protecting the confidentiality of RPC transactions, this document specifies a transport-layer

security mechanism that complements the existing ones. The TLS  and Datagram

Transport Layer Security (DTLS)  protocols are well-established Internet building

blocks that protect many standard Internet protocols such as the Hypertext Transfer Protocol

(HTTP) .

Encrypting at the RPC transport layer accords several significant benefits:

Transport encryption can be enabled without additional administrative

tasks such as identifying client systems to a trust authority and providing each with keying

material. 

Hardware support for the GSS privacy service has not appeared in the

marketplace. However, the use of a well-established transport encryption mechanism that is

employed by other ubiquitous network protocols makes it more likely that encryption offload

for RPC is practicable. 

Most critically, transport encryption can significantly reduce several

security issues inherent in the current widespread use of AUTH_SYS (i.e., acceptance of UIDs

and GIDs generated by an unauthenticated client). 

TLS can be used to authenticate peer hosts while other

security mechanisms can handle user authentication. 

The imposition of encryption at the transport layer protects any upper-layer

protocol that employs RPC, without alteration of the upper-layer protocol. 

Further, Section 6 of the current document defines policies in line with  that enable

RPC-with-TLS to be deployed opportunistically in environments that contain RPC

implementations that do not support TLS. However, specifications for RPC-based upper-layer

protocols should choose to require even stricter policies that guarantee encryption and host

authentication are used for all RPC transactions to mitigate against pervasive monitoring attacks 

. Enforcing the use of RPC-with-TLS is of particular importance for existing upper-layer

protocols whose security infrastructure is weak.

The protocol specification in the current document assumes that support for ONC RPC ,

TLS , PKIX , DNSSEC/DNS-Based Authentication of Named Entities (DANE) 

, and optionally RPCSEC_GSS  is available within the platform where RPC-

with-TLS support is to be added.

• 

[RFC8446]

[RFC9147]

[RFC9110]

[RFC7435]

[RFC7258]

[RFC5531]

[RFC8446] [RFC5280]

[RFC6698] [RFC2203]
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2. Requirements Language 

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Terminology 

This document adopts the terminology introduced in  and assumes a

working knowledge of the RPC version 2 protocol  and the TLS version 1.3 protocol 

.

Note also that the NFS community long ago adopted the use of the term "privacy" from

documents such as . In the current document, the authors use the term "privacy" only

when referring specifically to the historic GSS privacy service defined in . Otherwise,

the authors use the term "confidentiality", following the practices of contemporary security

communities.

We adhere to the convention that a "client" is a network host that actively initiates an

association, and a "server" is a network host that passively accepts an association request.

RPC documentation historically refers to the authentication of a connecting host as "machine

authentication" or "host authentication". TLS documentation refers to the same as "peer

authentication". In the current document, there is little distinction between these terms.

The term "user authentication" in the current document refers specifically to the RPC caller's

credential, provided in the "cred" and "verf" fields in each RPC Call.

Section 3 of [RFC6973]

[RFC5531]

[RFC8446]

[RFC2203]

[RFC2203]

4. RPC-with-TLS in Operation 

4.1. Discovering Server-Side TLS Support 

The mechanism described in the current document interoperates fully with RPC

implementations that do not support RPC-with-TLS. When an RPC-with-TLS-enabled peer

encounters a peer that does not support RPC-with-TLS, policy settings on the RPC-with-TLS-

enabled peer determine whether RPC operation continues without the use of TLS or is

discontinued altogether.

To achieve this interoperability, we introduce a new RPC authentication flavor called AUTH_TLS.

The AUTH_TLS authentication flavor signals that the client wants to initiate TLS negotiation if the

server supports it. Except for the modifications described in this section, the RPC protocol is

unaware of security encapsulation at the transport layer. The value of AUTH_TLS is defined in 

Section 7.1.
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An RPC client begins its communication with an RPC server by selecting a transport and

destination port. The choice of transport and port is typically based on the RPC program that is to

be used. The RPC client might query the RPC server's RPCBIND service to make this selection (The

RPCBIND service is described in ). The mechanism described in the current document

does not support RPC transports other than TCP and UDP. In all cases, an RPC server  listen

on the same ports for (D)TLS-protected RPC programs as the ports used when (D)TLS is not

available.

To protect RPC traffic to a TCP port, the RPC client opens a TCP connection to that port and sends

a NULL RPC procedure with an auth_flavor of AUTH_TLS on that connection. To protect RPC

traffic to a UDP port, the RPC client sends a UDP datagram to that port containing a NULL RPC

procedure with an auth_flavor of AUTH_TLS. The client constructs this RPC procedure as follows:

The length of the opaque data constituting the credential sent in the RPC Call message 

be zero. 

The verifier accompanying the credential  be an AUTH_NONE verifier of length zero. 

The flavor value of the verifier in the RPC Reply message received from the server  be

AUTH_NONE. 

The length of the verifier's body field is eight. 

The bytes of the verifier's body field encode the ASCII characters "STARTTLS" as a fixed-

length opaque. 

The RPC server signals its corresponding support for RPC-with-TLS by replying with a reply_stat

of MSG_ACCEPTED and an AUTH_NONE verifier containing the "STARTTLS" token. The client 

 proceed with TLS session establishment, even if the Reply's accept_stat is not SUCCESS. If

the AUTH_TLS probe was done via TCP, the RPC client  send the "ClientHello" message on

the same connection. If the AUTH_TLS probe was done via UDP, the RPC client  send the

"ClientHello" message to the same UDP destination port.

Conversely, if the Reply's reply_stat is not MSG_ACCEPTED, if its verifier flavor is not

AUTH_NONE, or if its verifier does not contain the "STARTTLS" token, the RPC client 

send a "ClientHello" message. RPC operation may continue, depending on local policy, but

without confidentiality, integrity, or peer authentication protection from (D)TLS.

If, after a successful RPC AUTH_TLS probe, the subsequent (D)TLS handshake should fail for any

reason, the RPC client reports this failure to the upper-layer application the same way it reports

an AUTH_ERROR rejection from the RPC server.

If an RPC client uses the AUTH_TLS authentication flavor on any procedure other than the NULL

procedure, or an RPC client sends an RPC AUTH_TLS probe within an existing (D)TLS session, the

RPC server  reject that RPC Call by returning a reply_stat of MSG_DENIED with a reject_stat

of AUTH_ERROR and an auth_stat of AUTH_BADCRED.

[RFC1833]

MUST

• MUST

• MUST

• MUST

• 

• 

SHOULD

MUST

MUST

MUST NOT

MUST
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Once the TLS session handshake is complete, the RPC client and server have established a secure

channel for exchanging RPC transactions. A successful AUTH_TLS probe on one particular port/

transport tuple does not imply that RPC-with-TLS is available on that same server using a

different port/transport tuple, nor does it imply that RPC-with-TLS will be available in the future

using the successfully probed port.

4.2. Authentication 

There is some overlap between the authentication capabilities of RPC and TLS. The goal of

interoperability with implementations that do not support TLS requires limiting the

combinations that are allowed and precisely specifying the role that each layer plays.

Each RPC server that supports RPC-with-TLS  possess a unique global identity (e.g., a

certificate that is signed by a well-known trust anchor). Such an RPC server  request a TLS

peer identity from each client upon first contact. There are two different modes of client

deployment:

Server-Only Host Authentication

In this type of deployment, the client can authenticate the server host using the presented

server peer TLS identity, but the server cannot authenticate the client. In this situation, RPC-

with-TLS clients are anonymous. They present no globally unique identifier to the server peer.

Mutual Host Authentication

In this type of deployment, the client possesses an identity that is backed by a trusted entity

(e.g., a pre-shared key or a certificate validated with a certification path). As part of the TLS

handshake, both peers authenticate using the presented TLS identities. If authentication of

either peer fails, or if authorization based on those identities blocks access to the server, the

peers  reject the association. Further explanation appears in Section 5.2. 

In either of these modes, RPC user authentication is not affected by the use of transport layer

security. When a client presents a TLS peer identity to an RPC server, the protocol extension

described in the current document provides no way for the server to know whether that identity

represents one RPC user on that client or is shared amongst many RPC users. Therefore, a server

implementation cannot utilize the remote TLS peer identity to authenticate RPC users.

MUST

MUST

MUST

4.2.1. Using TLS with RPCSEC_GSS 

To use GSS, an RPC server has to possess a GSS service principal. On a TLS session, GSS mutual

(peer) authentication occurs as usual, but only after a TLS session has been established for

communication. Authentication of RPCSEC_GSS users is unchanged by the use of TLS.

RPCSEC_GSS can also perform per-request integrity or confidentiality protection. When

operating over a TLS session, these GSS services become largely redundant. An RPC

implementation capable of concurrently using TLS and RPCSEC_GSS  use Generic Security

Service Application Program Interface (GSS-API) channel binding, as defined in , to

MUST

[RFC5056]
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determine when an underlying transport provides a sufficient degree of confidentiality. RPC-

with-TLS implementations  provide the "tls-exporter" channel binding type, as defined in 

.

MUST

[RFC9266]

5. TLS Requirements 

When peers negotiate a TLS session that is to transport RPC, the following restrictions apply:

Implementations  negotiate TLS versions prior to 1.3 (for TLS  or DTLS 

, respectively). Support for mandatory-to-implement cipher suites for the

negotiated TLS version is . 

Implementations  conform to the recommendations for TLS usage specified in BCP 195 

. Although RFC 7525 permits the use of TLS 1.2, the requirement to use TLS 1.3 or

later for RPC-with-TLS takes precedence. Further, because TLS 1.3 ciphers are qualitatively

different than cipher suites in previous versions of TLS, and RFC 7525 predates TLS 1.3, the

cipher suite recommendations in RFC 7525 do not apply to RPC-with-(D)TLS. A strict TLS

mode for RPC-with-TLS that protects against STRIPTLS attacks is discussed in detail in 

Section 6.1.1. 

Implementations  support certificate-based mutual authentication. Support for Pre-

Shared Key (PSK) mutual authentication is ; see Section 5.2.2 for further details. 

Negotiation of a cipher suite providing confidentiality as well as integrity protection is 

. 

Client implementations  include the "application_layer_protocol_negotiation(16)" extension 

 in their "ClientHello" message and  include the protocol identifier defined in 

Section 7.2 in that message's ProtocolNameList value.

Similarly, in response to the "ClientHello" message, server implementations  include the

"application_layer_protocol_negotiation(16)" extension  in their "ServerHello" message

and  include only the protocol identifier defined in Section 7.2 in that message's

ProtocolNameList value.

If the server responds incorrectly (for instance, if the "ServerHello" message does not conform to

the above requirements), the client  establish a TLS session for use with RPC on this

connection. See  for further details about how to form these messages properly.

• MUST NOT [RFC8446]

[RFC9147]

REQUIRED

• MUST

[RFC7525]

• MUST

OPTIONAL

• 

REQUIRED

MUST

[RFC7301] MUST

MUST

[RFC7301]

MUST

MUST NOT

[RFC7301]

5.1. Base Transport Considerations 

There is frequently a strong association between an RPC program and a particular destination

port number. The use of TLS or DTLS does not change that association. Thus, it is frequently,

though not always, the case that a single TLS session carries traffic for only one RPC program.

5.1.1. Protected Operation on TCP 

The use of the TLS protocol  protects RPC on TCP connections. Typically, once an RPC

client completes the TCP handshake, it uses the mechanism described in Section 4.1 to discover

RPC-with-TLS support for that RPC program on that connection. Until an AUTH_TLS probe is

[RFC8446]
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done on a connection, the RPC server treats all traffic as RPC messages. If spurious traffic appears

on a TCP connection between the initial cleartext AUTH_TLS probe and the TLS session

handshake, receivers  discard that data without response and then  drop the

connection.

The protocol convention specified in the current document assumes there can be no more than

one concurrent TLS session per TCP connection. This is true of current generations of TLS, but

might be different in a future version of TLS.

Once a TLS session is established on a TCP connection, no further cleartext communication can

occur on that connection until the session is terminated. The use of TLS does not alter RPC record

framing used on TCP transports.

Furthermore, if an RPC server responds with PROG_UNAVAIL to an RPC Call within an

established TLS session, that does not imply that RPC server will subsequently reject the same

RPC program on a different TCP connection.

Reverse-direction operation occurs only on connected transports such as TCP (see 

). To protect reverse-direction RPC operations, the RPC server does not establish a

separate TLS session on the TCP connection but instead uses the existing TLS session on that

connection to protect these operations.

When operation is complete, an RPC peer terminates a TLS session by sending a TLS closure

alert. It may then close the TCP connection.

MUST SHOULD

Section 2 of

[RFC8167]

5.1.2. Protected Operation on UDP 

The use of the DTLS protocol  protects RPC carried in UDP datagrams. As soon as a

client initializes a UDP socket for use with an RPC service, it uses the mechanism described in 

Section 4.1 to discover RPC-with-DTLS support for that RPC program on that port. If spurious

traffic appears on a 5-tuple between the initial cleartext AUTH_TLS probe and the DTLS

association handshake, receivers  discard that traffic without response.

Using DTLS does not introduce reliable or in-order semantics to RPC on UDP. The use of DTLS

record replay protection is  when transporting RPC traffic.

Each RPC message  fit in a single DTLS record. DTLS encapsulation has overhead, which

reduces the Packetization Layer Path MTU (PLPMTU) and thus the maximum RPC payload size. A

possible PLPMTU discovery mechanism is offered in .

The current document does not specify a mechanism that enables a server to distinguish

between DTLS traffic and unprotected RPC traffic directed to the same port. To make this

distinction, each peer matches ingress datagrams that appear to be DTLS traffic to existing DTLS

session state. A peer treats any datagram that fails the matching process as an RPC message.

Multihomed RPC clients and servers may send protected RPC messages via network interfaces

that were not involved in the handshake that established the DTLS session. Therefore, when

protecting RPC traffic, each DTLS handshake  include the "connection_id(54)" extension

described in , and RPC-with-DTLS peer endpoints  provide a

[RFC9147]

MUST

REQUIRED

MUST

[RFC8899]

MUST

Section 9 of [RFC9147] MUST
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ConnectionID with a nonzero length. Endpoints implementing RPC programs that expect a

significant number of concurrent clients  employ ConnectionIDs of at least 4 bytes in

length.

Sending a TLS closure alert terminates a DTLS session. Because neither DTLS nor UDP provide in-

order delivery, after session closure there can be ambiguity as to whether a datagram should be

interpreted as DTLS protected or not. Therefore, receivers  discard datagrams exchanged

using the same 5-tuple that just terminated the DTLS session for a sufficient length of time to

ensure that retransmissions have ceased and packets already in the network have been

delivered. In the absence of more specific data, a period of 60 seconds is expected to suffice.

SHOULD

MUST

5.1.3. Protected Operation on Other Transports 

Transports that provide intrinsic TLS-level security (e.g., QUIC) need to be addressed separately

from the current document. In such cases, the use of TLS is not opportunistic as it can be for TCP

or UDP.

RPC-over-RDMA can make use of transport layer security below the RDMA transport layer 

. The exact mechanism is not within the scope of the current document. Because there

might not be other provisions to exchange client and server certificates, authentication material

exchange needs to be provided by facilities within a future version of the RPC-over-RDMA

transport protocol.

[RFC8166]

5.2. TLS Peer Authentication 

TLS can perform peer authentication using any of the following mechanisms.

5.2.1. X.509 Certificates Using PKIX Trust 

X.509 certificates are specified in .  provides a profile of Internet PKI X.509

public key infrastructure. RPC-with-TLS implementations are  to support the PKIX

mechanism described in .

The rules and guidelines defined in  apply to RPC-with-TLS certificates with the

following considerations:

The DNS-ID identifier type is a subjectAltName extension that contains a dNSName, as

defined in . Support for the DNS-ID identifier type is  in

RPC-with-TLS client and server implementations. Certification authorities that issue such

certificates  support the DNS-ID identifier type. 

To specify the identity of an RPC peer as a domain name, the certificate  contain a

subjectAltName extension that contains a dNSName. DNS domain names in RPC-with-TLS

certificates  contain the wildcard character '*' within the identifier. 

To specify the identity of an RPC peer as a network identifier (netid) or a universal network

address (uaddr), the certificate  contain a subjectAltName extension that contains an

iPAddress. 

[X.509] [RFC5280]

REQUIRED

[RFC5280]

[RFC6125]

• 

Section 4.2.1.6 of [RFC5280] REQUIRED

MUST

• MUST

MUST NOT

• 

MUST
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When validating a server certificate, an RPC-with-TLS client implementation takes the following

into account:

Certificate validation  include the verification rules as per  and 

. 

Server certificate validation  include a check on whether the locally configured

expected DNS-ID or iPAddress subjectAltName of the server that is contacted matches its

presented certificate. 

For RPC services accessed by their netids and uaddrs, the iPAddress subjectAltName  be

present in the certificate and  exactly match the address represented by the universal

network address. 

An RPC client's domain name and IP address are often assigned dynamically; thus, RPC servers

cannot rely on those to verify client certificates. Therefore, when an RPC-with-TLS client presents

a certificate to an RPC-with-TLS server, the server takes the following into account:

The server  use a procedure conformant to  to validate the client

certificate's certification path. 

The tuple (serial number of the presented certificate; Issuer) uniquely identifies the RPC

client. The meaning and syntax of these fields is defined in . 

RPC-with-TLS implementations  allow the configuration of a set of additional properties of

the certificate to check for a peer's authorization to communicate (e.g., a set of allowed values in

subjectAltName:URI, a set of allowed X.509v3 Certificate Policies, or a set of extended key usages).

When the configured set of trust anchors changes (e.g., removal of a Certification Authority (CA)

from the list of trusted CAs; issuance of a new Certificate Revocation List (CRL) for a given CA),

implementations  reevaluate the certificate originally presented in the context of the

new configuration and terminate the TLS session if the certificate is no longer trustworthy.

• MUST Section 6 of [RFC5280]

Section 6 of [RFC6125]

• MUST

• MUST

MUST

• MUST Section 6 of [RFC5280]

• 

Section 4 of [RFC5280]

MAY

SHOULD

5.2.1.1. Extended Key Usage Values 

 specifies the extended key usage X.509 certificate extension. This

extension, which may appear in end-entity certificates, indicates one or more purposes for which

the certified public key may be used in addition to or in place of the basic purposes indicated in

the key usage extension.

The current document defines two new KeyPurposeId values: one that identifies the RPC-with-

TLS peer as an RPC client, and one that identifies the RPC-with-TLS peer as an RPC server.

The inclusion of the RPC server value (id-kp-rpcTLSServer) indicates that the certificate has been

issued for allowing the holder to process RPC transactions.

The inclusion of the RPC client value (id-kp-rpcTLSClient) indicates that the certificate has been

issued for allowing the holder to request RPC transactions.

Section 4.2.1.12 of [RFC5280]
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5.2.2. Pre-shared Keys 

This mechanism is  to implement. In this mode, the RPC peer can be uniquely

identified by keying material that has been shared out of band (see ). The

PSK Identifier  be exposed at the RPC layer.

OPTIONAL

Section 2.2 of [RFC8446]

SHOULD

6. Security Considerations 

One purpose of the mechanism described in the current document is to protect RPC-based

applications against threats to the confidentiality of RPC transactions and RPC user identities. A

taxonomy of these threats appears in . Also, 

contains a detailed discussion of technologies used in conjunction with TLS. 

 covers important considerations about handling certificate material securely.

Implementers should familiarize themselves with these materials.

Once a TLS session is established, the RPC payload carried on TLS version 1.3 is forward secure.

However, implementers need to be aware that replay attacks can occur during session

establishment. Remedies for such attacks are discussed in detail in .

Further, the current document does not provide a profile that defines the use of 0-RTT data (see 

). Therefore, RPC-with-TLS implementations  use 0-RTT data.

Section 5 of [RFC6973] Section 6 of [RFC7525]

Section 8 of

[RFC5280]

Section 8 of [RFC8446]

Appendix E.5 of [RFC8446] MUST NOT

6.1. The Limitations of Opportunistic Security 

Readers can find the definition of Opportunistic Security in . A discussion of its

underlying principles appears in Section 3 of that document.

The purpose of using an explicitly opportunistic approach is to enable interoperation with

implementations that do not support RPC-with-TLS. A range of options is allowed by this

approach, from "no peer authentication or encryption" to "server-only authentication with

encryption" to "mutual authentication with encryption". The actual security level may indeed be

selected based on policy and without user intervention.

In environments where interoperability is a priority, the security benefits of TLS are partially or

entirely waived. Implementations of the mechanism described in the current document must

take care to accurately represent to all RPC consumers the level of security that is actually in

effect, and are  to provide an audit log of RPC-with-TLS security mode selection.

In all other cases, the adoption, implementation, and deployment of RPC-based upper-layer

protocols that enforce the use of TLS authentication and encryption (when similar RPCSEC_GSS

services are not in use) is strongly encouraged.

[RFC7435]

REQUIRED
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6.1.1. STRIPTLS Attacks 

The initial AUTH_TLS probe occurs in cleartext. An on-path attacker can alter a cleartext

handshake to make it appear as though TLS support is not available on one or both peers. Client

implementers can choose from the following to mitigate STRIPTLS attacks:

A TLSA record  can alert clients that TLS is expected to work, and provide a

binding of a hostname to the X.509 identity. If TLS cannot be negotiated or authentication

fails, the client disconnects and reports the problem. When an opportunistic security policy

is in place, a client  check for the existence of a TLSA record for the target server

before initiating an RPC-with-TLS association. 

Client security policy can require that a TLS session is established on every connection. If an

attacker spoofs the handshake, the client disconnects and reports the problem. This policy

prevents an attacker from causing the association to fall back to cleartext silently. If TLSA

records are not available, this approach is strongly encouraged. 

• [RFC6698]

SHOULD

• 

6.1.2. Privacy Leakage before Session Establishment 

As mentioned earlier, communication between an RPC client and server appears in the clear on

the network prior to the establishment of a TLS session. This cleartext information usually

includes transport connection handshake exchanges, the RPC NULL procedure probing support

for TLS, and the initial parts of TLS session establishment.  discusses

precautions that can mitigate exposure during the exchange of connection handshake

information and TLS certificate material that might enable attackers to track the RPC client. Note

that when PSK authentication is used, the PSK identifier is exposed during the TLS handshake

and can be used to track the RPC client.

Any RPC traffic that appears on the network before a TLS session has been established is

vulnerable to monitoring or undetected modification. A secure client implementation limits or

prevents any RPC exchanges that are not protected.

The exception to this edict is the initial RPC NULL procedure that acts as a STARTTLS message,

which cannot be protected. This RPC NULL procedure contains no arguments or results, and the

AUTH_TLS authentication flavor it uses does not contain user information, so there is negligible

privacy impact from this exception.

Appendix C of [RFC8446]

6.2. TLS Identity Management on Clients 

The goal of RPC-with-TLS is to hide the content of RPC requests while they are in transit. RPC-

with-TLS protocol by itself cannot protect against exposure of a user's RPC requests to other users

on the same client.

Moreover, client implementations are free to transmit RPC requests for more than one RPC user

using the same TLS session. Depending on the details of the client RPC implementation, this

means that the client's TLS credentials are potentially visible to every RPC user that shares a TLS

session. Privileged users may also be able to access this TLS identity.
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As a result, client implementations need to carefully segregate TLS credentials so that local

access to it is restricted to only the local users that are authorized to perform operations on the

remote RPC server.

6.3. Security Considerations for AUTH_SYS on TLS 

Using a TLS-protected transport when the AUTH_SYS authentication flavor is in use addresses

several longstanding weaknesses in AUTH_SYS (as detailed in Appendix A). TLS augments

AUTH_SYS by providing both integrity protection and confidentiality that AUTH_SYS lacks. TLS

protects data payloads, RPC headers, and user identities against monitoring and alteration while

in transit.

TLS guards against in-transit insertion and deletion of RPC messages, thus ensuring the integrity

of the message stream between RPC client and server. DTLS does not provide full message stream

protection, but it does enable receivers to reject nonparticipant messages. In particular,

transport-layer encryption plus peer authentication protects receiving eXternal Data

Representation (XDR) decoders from deserializing untrusted data, a common coding

vulnerability. However, these decoders would still be exposed to untrusted input in the case of

the compromise of a trusted peer or Certification Authority.

The use of TLS enables strong authentication of the communicating RPC peers, providing a

degree of non-repudiation. When AUTH_SYS is used with TLS, but the RPC client is

unauthenticated, the RPC server still acts on RPC requests for which there is no trustworthy

authentication. In-transit traffic is protected, but the RPC client itself can still misrepresent user

identity without server detection. TLS without authentication is an improvement from AUTH_SYS

without encryption, but it leaves a critical security exposure.

In light of the above, when AUTH_SYS is used, the use of a TLS mutual authentication mechanism

is  to prove that the RPC client is known to the RPC server. The server can then

determine whether the UIDs and GIDs in AUTH_SYS requests from that client can be accepted,

based on the authenticated identity of the client.

The use of TLS does not enable RPC clients to detect compromise that leads to the impersonation

of RPC users. Also, there continues to be a requirement that the mapping of 32-bit user and group

ID values to user identities is the same on both the RPC client and server.

RECOMMENDED

6.4. Best Security Policy Practices 

RPC-with-TLS implementations and deployments are strongly encouraged to adhere to the

following policies to achieve the strongest possible security with RPC-with-TLS.

When using AUTH_NULL or AUTH_SYS, both peers are  to have DNSSEC TLSA

records, keys with which to perform mutual peer authentication using one of the methods

described in Section 5.2, and a security policy that requires mutual peer authentication and

rejection of a connection when host authentication fails. 

RPCSEC_GSS provides integrity and privacy services that are largely redundant when TLS is

in use. These services  be disabled in that case. 

• RECOMMENDED

• 

SHOULD
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7. IANA Considerations 

Identifier String:

Flavor Name:

Value:

Description:

Reference:

7.1. RPC Authentication Flavor 

Following , an entry has been added to the "RPC Authentication Flavor

Numbers" registry. The purpose of the new authentication flavor is to signal the use of TLS with

RPC. This new flavor is not a pseudo-flavor.

The fields in the new entry have been assigned as follows:

AUTH_TLS 

TLS 

7 

Indicates support for RPC-with-TLS 

RFC 9289 

Appendix B of [RFC5531]

Protocol:

Identification Sequence:

Reference:

7.2. ALPN Identifier for SunRPC 

Following , the following value has been allocated in the "TLS Application-

Layer Protocol Negotiation (ALPN) Protocol IDs" registry. The "sunrpc" string identifies SunRPC

when used over TLS.

SunRPC 

0x73 0x75 0x6e 0x72 0x70 0x63 ("sunrpc") 

RFC 9289 

Section 6 of [RFC7301]

7.3. Object Identifier for PKIX Extended Key Usage 

Per the Specification Required policy defined in , the following new

values have been registered in the "SMI Security for PKIX Extended Key Purpose" registry

(1.3.6.1.5.5.7.3) (see Section 5.2.1.1 and Appendix B).

Decimal Description Reference

33 id-kp-rpcTLSClient RFC 9289

34 id-kp-rpcTLSServer RFC 9289

Table 1

Section 4.6 of [RFC8126]
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Appendix A. Known Weaknesses of the AUTH_SYS

Authentication Flavor 

The ONC RPC protocol, as specified in , provides several modes of security, commonly

referred to as "authentication flavors". Some of these flavors provide much more than an

authentication service. We refer to these as authentication flavors, security flavors, or simply,

flavors. One of the earliest and most basic flavors is AUTH_SYS, also known as AUTH_UNIX. 

 specifies AUTH_SYS.

AUTH_SYS assumes that the RPC client and server both use POSIX-style user and group identifiers

(each user and group can be distinctly represented as a 32-bit unsigned integer). It also assumes

that the client and server both use the same mapping of user and group to an integer. One user

ID, one primary group ID, and up to 16 supplemental group IDs are associated with each RPC

request. The combination of these identifies the entity on the client that is making the request.

A string identifies peers (hosts) in each RPC request.  does not specify any

requirements for this string other than that it is no longer than 255 octets. It does not have to be

the same from request to request. Also, it does not have to match the DNS hostname of the

sending host. For these reasons, even though most implementations fill in their hostname in this

field, receivers typically ignore its content.

 contains a brief explanation of security considerations:

[RFC5531]

Appendix A of [RFC5531]

[RFC5531]

Appendix A of [RFC5531]
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It should be noted that use of this flavor of authentication does not guarantee any

security for the users or providers of a service, in itself. The authentication provided by

this scheme can be considered legitimate only when applications using this scheme and

the network can be secured externally, and privileged transport addresses are used for

the communicating end-points (an example of this is the use of privileged TCP/UDP ports

in UNIX systems -- note that not all systems enforce privileged transport address

mechanisms). 

It should be clear, therefore, that AUTH_SYS by itself (i.e., without strong client authentication)

offers little to no communication security:

It does not protect the confidentiality or integrity of RPC requests, users, or payloads, relying

instead on "external" security. 

It does not provide authentication of RPC peer machines, other than inclusion of an

unprotected domain name. 

The use of 32-bit unsigned integers as user and group identifiers is problematic because

these data types are not cryptographically signed or otherwise verified by any authority. In

addition, the mapping of these integers to users and groups has to be consistent amongst a

server and its cohort of clients. 

Because the user and group ID fields are not integrity protected, AUTH_SYS does not provide

non-repudiation. 

1. 

2. 

3. 

4. 

Appendix B. ASN.1 Module 

The following module adheres to ASN.1 specifications  and .[X.680] [X.690]
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<CODE BEGINS>

RPCwithTLS-2021

  { iso(1) identified-organization(3) dod(6) internet(1)

  security(5) mechanisms(5) pkix(7) id-mod(0)

  id-mod-rpcWithTLS-2021(105) }

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- OID Arc

id-kp OBJECT IDENTIFIER ::=

  { iso(1) identified-organization(3) dod(6) internet(1)

    security(5) mechanisms(5) pkix(7) kp(3) }

-- Extended Key Usage Values

id-kp-rpcTLSClient OBJECT IDENTIFIER ::= { id-kp 33 }

id-kp-rpcTLSServer OBJECT IDENTIFIER ::= { id-kp 34 }

END

<CODE ENDS>
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