
RFC 9321

Signature Validation Token

Abstract

Electronic signatures have a limited lifespan with respect to the time period that they can be

validated and determined to be authentic. The Signature Validation Token (SVT) defined in this

specification provides evidence that asserts the validity of an electronic signature. The SVT is

provided by a trusted authority, which asserts that a particular signature was successfully

validated according to defined procedures at a certain time. Any future validation of that

electronic signature can be satisfied by validating the SVT without any need to also validate the

original electronic signature or the associated digital certificates. The SVT supports electronic

signatures in Cryptographic Message Syntax (CMS), XML, PDF, and JSON documents.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Independent Submission

9321

Informational

October 2022

2070-1721

 S. Santesson

IDsec Solutions

R. Housley

Vigil Security

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor

has chosen to publish this document at its discretion and makes no statement about its value for

implementation or deployment. Documents approved for publication by the RFC Editor are not

candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9321

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

Santesson & Housley Informational Page 1

https://www.rfc-editor.org/rfc/rfc9321
https://www.rfc-editor.org/info/rfc9321

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Definitions

3. Signature Validation Token

3.1. Signature Validation Token Function

3.2. Signature Validation Token Syntax

3.2.1. Data Types

3.2.2. Signature Validation Token JWT Claims

3.2.3. SigValidation Object Class

3.2.4. Signature Claims Object Class

3.2.5. SigReference Claims Object Class

3.2.6. SignedDataReference Claims Object Class

3.2.7. PolicyValidation Claims Object Class

3.2.8. TimeValidation Claims Object Class

3.2.9. CertReference Claims Object Class

3.2.10. SVT JOSE Header

4. Profiles

4.1. Defined Profiles

5. Signature Verification with an SVT

6. IANA Considerations

6.1. Claim Names Registration

6.1.1. Registry Contents

6.2. Header Parameter Names Registration

6.2.1. Registry Contents

7. Security Considerations

7.1. Level of Reliance

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 2

https://trustee.ietf.org/license-info

7.2. Aging Algorithms

8. References

8.1. Normative References

8.2. Informative References

Appendix A. XML Signature Profile

A.1. Notation

A.1.1. References to XML Elements from XML Schemas

A.2. SVT in XML Documents

A.2.1. SignatureValidationToken Signature Property

A.2.2. Multiple SVTs in an XML Signature

A.3. XML Signature SVT Claims

A.3.1. XML Profile Identifier

A.3.2. XML Signature Reference Data

A.3.3. XML Signed Data Reference Data

A.3.4. XML Signer Certificate References

A.4. JOSE Header

A.4.1. SVT Signing Key Reference

Appendix B. PDF Signature Profile

B.1. SVTs in PDF Documents

B.1.1. SVT Extension to Timestamp Tokens

B.2. PDF Signature SVT Claims

B.2.1. PDF Profile Identifier

B.2.2. PDF Signature Reference Data

B.2.3. PDF Signed Data Reference Data

B.2.4. PDF Signer Certificate References

B.3. JOSE Header

B.3.1. SVT Signing Key Reference

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 3

Appendix C. JWS Profile

C.1. SVT in JWS

C.1.1. "svt" Header Parameter

C.1.2. Multiple SVTs in a JWS Signature

C.2. JWS Signature SVT Claims

C.2.1. JWS Profile Identifier

C.2.2. JWS Signature Reference Data

C.2.3. JWS Signed Data Reference Data

C.2.4. JWS Signer Certificate References

C.3. SVT JOSE Header

C.3.1. SVT Signing Key Reference

Appendix D. Schemas

D.1. Concise Data Definition Language (CDDL)

D.2. JSON Schema

Appendix E. Examples

Authors' Addresses

1. Introduction

Electronic signatures have a limited lifespan regarding when they can be validated and

determined to be authentic. Many factors make it more difficult to validate electronic signatures

over time. For example:

Trusted information about the validity of the certificate containing the signer's public key is

not available.

Trusted information about the time when the signature was actually created is not available.

Algorithms used to create the electronic signature may no longer be considered secure at the

time of validation and may therefore no longer be available in software libraries.

Services necessary to validate the signature are no longer available at the time of validation.

Supporting evidence such as certification authority (CA) certificates, Online Certificate Status

Protocol (OCSP) responses, Certificate Revocation Lists (CRLs), or timestamps is not available

or can't be validated.

The challenges to validation of an electronic signature increase over time, and eventually it may

simply be impossible to verify the signature with a sufficient level of assurance.

•

•

•

•

•

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 4

Existing standards, such as the ETSI XAdES profile for XML signatures ,

ETSI PAdES profile for PDF signatures , and ETSI CAdES profile for

CMS signatures , can be used to extend the time within which a signature can be

validated at the cost of significant complexity, which involves storing and validating significant

amounts of external evidence data such as revocation data, signature time stamps, and archival

time stamps.

The Signature Validation Token (SVT) defined in this specification takes a trusted signature

validation process as an input and preserves the validation result for the associated signature

and signed document. The SVT asserts that a particular electronic signature was successfully

validated by a trusted authority according to defined procedures at a certain time. Those

procedures include checks that the signature match the signed document, checks that the

signature can be validated by the signing certificate, and checks that the signing certificate pass

certificate path validation . Those procedures also include checks associated with

a particular trust policy such as that an acceptable certificate policy was

used to issue the signer's certificate and checks that an acceptable signature policy was used by

the signer .

Once the SVT is issued by a trusted authority, any future validation of that electronic signature

can be satisfied by validating the SVT without any need to also revalidate the original electronic

signature.

As the SVT is used to preserve validation results obtained through applying existing standards

for signature validation, it is complementary to and not a replacement for such standards,

including the ETSI standards for long-term validation listed above. The SVT does, however, have

the potentially positive effect that it may significantly reduce the need to apply complex long-

term validation and preservation techniques for signature validation if an SVT is issued and

applied to the signed document at an early stage where the signature can be validated without

support of large amounts of external evidence. The use of SVTs may therefore drastically reduce

the complexity of revalidation of old archived electronic signatures.

The SVT can be signed with private keys and algorithms that provide confidence for a

considerable time period. In fact, multiple SVTs can be used to offer greater assurance. For

example, one SVT could be produced with a large RSA private key, a second one with a strong

elliptic curve, and a third one with a quantum safe digital signature algorithm to protect against

advances in computing power and cryptanalytic capabilities. Further, the trusted authority can

add additional SVTs in the future using fresh private keys and signatures to extend the lifetime of

the SVTs if necessary.

[XADES] [XMLDSIG11]

[PADES] [ISOPDF2] [CADES]

[RFC5652]

MUST

[RFC5280] MAY

[RFC5280] [RFC3647]

[RFC3125]

2. Definitions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

This document use the following terms:

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 5

Signed Data:

Signed Bytes:

The data covered by a particular electronic signature. This is typically equivalent

to the signed content of a document, and it represents the data that the signer intended to

sign. In some cases, such as in some XML signatures, the Signed Data can be the collection of

several data fragments each referenced by the signature. In the case of PDF, this is the data

covered by the "ByteRange" parameter in the signature dictionary. In JSON Web Signature

(JWS), this is the unencoded payload data (before base64url encoding).

These are the actual bytes of data that were hashed and signed by the digital

signature algorithm. In most cases, this is not the actual Signed Data but a collection of

signature metadata that includes references (hash) of the Signed Data as well as information

about algorithms and other data bound to a signature. In XML, this is the canonicalized

SignedInfo element. In CMS and PDF signatures, this is the DER-encoded SignedAttributes

structure. In JWS, this is the protected header and payload data formatted according to

.

When these terms are used as defined in this section, they appear with a capitalized first letter.

[RFC7515]

3. Signature Validation Token

3.1. Signature Validation Token Function

The Signature Validation Token (SVT) is created by a trusted service to assert evidence of

successful electronic signature validation using a well-defined and trustworthy signature

validation process. The SVT binds the validation result to the validated signature, the document

signed by the signature, and the certificate of the signer. This allows a relying party to verify the

validity of a signed document without having to revalidate the original signature or to reuse any

of its associated cryptographic algorithms for as long as the SVT itself can be validated. The SVT

achieves this by binding the following information to a specific electronic signature:

A unique identification of the electronic signature.

The data and metadata signed by the electronic signature.

The signer's certificate that was validated as part of electronic signature verification.

The certification path that was used to validate the signer's certificate.

An assertion providing evidence of signature verification, the time the verification was

performed, the procedures used to verify the electronic signature, and the outcome of the

verification.

An assertion providing evidence of the time at which the signature is known to have existed,

the procedures used to validate the time of existence, and the outcome of the validation.

The SVT aims to support long-term validation that can be further extended into the future by

applying the following strategies:

by using secure algorithms with long life expectancy when signing the SVT

by reissuing the SVT before it becomes insecure or is considered expired

•

•

•

•

•

•

•

•

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 6

optionally, by issuing multiple SVTs with different algorithms to provide redundancy in case

one algorithm is broken

•

3.2. Signature Validation Token Syntax

The SVT is carried in a JSON Web Token (JWT) as defined in .[RFC7519]

String:

Base64Binary:

StringOrURI:

URI:

Integer:

Long:

NumericDate:

Boolean:

Object<Class>:

Map<Type>:

Array:

Null:

3.2.1. Data Types

The contents of claims in an SVT are specified using the following data types:

JSON Data Type of string that contains an arbitrary case-sensitive string value.

JSON Data Type of string that contains a Base64-encoded byte array of binary

data.

JSON Data Type of string that contains an arbitrary string or a URI as defined in

. It is to contain the colon character (":") to be a URI.

JSON Data Type of string that contains a URI as defined in .

JSON Data Type of number that contains a 32-bit signed integer value (from -2
31

 to

2
31

-1).

JSON Data Type of number that contains a 64-bit signed integer value (from -2
63

 to 2
63

-1).

JSON Data Type of number that contains data as defined in , which is

the number of seconds from 1970-01-01T00:00:00Z UTC until the specified UTC date/time,

ignoring leap seconds.

JSON Data Type of boolean that contains the explicit value of true or false.

A JSON object holding a claims object of a class defined in this specification (see

Section 3.2.2).

A JSON object with name-value pairs where the value is an object of the specified

Type in the notation. For example, Map<String> is a JSON object with name-value pairs where

all values are of type String.

A JSON array of a specific data type as defined in this section. An array is expressed in

this specification by square brackets. For example, [String] indicates an array of String values,

and [Object<DocHash>] indicates an array of DocHash objects.

A JSON null that represents an absent value. A claim with a null value is equivalent with

an absent claim.

[RFC7519] REQUIRED

[RFC7519]

[RFC7519]

3.2.2. Signature Validation Token JWT Claims

The SVT contain only JWT claims in the following list:MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 7

"jti":

"iss":

"iat":

"aud":

"exp":

"sig_val_claims":

A String data type that is a "JWT ID" registered claim according to . It is

 that the identifier holds a hexadecimal string representation of a 128-bit

unsigned integer. An SVT contain one "JWT ID" claim.

A StringOrURI data type that is an "Issuer" registered claim according to , which

is an arbitrary unique identifier of the SVT issuer. This value have the value of a URI

based on a domain owned by the issuer. An SVT contain one "Issuer" claim.

A NumericDate data type that is an "Issued At" registered claim according to ,

which expresses the time when this SVT was issued. An SVT contain one "Issued At"

claim.

A [StringOrURI] data type or a StringOrURI data type that is an "Audience" registered

claim according to . The audience claim is an array of one or more identifiers,

identifying intended recipients of the SVT. Each identifier identify a single entity, a group

of entities, or a common policy adopted by a group of entities. If only one value is provided, it

 be provided as a single StringOrURI data type value instead of as an array of values.

Inclusion of the "Audience" claim in an SVT is .

A NumericDate data type that is an "Expiration Time" registered claim according to

, which expresses the time when services and responsibilities related to this SVT are

no longer provided by the SVT issuer. The precise meaning of the expiration time claim is

defined by local policies. See implementation note below. Inclusion of the "Expiration Time"

claim in an SVT is .

An Object<SigValidation> data type that contains signature validation claims

for this SVT extending the standard registered JWT claims above. An SVT contain one

sig_val_claims claim.

Note: An SVT asserts that a particular validation process was undertaken at a stated time. This

fact never changes and never expires. However, some other aspects of the SVT such as liability

for false claims or service provision related to a specific SVT may expire after a certain period of

time, such as a service where an old SVT can be upgraded to a new SVT signed with fresh keys

and algorithms.

[RFC7519]

RECOMMENDED

MUST

[RFC7519]

SHOULD

MUST

[RFC7519]

MUST

[RFC7519]

MAY

MAY

OPTIONAL

[RFC7519]

OPTIONAL

MUST

"ver":

"profile":

3.2.3. SigValidation Object Class

The sig_val_claims JWT claim uses the SigValidation object class. A SigValidation object holds all

custom claims, and a SigValidation object contains the following parameters:

A String data type representing the version. This parameter be present and the

version in this specification indicated by the value "1.0".

A StringOrURI data type representing the name of a profile that defines conventions

followed for specific claims and any extension points used by the SVT issuer. This parameter

 be present.

MUST

MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 8

"hash_algo":

"sig":

"ext":

A URI data type that identifies the hash algorithm used to compute the hash values

within the SVT. The URI identifier be one defined in or in the IANA registry

defined by this specification. This parameter be present.

An [Object<Signature>] data type that gives information about validated electronic

signatures as an array of Signature objects. If the SVT contains signature validation evidence

for more than one signature, then each signature is represented by a separate Signature

object. At least one Signature object be present.

A Map<String> data type that provides additional claims related to the SVT. Extension

claims are added at the discretion of the SVT issuer; however, extension claims follow

any conventions defined in a profile of this specification (see Section 4). Inclusion of this

parameter is .

MUST [RFC9231]

MUST

MUST

MUST

OPTIONAL

"sig_ref":

"sig_data_ref":

"signer_cert_ref":

"sig_val":

"time_val":

"ext":

3.2.4. Signature Claims Object Class

The sig parameter in the SigValidation object class uses the Signature object class. The Signature

object contains claims related to signature validation evidence for one signature, and it contains

the following parameters:

An Object<SigReference> data type that contains reference information identifying

the target signature. This parameter be present.

An [Object<SignedDataReference>] data type that contains an array of

references to Signed Data that was signed by the target electronic signature. At least one

SignedDataReference object be present.

An Object<CertReference> data type that references the signer's certificate

and optionally references a supporting certification path that was used to verify the target

electronic signature. This parameter be present.

An [Object<PolicyValidation>] data type that contains an array of results of signature

verification according to defined procedures. At least one PolicyValidation object be

present.

An [Object<TimeValidation>] data type that contains an array of time verification

results showing that the target signature has existed at a specific time in the past. Inclusion of

this parameter is .

A MAP<String> data type that provides additional claims related to the target signature.

Extension claims are added at the discretion of the SVT issuer; however, extension claims

 follow any conventions defined in a profile of this specification (see Section 4). Inclusion

of this parameter is .

MUST

MUST

MUST

MUST

OPTIONAL

MUST

OPTIONAL

3.2.5. SigReference Claims Object Class

The sig_ref parameter in the Signature object class uses the SigReference object class. The

SigReference object provides information used to match the Signature claims object to a specific

target electronic signature and to verify the integrity of the target signature value and Signed

Bytes, and it contains the following parameters:

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 9

"id":

"sig_hash":

"sb_hash":

A String data type that contains an identifier assigned to the target signature. Inclusion of

this parameter is .

A Base64Binary data type that contains a hash value of the target electronic

signature value. This parameter be present.

A Base64Binary data type that contains a hash value of the Signed Bytes of the target

electronic signature. This parameter be present.

OPTIONAL

MUST

MUST

"ref":

"hash":

3.2.6. SignedDataReference Claims Object Class

The sig_data_ref parameter in the Signature object class uses the SignedDataReference object

class. The SignedDataReference object provides information used to verify the target electronic

signature references to Signed Data as well as to verify the integrity of all data that is signed by

the target signature, and it contains the following parameters:

A String data type that contains a reference identifier for the data or data fragment

covered by the target electronic signature. This parameter be present.

A Base64Binary data type that contains the hash value for the data covered by the target

electronic signature. This parameter be present.

MUST

MUST

"pol":

"res":

"msg":

"ext":

3.2.7. PolicyValidation Claims Object Class

The sig_val parameter in the Signature object class uses the PolicyValidation object class. The

PolicyValidation object provides information about the result of a validation process according to

a specific policy, and it contains the following parameters:

A StringOrURI data type that contains the identifier of the policy governing the electronic

signature verification process. This parameter be present.

A String data type that contains the result of the electronic signature verification process.

The value be one of "PASSED", "FAILED", or "INDETERMINATE" as defined by

. This parameter be present.

A String data type that contains a message describing the result. Inclusion of this

parameter is .

A MAP<String> data type that provides additional claims related to the target signature.

Extension claims are added at the discretion of the SVT issuer; however, extension claims

 follow any conventions defined in a profile of this specification (see Section 4). Inclusion

of this parameter is .

MUST

MUST

[ETSI319102-1] MUST

OPTIONAL

MUST

OPTIONAL

3.2.8. TimeValidation Claims Object Class

The time_val parameter in the Signature object class uses the TimeValidation object class. The

TimeValidation claims object provides information about the result of validating evidence of

time asserting that the target signature existed at a particular time in the past. Evidence of time

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 10

"time":

"type":

"iss":

"id":

"hash":

"val":

"ext":

is typically a timestamp according to , but other types of evidence may be used such as

a previously issued SVT for this signature. The TimeValidation claims object contains the

following parameters:

A NumericDate data type that contains the verified time. This parameter be

present.

A StringOrURI data type that contains an identifier of the type of evidence of time. This

parameter be present.

A StringOrURI data type that contains an identifier of the entity that issued the evidence

of time. This parameter be present.

A String data type that contains an unique identifier assigned to the evidence of time.

Inclusion of this parameter is .

A Base64Binary data type that contains the hash value of the validated evidence of time.

Inclusion of this parameter is .

An [Object<PolicyValidation>] data type that contains an array of results of the time

evidence validation according to defined validation procedures. Inclusion of this parameter is

.

A MAP<String> data type that provides additional claims related to the target signature.

Extension claims are added at the discretion of the SVT issuer; however, extension claims

 follow any conventions defined in a profile of this specification (see Section 4). Inclusion

of this parameter is .

[RFC3161]

MUST

MUST

MUST

OPTIONAL

OPTIONAL

OPTIONAL

MUST

OPTIONAL

"type":

"ref":

"chain":

3.2.9. CertReference Claims Object Class

The signer_cert_ref parameter in the Signature object class uses the CertReference object class.

The CertReference object references a single X.509 certificate or a X.509 certification path either

by providing the certificate data or by providing hash references for certificates that can be

located in the target electronic signature, and it contains the following parameters:

A StringOrURI data type that contains an identifier of the type of reference. The type

identifier be one of the identifiers defined below, an identifier specified by the selected

profile, or a URI identifier. This parameter be present.

A [String] data type that contains an array of string parameters according to conventions

defined by the type identifier. At least one parameter be present.

The following type identifiers are defined:

The ref contains an array of Base64-encoded X.509 certificates . The

certificates be provided in the order starting with the end entity certificate. Any

following certificate must be able to validate the signature on the previous certificate in the

array.

MUST

MUST

MUST

[RFC5280]

MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 11

"chain_hash": The ref contains an array of one or more Base64-encoded hash values where

each hash value is a hash over a X.509 certificate used to validate the signature.

The certificates be provided in the order starting with the end entity certificate. Any

following certificate must be able to validate the signature on the previous certificate in the

array. This option be used unless all hashed certificates are present in the target

electronic signature.

Note: All certificates referenced using the identifiers above are X.509 certificates. Profiles of this

specification define alternative types of public key containers; however, a major function of

these referenced certificates is not just to reference the public key but also to provide the subject

name of the signer. It is therefore important for the full function of an SVT that the referenced

public key container also provides the means to identify the signer.

[RFC5280]

MUST

MUST NOT

MAY

"typ":

"alg":

3.2.10. SVT JOSE Header

The SVT JWT contain the following JSON Object Signing and Encryption (JOSE) header

parameters in accordance with :

This parameter have the string value "JWT" (upper case).

This parameter identifies the algorithm used to sign the SVT JWT. The algorithm identifier

 be specified in or the IANA "JSON Web Signature and Encryption Algorithms"

registry . The specified signature hash algorithm be identical to the

hash algorithm specified in the hash_algo parameter of the SigValidation object within the

sig_val_claims claim.

The SVT header contain a public key or a reference to a public key used to verify the

signature on the SVT in accordance with . Each profile, as discussed in Section 4,

define the requirements for how the key or key reference is included in the header.

MUST

Section 5 of [RFC7519]

MUST

MUST [RFC7518]

[IANA-JOSE-REG] MUST

MUST

[RFC7515] MUST

4. Profiles

Each signed document and signature type will have to define the precise content and use of

several claims in the SVT.

At a minimum, each profile define:

The identifier of the profile

How to reference the Signed Data content of the signed document

How to reference the target electronic signature and the Signed Bytes of the signature

How to reference certificates supporting each electronic signature

How to include public keys or references to public keys in the SVT

Whether each electronic signature is supported by a single SVT, or one SVT may support

multiple electronic signatures of the same document

MUST

•

•

•

•

•

•

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 12

https://www.rfc-editor.org/rfc/rfc7519#section-5

A profile also define:

Explicit information on how to perform signature validation based on an SVT

How to attach an SVT to an electronic signature or signed document

MAY

•

•

Appendix A:

Appendix B:

Appendix C:

4.1. Defined Profiles

The following profiles are defined in appendixes of this document:

XML Signature Profile

PDF Signature Profile

JWS Profile

Other documents define other profiles that complement, amend, or supersede these

profiles.

MAY MAY

5. Signature Verification with an SVT

Signature verification based on an SVT follow these steps:

Locate all available SVTs available for the signed document that are relevant for the target

electronic signature.

Select the most recent SVT that can be successfully validated and meets the requirement of

the relying party.

Verify the integrity of the signature and the Signed Bytes of the target electronic signature

using the sig_ref claim.

Verify that the Signed Data reference in the original electronic signature matches the

reference values in the sig_data_ref claim.

Verify the integrity of referenced Signed Data using provided hash values in the sig_data_ref

claim.

Obtain the verified certificates supporting the asserted electronic signature verification

through the signer_cert_ref claim.

Verify that signature validation policy results satisfy the requirements of the relying party.

Verify that verified time results satisfy the context for the use of the signed document.

After successfully performing these steps, signature validity is established as well as the trusted

signer certificate binding the identity of the signer to the electronic signature.

MUST

1.

2.

3.

4.

5.

6.

7.

8.

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 13

6. IANA Considerations

6.1. Claim Names Registration

IANA has registered the "sig_val_claims" claim name in the "JSON Web Token Claims" registry

established by .Section 10.1 of [RFC7519]

Claim Name:

Claim Description:

Change Controller:

Specification Document(s):

6.1.1. Registry Contents

sig_val_claims

Signature Validation Token

IESG

Section 3.2.3 of RFC 9321

6.2. Header Parameter Names Registration

IANA has registered the "svt" Header Parameter in the "JSON Web Signature and Encryption

Header Parameters" registry established by .[RFC7515]

Header Parameter Name:

Header Parameter Description:

Header Parameter Usage Location(s):

Change Controller:

Specification Document(s):

6.2.1. Registry Contents

svt

Signature Validation Token

JWS

IESG

Appendix C.1.1 of RFC 9321

7. Security Considerations

7.1. Level of Reliance

An SVT allows a signature verifier to still validate the original signature using the original

signature data and to use the information in the SVT selectively to confirm the validity and

integrity of the original data, such as confirming the integrity of Signed Data or the validity of the

signer's certificate, etc.

Another way to use an SVT is to completely rely on the validation conclusion provided by the SVT

and to omit revalidation of the original signature value and original certificate status checking

data.

This choice is a decision made by the verifier according to its own policy and risk assessment.

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 14

https://www.rfc-editor.org/rfc/rfc7519#section-10.1

[CADES]

[ETSI319102-1]

[IANA-JOSE-REG]

[ISOPDF2]

[PADES]

[RFC2119]

[RFC3125]

[RFC3161]

8. References

8.1. Normative References

,

, ,

, April 2016.

,

,

, , May 2016.

, ,

.

, ,

, December 2020.

,

, ,

, April 2016.

, , ,

, , March 1997,

.

, , and , , ,

, September 2001, .

, , , and ,

, , ,

August 2001, .

However, even when relying on the SVT validation conclusion of an SVT, it is vital to still verify

that the present SVT is correctly associated with the document and signature that is being

validated by validating the hashed reference data in the SVT of the signature, signing certificate

chain, Signed Data, and the Signed Bytes.

7.2. Aging Algorithms

Even if the SVT provides protection against algorithms becoming weakened or broken over time,

this protection is only valid for as long as the algorithms used to sign the SVT are still considered

secure. It is advisable to reissue SVTs in cases where an algorithm protecting the SVT is getting

close to its end of life.

One way to increase the resistance of algorithms becoming insecure, is to issue multiple SVTs for

the same signature with different algorithms and key lengths where one algorithm could still be

secure even if the corresponding algorithm used in the alternative SVT is broken.

ETSI "Electronic Signatures and Infrastructures (ESI); CAdES digital signatures;

Part 1: Building blocks and CAdES baseline signatures" v1.1.1 ETSI EN 319

122-1

ETSI "Electronic Signatures and Infrastructures (ESI); Procedures for Creation

and Validation of AdES Digital Signatures; Part 1: Creation and Validation"

v1.1.1 ETSI EN 319 102-1

IANA "JSON Object Signing and Encryption (JOSE)" <https://www.iana.org/

assignments/jose/>

ISO "Document management -- Portable document format -- Part 2: PDF 2.0"

ISO 32000-2:2020

ETSI "Electronic Signatures and Infrastructures (ESI); PAdES digital signatures;

Part 1: Building blocks and PAdES baseline signatures" v1.1.1 ETSI EN 319

142-1

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Ross, J. Pinkas, D. N. Pope "Electronic Signature Policies" RFC 3125 DOI

10.17487/RFC3125 <https://www.rfc-editor.org/info/rfc3125>

Adams, C. Cain, P. Pinkas, D. R. Zuccherato "Internet X.509 Public Key

Infrastructure Time-Stamp Protocol (TSP)" RFC 3161 DOI 10.17487/RFC3161

<https://www.rfc-editor.org/info/rfc3161>

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 15

https://www.iana.org/assignments/jose/
https://www.iana.org/assignments/jose/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3125
https://www.rfc-editor.org/info/rfc3161

[RFC3647]

[RFC5035]

[RFC5280]

[RFC5652]

[RFC7515]

[RFC7518]

[RFC7519]

[RFC8174]

[RFC9231]

[XADES]

[XMLDSIG11]

[RFC8610]

, , , , and ,

,

, , November 2003,

.

,

, , , August 2007,

.

, , , , , and ,

, , , May 2008,

.

, , , ,

, September 2009, .

, , and , , ,

, May 2015, .

, , , , May

2015, .

, , and , , ,

, May 2015, .

, ,

, , , May 2017,

.

, ,

, , July 2022,

.

,

, ,

, April 2016.

, , , , , , and

, ,

, April 2013.

8.2. Informative References

, , and ,

, ,

, June 2019, .

Chokhani, S. Ford, W. Sabett, R. Merrill, C. S. Wu "Internet X.509 Public

Key Infrastructure Certificate Policy and Certification Practices Framework"

RFC 3647 DOI 10.17487/RFC3647 <https://www.rfc-editor.org/

info/rfc3647>

Schaad, J. "Enhanced Security Services (ESS) Update: Adding CertID Algorithm

Agility" RFC 5035 DOI 10.17487/RFC5035 <https://www.rfc-

editor.org/info/rfc5035>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk

"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-

editor.org/info/rfc5280>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI

10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515

DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518

<https://www.rfc-editor.org/info/rfc7518>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Eastlake 3rd, D. "Additional XML Security Uniform Resource Identifiers (URIs)"

RFC 9231 DOI 10.17487/RFC9231 <https://www.rfc-editor.org/info/

rfc9231>

ETSI "Electronic Signatures and Infrastructures (ESI); XAdES digital signatures;

Part 1: Building blocks and XAdES baseline signatures" v1.1.1 ETSI EN 319

132-1

Eastlake 3rd, D. Reagle, J. Solo, D. Hirsch, F. Nystrom, M. Roessler, T. K.

Yiu "XML Signature Syntax and Processing Version 1.1" W3C Proposed

Recommendation Latest version available at https://www.w3.org/TR/

.xmldsig-core1/

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language

(CDDL): A Notational Convention to Express Concise Binary Object

Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/

RFC8610 <https://www.rfc-editor.org/info/rfc8610>

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 16

https://www.rfc-editor.org/info/rfc3647
https://www.rfc-editor.org/info/rfc3647
https://www.rfc-editor.org/info/rfc5035
https://www.rfc-editor.org/info/rfc5035
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9231
https://www.rfc-editor.org/info/rfc9231
https://www.w3.org/TR/xmldsig-core1/
https://www.w3.org/TR/xmldsig-core1/
https://www.rfc-editor.org/info/rfc8610

Appendix A. XML Signature Profile

This appendix defines a profile for implementing SVTs with a signed XML document and defines

the following aspects of SVT usage:

How to include reference data related to XML signatures and XML documents in an SVT

How to add an SVT token to an XML signature

XML documents can have any number of signature elements, signing an arbitrary number of

fragments of XML documents. The actual signature element may be included in the signed XML

document (enveloped), include the Signed Data (enveloping), or may be separate from the signed

content (detached).

To provide a generic solution for any type of XML signature, an SVT is added to each XML

signature element within the XML signature <ds:Object> element.

•

•

A.1. Notation

A.1.1. References to XML Elements from XML Schemas

When referring to elements from the W3C XML Signature namespace (

), the following syntax is used:

<ds:Signature>

When referring to elements from the ETSI XAdES XML Signature namespace (

), the following syntax is used:

<xades:CertDigest>

When referring to elements defined in this specification (

), the following syntax is used:

<svt:Element>

https://www.w3.org/

2000/09/xmldsig#

•

https://uri.etsi.org/

01903/v1.3.2#

•

http://id.swedenconnect.se/svt/1.0/sig-

prop/ns

•

A.2. SVT in XML Documents

When SVTs are provided for XML signatures, then one SVT be provided for each XML

signature.

An SVT embedded within the XML signature element be placed in a

<svt:SignatureValidationToken> element as defined in Appendix A.2.1.

MUST

MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 17

https://www.w3.org/2000/09/xmldsig#
https://www.w3.org/2000/09/xmldsig#
https://uri.etsi.org/01903/v1.3.2#
https://uri.etsi.org/01903/v1.3.2#
http://id.swedenconnect.se/svt/1.0/sig-prop/ns
http://id.swedenconnect.se/svt/1.0/sig-prop/ns

A.2.1. SignatureValidationToken Signature Property

The <svt:SignatureValidationToken> element be placed in a <ds:SignatureProperty>

element in accordance with . The <ds:SignatureProperty> element be placed

inside a <ds:SignatureProperties> element inside a <ds:Object> element inside a <ds:Signature>

element.

Note: requires the Target attribute to be present in <ds:SignatureProperty>,

referencing the signature targeted by this signature property. If an SVT is added to a signature

that does not have an Id attribute, implementations add an Id attribute to the

<ds:Signature> element and reference that Id in the Target attribute. This Id attribute and Target

attribute value matching is required by the standard, but it is redundant in the

context of SVT validation as the SVT already contains information that uniquely identifies the

target signature. Validation applications reject an SVT token because of Id and

Target attribute mismatch and rely on matching against a signature using signed

information in the SVT itself.

The <svt:SignatureValidationToken> element is defined by the following XML Schema:

The SVT token be included as a string representation of the SVT JWT. Note that this is the

string representation of the JWT without further encoding. The SVT be represented by

the Base64-encoded bytes of the JWT string.

Example:

MUST

[XMLDSIG11] MUST

[XMLDSIG11]

SHOULD

[XMLDSIG11]

SHOULD NOT

MUST

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://id.swedenconnect.se/svt/1.0/sig-prop/ns"

 xmlns:svt="http://id.swedenconnect.se/svt/1.0/sig-prop/ns">

 <xs:element name="SignatureValidationToken"

 type="svt:SignatureValidationTokenType" />

 <xs:complexType name="SignatureValidationTokenType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:schema>

MUST

MUST NOT

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 18

<ds:Signature Id="MySignatureId">

 ...

 <ds:Object>

 <ds:SignatureProperties>

 <ds:SignatureProperty Target="#MySignatureId">

 <svt:SignatureValidationToken>

 eyJ0eXAiOiJKV1QiLCJhb...2aNZ

 </svt:SignatureValidationToken>

 </ds:SignatureProperty>

 </ds:SignatureProperties>

 </ds:Object>

</ds:Signature>

A.2.2. Multiple SVTs in an XML Signature

If a new SVT is stored in a signature that already contains a previously issued SVT,

implementations can choose either to replace the existing SVT or to store the new SVT in addition

to the existing SVT.

If the new SVT is stored in addition to the old SVT, it be stored in a new

<ds:SignatureProperty> element inside the existing <ds:SignatureProperties> element where the

old SVT is located.

For interoperability robustness, signature validation applications be able to handle

signatures where the new SVT is located in a new <ds:Object> element.

SHOULD

MUST

A.3. XML Signature SVT Claims

A.3.1. XML Profile Identifier

When this profile is used, the SigValidation object contain a "profile" claim with the value

"XML".

MUST

"id":

"sig_hash":

"sb_hash":

A.3.2. XML Signature Reference Data

The SVT Signature object contain a "sig_ref" claim (SigReference object) with the following

elements:

The Id-attribute of the XML signature, if present.

The hash over the signature value bytes.

The hash over the canonicalized <ds:SignedInfo> element (the bytes the XML

signature algorithm has signed to generate the signature value).

MUST

A.3.3. XML Signed Data Reference Data

The SVT Signature object contain one instance of the "sig_data" claim (SignedData object)

for each <ds:Reference> element in the <ds:SignedInfo> element. The "sig_data" claim

contain the following elements:

MUST

MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 19

"ref":

"hash":

The value of the URI attribute of the corresponding <ds:Reference> element.

The hash of all bytes that were identified by the corresponding <ds:Reference> element

after applying all identified canonicalization and transformation algorithms. These are the

same bytes that are hashed by the hash value in the <ds:DigestValue> element inside the

<ds:Reference> element.

A.3.4. XML Signer Certificate References

The SVT Signature object contain a "signer_cert_ref" claim (CertReference object). The

"type" parameter of the "signer_cert_ref" claim be either "chain" or "chain_hash".

The "chain" type be used when signature validation was performed using one or more

certificates where some or all of the certificates in the chain are not present in the target

signature.

The "chain_hash" type be used when signature validation was performed using one or

more certificates where all of the certificates are present in the target signature.

MUST

MUST

• MUST

• MUST

A.4. JOSE Header

"x5c":

"kid":

A.4.1. SVT Signing Key Reference

The SVT JOSE header for XML signatures must contain one of the following header parameters in

accordance with for storing a reference to the public key used to verify the signature

on the SVT:

Holds an X.509 certificate or a chain of certificates. The certificate holding the

public key that verifies the signature on the SVT be the first certificate in the chain.

A key identifier holding the Base64-encoded hash value of the certificate that can verify

the signature on the SVT. The hash algorithm be the same hash algorithm used when

signing the SVT as specified by the "alg" Header Parameter.

[RFC7515]

[RFC5280]

MUST

MUST

Appendix B. PDF Signature Profile

This appendix defines a profile for implementing SVTs with a signed PDF document, and it

defines the following aspects of SVT usage:

How to include reference data related to PDF signatures and PDF documents in an SVT.

How to add an SVT token to a PDF document.

PDF document signatures are added as incremental updates to the signed PDF document and

signs all data of the PDF document up until the current signature. When more than one signature

is added to a PDF document the previous signature is signed by the next signature and can not be

updated with additional data after this event.

•

•

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 20

To minimize the impact on PDF documents with multiple signatures and to stay backwards

compatible with PDF software that does not understand SVTs, PDF documents add one SVT token

for all signatures of the PDF as an extension to a document timestamp added to the signed PDF as

an incremental update. This SVT covers all signatures of the signed PDF.

B.1. SVTs in PDF Documents

The SVT for a signed PDF document provide signature validation information about any of

the present signatures in the PDF. The SVT contain a separate "sig" claim (Signature object)

for each signature on the PDF that is covered by the SVT.

An SVT added to a signed PDF document be added to a document timestamp in accordance

with ISO 32000-2:2020 .

The document timestamp contains an timestamp token (TSTInfo) in

EncapsulatedContentInfo of the CMS signature. The SVT be added to the timestamp token

(TSTInfo) as an Extension object as defined in Appendix B.1.1.

MAY

MUST

MUST

[ISOPDF2]

[RFC3161]

MUST

B.1.1. SVT Extension to Timestamp Tokens

The SVT extension is an Extension suitable to be included in TSTInfo as defined by .

The SVT extension is identified by the Object Identifier (OID) 1.2.752.201.5.2.

This extension data (OCTET STRING) holds the bytes of SVT JWT, represented as a UTF-8-encoded

string.

This extension be marked critical.

Note: Extensions in timestamp tokens according to are imported from the definition of

the X.509 certificate extensions defined in .

[RFC3161]

MUST NOT

[RFC3161]

[RFC5280]

B.2. PDF Signature SVT Claims

B.2.1. PDF Profile Identifier

When this profile is used, the SigValidation object contain a "profile" claim with the value

"PDF".

MUST

"id":

"sig_hash":

"sb_hash":

B.2.2. PDF Signature Reference Data

The SVT Signature object contain a "sig_ref" claim (SigReference object) with the following

elements:

Absent or a Null value.

The hash over the signature value bytes.

The hash over the DER-encoded SignedAttributes in SignerInfo.

MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 21

"ref":

"hash":

B.2.3. PDF Signed Data Reference Data

The SVT Signature object contain one instance of the "sig_data" claim (SignedData object)

with the following elements:

The string representation of the ByteRange value of the PDF signature dictionary of the

target signature. This is a sequence of integers separated by space where each integer pair

specifies the start index and length of a byte range.

The hash of all bytes identified by the ByteRange value. This is the concatenation of all

byte ranges identified by the ByteRange value.

MUST

B.2.4. PDF Signer Certificate References

The SVT Signature object contain a "signer_cert_ref" claim (CertReference object). The

"type" parameter of the "signer_cert_ref" claim be either "chain" or "chain_hash".

The "chain" type be used when signature validation was performed using one or more

certificates where some or all of the certificates in the chain are not present in the target

signature.

The "chain_hash" type be used when signature validation was performed using one or

more certificates where all of the certificates are present in the target signature.

Note: The referenced signer certificate match any certificates referenced using ESSCertID

or ESSCertIDv2 from .

MUST

MUST

• MUST

• MUST

MUST

[RFC5035]

B.3. JOSE Header

"x5c":

"kid":

B.3.1. SVT Signing Key Reference

The SVT JOSE header must contain one of the following header parameters in accordance with

 for storing a reference to the public key used to verify the signature on the SVT:

Holds an X.509 certificate or a chain of certificates. The certificate holding the

public key that verifies the signature on the SVT be the first certificate in the chain.

A key identifier holding the Base64-encoded hash value of the certificate that can verify

the signature on the SVT. The hash algorithm be the same hash algorithm used when

signing the SVT as specified by the "alg" Header Parameter. The referenced certificate

 be the same certificate that was used to sign the document timestamp that contains

the SVT.

[RFC7515]

[RFC5280]

MUST

MUST

SHOULD

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 22

Appendix C. JWS Profile

This appendix defines a profile for implementing SVTs with a JWS signed payload according to

, and it defines the following aspects of SVT usage:

How to include reference data related to JWS signatures in an SVT.

How to add an SVT token to JWS signatures.

A JWS may have one or more signatures, depending on its serialization format, signing the same

payload data. A JWS either contains the data to be signed (enveloping) or may sign any externally

associated payload data (detached).

To provide a generic solution for JWS, an SVT is added to each present signature as a JWS

Unprotected Header. If a JWS includes multiple signatures, then each signature includes its own

SVT.

[RFC7515]

•

•

C.1. SVT in JWS

An SVT token be added to any signature of a JWS to support validation of that signature. If

more than one signature is present, then each present SVT provide information exclusively

related to one associated signature and include information about any other signature

in the JWS.

Each SVT is stored in its associated signature's "svt" header as defined in Appendix C.1.1.

MAY

MUST

MUST NOT

C.1.1. "svt" Header Parameter

The "svt" (Signature Validation Token) Header Parameter is used to contain an array of SVT

tokens to support validation of the associated signature. Each SVT token in the array has the

format of a JWT as defined in and is stored using its natural string representation

without further wrapping or encoding.

The "svt" Header Parameter, when used, be included as a JWS Unprotected Header.

Note: A JWS Unprotected Header is not supported with JWS Compact Serialization. A

consequence of adding an SVT token to a JWS is therefore that JWS JSON Serialization be

used either in the form of general JWS JSON Serialization (for one or more signatures) or in the

form of flattened JWS JSON Serialization (optionally used when only one signature is present in

the JWS).

[RFC7519]

MUST

MUST

C.1.2. Multiple SVTs in a JWS Signature

If a new SVT is stored in a signature that already contains a previously issued SVT,

implementations can choose either to replace the existing SVT or to store the new SVT in addition

to the existing SVT.

If a JWS signature already contains an array of SVTs and a new SVT is to be added, then the new

SVT be added to the array of SVT tokens in the existing "svt" Header Parameter.MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 23

C.2. JWS Signature SVT Claims

C.2.1. JWS Profile Identifier

When this profile is used, the SigValidation object contain a "profile" claim with the value

"JWS".

MUST

"sig_hash":

"sb_hash":

C.2.2. JWS Signature Reference Data

The SVT Signature object contain a "sig_ref" claim (SigReference object) with the following

elements:

The hash over the associated signature value (the bytes of the base64url-decoded

signature parameter).

The hash over all bytes signed by the associated signature (the JWS Signing Input

according to).

MUST

[RFC7515]

"ref":

"hash":

C.2.3. JWS Signed Data Reference Data

The SVT Signature object contain one instance of the "sig_data" claim (SignedData object)

with the following elements:

This parameter hold one of the following three possible values:

The explicit string value "payload" if the signed JWS Payload is embedded in a "payload"

member of the JWS.

The explicit string value "detached" if the JWS signs detached payload data without

explicit reference.

A URI that can be used to identify or fetch the detached Signed Data. The means to

determine the URI for the detached Signed Data is outside the scope of this specification.

The hash over the JWS Payload data bytes (not its base64url-encoded string

representation).

MUST

MUST

1.

2.

3.

C.2.4. JWS Signer Certificate References

The SVT Signature object contain a "signer_cert_ref" claim (CertReference object). The

"type" parameter of the "signer_cert_ref" claim be either "chain" or "chain_hash".

The "chain" type be used when signature validation was performed using one or more

certificates where some or all of the certificates in the chain are not present in the target

signature.

The "chain_hash" type be used when signature validation was performed using one or

more certificates where all of the certificates are present in the target signature JOSE header

using the "x5c" Header Parameter.

MUST

MUST

• MUST

• MUST

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 24

C.3. SVT JOSE Header

"x5c":

"kid":

C.3.1. SVT Signing Key Reference

The SVT JOSE header must contain one of the following header parameters in accordance with

 for storing a reference to the public key used to verify the signature on the SVT:

Holds an X.509 certificate or a chain of certificates. The certificate holding the

public key that verifies the signature on the SVT be the first certificate in the chain.

A key identifier holding the Base64-encoded hash value of the certificate that can verify

the signature on the SVT. The hash algorithm be the same hash algorithm used when

signing the SVT as specified by the "alg" Header Parameter.

[RFC7515]

[RFC5280]

MUST

MUST

Appendix D. Schemas

D.1. Concise Data Definition Language (CDDL)

The following informative CDDL expresses the structure of an SVT token:[RFC8610]

svt = {

 jti: text

 iss: text

 iat: uint

 ? aud: text / [* text]

 ? exp: uint

 sig_val_claims: SigValClaims

}

SigValClaims = {

 ver: text

 profile: text

 hash_algo: text

 sig: [+ Signature]

 ? ext: Extension

}

Signature = {

 sig_ref: SigReference

 sig_data_ref: [+ SignedDataReference]

 signer_cert_ref: CertReference

 sig_val: [+ PolicyValidation]

 ? time_val: [* TimeValidation]

 ? ext: Extension

}

SigReference = {

 ? id: text / null

 sig_hash: binary-value

 sb_hash: binary-value

}

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 25

SignedDataReference = {

 ref: text

 hash: binary-value

}

CertReference = {

 type: "chain" / "chain_hash"

 ref: [+ text]

}

PolicyValidation = {

 pol: text

 res: "PASSED" / "FAILED" / "INDETERMINATE"

 ? msg: text / null

 ? ext: Extension

}

TimeValidation = {

 "time": uint

 type: text

 iss: text

 ? id: text / null

 ? hash: binary-value / null

 ? val: [* PolicyValidation]

 ? ext: Extension

}

Extension = {

 + text => text

} / null

binary-value = text ; base64 classic with padding

D.2. JSON Schema

The following informative JSON schema describes the syntax of the SVT token payload.

{

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "title": "Signature Validation Token JSON Schema",

 "description": "Schema defining the payload format for SVTs",

 "type": "object",

 "required": [

 "jti",

 "iss",

 "iat",

 "sig_val_claims"

],

 "properties": {

 "jti": {

 "description": "JWT ID",

 "type": "string"

 },

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 26

 "iss": {

 "description": "Issuer",

 "type": "string"

 },

 "iat": {

 "description": "Issued At",

 "type": "integer"

 },

 "aud": {

 "description": "Audience",

 "type": [

 "string",

 "array"

],

 "items": {"type": "string"}

 },

 "exp": {

 "description": "Expiration time (seconds since epoch)",

 "type": "integer"

 },

 "sig_val_claims": {

 "description": "Signature validation claims",

 "type": "object",

 "required": [

 "ver",

 "profile",

 "hash_algo",

 "sig"

],

 "properties": {

 "ver": {

 "description": "Version",

 "type": "string"

 },

 "profile": {

 "description": "Implementation profile",

 "type": "string"

 },

 "hash_algo": {

 "description": "Hash algorithm URI",

 "type": "string"

 },

 "sig": {

 "description": "Validated signatures",

 "type": "array",

 "items": {

 "$ref": "#/$def/Signature"

 },

 "minItems": 1

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 }

 },

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 27

"additionalProperties": false,

"$def": {

 "Signature":{

 "type": "object",

 "required": [

 "sig_ref",

 "sig_data_ref",

 "signer_cert_ref",

 "sig_val"

],

 "properties": {

 "sig_ref": {

 "description": "Signature Reference",

 "$ref": "#/$def/SigReference"

 },

 "sig_data_ref": {

 "description": "Signed data array",

 "type": "array",

 "items": {

 "$ref" : "#/$def/SignedDataReference"

 },

 "minItems": 1

 },

 "signer_cert_ref": {

 "description": "Signer certificate reference",

 "$ref": "#/$def/CertReference"

 },

 "sig_val": {

 "description": "Signature validation results",

 "type": "array",

 "items": {

 "$ref": "#/$def/PolicyValidation"

 },

 "minItems": 1

 },

 "time_val": {

 "description": "Time validations",

 "type": "array",

 "items": {

 "$ref": "#/$def/TimeValidation"

 }

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 },

 "SigReference":{

 "type": "object",

 "required": [

 "sig_hash",

 "sb_hash"

],

 "properties": {

 "sig_hash": {

 "description": "Hash of the signature value",

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 28

 "type": "string",

 "format": "base64"

 },

 "sb_hash": {

 "description": "Hash of the Signed Bytes",

 "type": "string",

 "format": "base64"

 },

 "id": {

 "description": "Signature ID reference",

 "type": ["string","null"]

 }

 },

 "additionalProperties": false

 },

 "SignedDataReference": {

 "type": "object",

 "required": [

 "ref",

 "hash"

],

 "properties": {

 "ref": {

 "description": "Reference to the signed data",

 "type": "string"

 },

 "hash": {

 "description": "Signed data hash",

 "type": "string",

 "format": "base64"

 }

 },

 "additionalProperties": false

 },

 "CertReference":{

 "type": "object",

 "required": [

 "type",

 "ref"

],

 "properties": {

 "type": {

 "description": "Type of certificate reference",

 "type": "string",

 "enum": ["chain","chain_hash"]

 },

 "ref": {

 "description": "Certificate reference data",

 "type": "array",

 "items": {

 "type": "string",

 "format": "base64"

 },

 "minItems": 1

 }

 },

 "additionalProperties": false

 },

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 29

 "PolicyValidation":{

 "type": "object",

 "required": [

 "pol",

 "res"

],

 "properties": {

 "pol": {

 "description": "Policy identifier",

 "type": "string"

 },

 "res": {

 "description": "Signature validation result",

 "type": "string",

 "enum": ["PASSED","FAILED","INDETERMINATE"]

 },

 "msg": {

 "description": "Message",

 "type": ["string","null"]

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 },

 "TimeValidation":{

 "type": "object",

 "required": [

 "time",

 "type",

 "iss"

],

 "properties": {

 "time": {

 "description": "Verified time",

 "type": "integer"

 },

 "type": {

 "description": "Type of time validation proof",

 "type": "string"

 },

 "iss": {

 "description": "Issuer of the time proof",

 "type": "string"

 },

 "id": {

 "description": "Time evidence identifier",

 "type": ["string","null"]

 },

 "hash": {

 "description": "Hash of time evidence",

 "type": ["string","null"],

 "format": "base64"

 },

 "val": {

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 30

 "description": "Validation result",

 "type": "array",

 "items": {

 "$ref": "#/$def/PolicyValidation"

 }

 },

 "ext": {

 "description": "Extension map",

 "$ref": "#/$def/Extension"

 }

 },

 "additionalProperties": false

 },

 "Extension": {

 "description": "Extension map",

 "type": ["object","null"],

 "required": [],

 "additionalProperties": {

 "type": "string"

 }

 }

 }

}

Appendix E. Examples

The following example illustrates a basic SVT according to this specification issued for a signed

PDF document.

Note: Line breaks in the decoded example are inserted for readability. Line breaks are not

allowed in valid JSON data.

Signature validation token JWT:

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 31

Decoded JWT Header:

Decoded JWT Claims:

eyJraWQiOiJPZW5JKzQzNEpoYnZmRG50ZlZcLzhyT3hHN0ZrdnlqYUtWSmFWcUlG

QlhvaFZoQWU1Zks4YW5vdjFTNjg4cjdLYmFsK2Z2cGFIMWo4aWJnNTJRQnkxUFE9

PSIsInR5cCI6IkpXVCIsImFsZyI6IlJTNTEyIn0.eyJhdWQiOiJodHRwOlwvXC9l

eGFtcGxlLmNvbVwvYXVkaWVuY2UxIiwiaXNzIjoiaHR0cHM6XC9cL3N3ZWRlbmNv

bm5lY3Quc2VcL3ZhbGlkYXRvciIsImlhdCI6MTYwMzQ1ODQyMSwianRpIjoiNGQx

Mzk2ZjFmZjcyOGY0MGQ1MjQwM2I2MWM1NzQ0ODYiLCJzaWdfdmFsX2NsYWltcyI6

eyJzaWciOlt7ImV4dCI6bnVsbCwic2lnX3ZhbCI6W3sibXNnIjoiT0siLCJleHQi

Om51bGwsInJlcyI6IlBBU1NFRCIsInBvbCI6Imh0dHA6XC9cL2lkLnN3ZWRlbmNv

bm5lY3Quc2VcL3N2dFwvc2lndmFsLXBvbGljeVwvdHMtcGtpeFwvMDEifV0sInNp

Z19yZWYiOnsic2lnX2hhc2giOiJ5Y2VQVkxJemRjcEs5N0lZT2hGSWYxbnk3OUht

SUNiU1Z6SWVaTmJpem83ckdJd0hOTjB6WElTeUtHakN2bm9uT2FRR2ZMXC9QM3ZE

dEI4OHlLU1dlWGc9PSIsImlkIjoiaWQtNzM5ODljNmZjMDYzNjM2YWI1ZTc1M2Yx

MGY3NTc0NjciLCJzYl9oYXNoIjoiQm9QVjRXQ0E5c0FJYWhqSzFIYWpmRnhpK0F6

QzRKR1R1ZjM5VzNaV2pjekRDVVJ4ZGM5WWV0ZUh0Y3hHVmVnZ3B4SEo3NVwvY1E3

SE4xZERkbGl5SXdnPT0ifSwic2lnbmVyX2NlcnRfcmVmIjp7InJlZiI6WyIxK2Fh

SmV0ZzdyZWxFUmxVRFlFaVU0WklaaFQ0UlV2aUlRWnVLN28xR0ZLYVRQUTZ5K2t4

XC9QTnREcnB1cVE2WGZya0g5d1lESzRleTB5NFdyTkVybnc9PSIsImg0UER4YjVa

S214MWVUU3F2VnZZRzhnMzNzMDVKendCK05nRUhGVTRnYzl0cUcwa2dIa2Y2VzNv

THprVHd3dXJJaDZZOUFhZlpZcWMyelAycEUycDRRPT0iLCJEZDJDNXNCMElPUWVN

Vm5FQmtNNVE5Vzk2bUJITnd3YTJ0elhNcytMd3VZY09VdlBrcnlHUjBhUEc4Tzlu

SVAzbGJ3NktqUTFoRG1SazZ6Qzh4MmpkZz09Il0sInR5cGUiOiJjaGFpbl9oYXNo

In0sInNpZ19kYXRhX3JlZiI6W3sicmVmIjoiIiwiaGFzaCI6IkZjR3BPT2Y4aWxj

UHQyMUdEZDJjR25MR0R4UlM1ajdzdk00YXBwMkg0MWRERUxtMkN6Y2VUWTAybmRl

SmZXamludG1RMzc2SWxYVE9BcjMxeXpZenNnPT0ifSx7InJlZiI6IiN4YWRlcy0x

MWExNTVkOTJiZjU1Nzc0NjEzYmI3YjY2MTQ3N2NmZCIsImhhc2giOiJLUmtnYlo2

UFwvbmhVNjNJTWswR2lVZlVcL0RUd3ZlWWl0ZVFrd0dlSnFDNUJ6VE5WOGJRYnBl

ZFRUdVdKUHhxdkowUlk4NGh3bTdlWVwvZzBIckFPZWdLdz09In1dLCJ0aW1lX3Zh

bCI6W119XSwiZXh0IjpudWxsLCJ2ZXIiOiIxLjAiLCJwcm9maWxlIjoiWE1MIiwi

aGFzaF9hbGdvIjoiaHR0cDpcL1wvd3d3LnczLm9yZ1wvMjAwMVwvMDRcL3htbGVu

YyNzaGE1MTIifX0.TdHCoIUSZj2zMINKg7E44-8VE_mJq6TG1OoPwnYSs_hyUbuX

mrLJpuk8GR5YrndeOucPUYAwPxHt_f68JIQyFTi0agO9VJjn1R7Pj3Jt6WG9pYVN

n5LH-D1maxD11ZxxbcYeHbsstd2Sy2uMa3BdpsstGdPymSmc6GxY5uJoL0-5vwo_

3l-4Bb3LCTiuxYPcmztKIbDy2hEgJ3Hx1K4HF0SHgn3InpqBev3hm2SLw3hH5BCM

rywBAhHYE6OGE0aOJ6ktA5UP0jIIHfaw9i1wIiJtHTaGuvtyWSLk5cshmun9Hkdk

kRTA75bzuq0Iyd0qh070rA8Gje-s4Tw4xzttgKx1KSkvy8n5FqvzWdsZvclCG2mY

Y9rMxh_7607NXcxajAP4yDOoKNs5nm937ULe0vCN8a7WTrFuiaGjry7HhzRM4C5A

qxbDOBXPLyoMr4qn4LRJCHxOeLZ6o3ugvDOOWsyjk3eliyBwDu8qJH7UmyicLxDc

Cr0hUK_kvREqjD2Z

{

 "kid":"OenI+434JhbvfDntfV\/8rOxG7FkvyjaKVJaVqIFBXohVhAe5fK8anov

 1S688r7Kbal+fvpaH1j8ibg52QBy1PQ==",

 "typ":"JWT",

 "alg":"RS512"

}

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 32

{

 "aud" : "http://example.com/audience1",

 "iss" : "https://swedenconnect.se/validator",

 "iat" : 1603458421,

 "jti" : "4d1396f1ff728f40d52403b61c574486",

 "sig_val_claims" : {

 "sig" : [{

 "ext" : null,

 "sig_val" : [{

 "msg" : "OK",

 "ext" : null,

 "res" : "PASSED",

 "pol" : "http://id.swedenconnect.se/svt/sigval-policy/

 ts-pkix/01"

 }],

 "sig_ref" : {

 "sig_hash" : "ycePVLIzdcpK97IYOhFIf1ny79HmICbSVzIeZNbizo7rGIw

 HNN0zXISyKGjCvnonOaQGfL/P3vDtB88yKSWeXg==",

 "id" : "id-73989c6fc063636ab5e753f10f757467",

 "sb_hash" : "BoPV4WCA9sAIahjK1HajfFxi+AzC4JGTuf39W3ZWjczDCURx

 dc9YeteHtcxGVeggpxHJ75/cQ7HN1dDdliyIwg=="

 },

 "signer_cert_ref" : {

 "ref" : ["1+aaJetg7relERlUDYEiU4ZIZhT4RUviIQZuK7o1GFKaTPQ6y+

 kx/PNtDrpuqQ6XfrkH9wYDK4ey0y4WrNErnw==",

 "h4PDxb5ZKmx1eTSqvVvYG8g33s05JzwB+NgEHFU4gc9tqG0kgH

 kf6W3oLzkTwwurIh6Y9AafZYqc2zP2pE2p4Q==",

 "Dd2C5sB0IOQeMVnEBkM5Q9W96mBHNwwa2tzXMs+LwuYcOUvPkr

 yGR0aPG8O9nIP3lbw6KjQ1hDmRk6zC8x2jdg=="],

 "type" : "chain_hash"

 },

 "sig_data_ref" : [{

 "ref" : "",

 "hash" : "FcGpOOf8ilcPt21GDd2cGnLGDxRS5j7svM4app2H41dDELm2Czc

 eTY02ndeJfWjintmQ376IlXTOAr31yzYzsg=="

 }, {

 "ref" : "#xades-11a155d92bf55774613bb7b661477cfd",

 "hash" : "KRkgbZ6P/nhU63IMk0GiUfU/DTwveYiteQkwGeJqC5BzTNV8bQb

 pedTTuWJPxqvJ0RY84hwm7eY/g0HrAOegKw=="

 }],

 "time_val" : []

 }],

 "ext" : null,

 "ver" : "1.0",

 "profile" : "XML",

 "hash_algo" : "http://www.w3.org/2001/04/xmlenc#sha512"

 }

}

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 33

Authors' Addresses

Stefan Santesson

IDsec Solutions AB

Forskningsbyn Ideon

SE- 223 70 Lund

Sweden

 sts@aaa-sec.com Email:

Russ Housley

Vigil Security, LLC

516 Dranesville Road

, Herndon VA 20170

United States of America

 housley@vigilsec.com Email:

RFC 9321 Signature Validation Token October 2022

Santesson & Housley Informational Page 34

mailto:sts@aaa-sec.com
mailto:housley@vigilsec.com

	RFC 9321
	Signature Validation Token
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definitions
	3. Signature Validation Token
	3.1. Signature Validation Token Function
	3.2. Signature Validation Token Syntax
	3.2.1. Data Types
	3.2.2. Signature Validation Token JWT Claims
	3.2.3. SigValidation Object Class
	3.2.4. Signature Claims Object Class
	3.2.5. SigReference Claims Object Class
	3.2.6. SignedDataReference Claims Object Class
	3.2.7. PolicyValidation Claims Object Class
	3.2.8. TimeValidation Claims Object Class
	3.2.9. CertReference Claims Object Class
	3.2.10. SVT JOSE Header

	4. Profiles
	4.1. Defined Profiles

	5. Signature Verification with an SVT
	6. IANA Considerations
	6.1. Claim Names Registration
	6.1.1. Registry Contents

	6.2. Header Parameter Names Registration
	6.2.1. Registry Contents

	7. Security Considerations
	7.1. Level of Reliance
	7.2. Aging Algorithms

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. XML Signature Profile
	A.1. Notation
	A.1.1. References to XML Elements from XML Schemas

	A.2. SVT in XML Documents
	A.2.1. SignatureValidationToken Signature Property
	A.2.2. Multiple SVTs in an XML Signature

	A.3. XML Signature SVT Claims
	A.3.1. XML Profile Identifier
	A.3.2. XML Signature Reference Data
	A.3.3. XML Signed Data Reference Data
	A.3.4. XML Signer Certificate References

	A.4. JOSE Header
	A.4.1. SVT Signing Key Reference

	Appendix B. PDF Signature Profile
	B.1. SVTs in PDF Documents
	B.1.1. SVT Extension to Timestamp Tokens

	B.2. PDF Signature SVT Claims
	B.2.1. PDF Profile Identifier
	B.2.2. PDF Signature Reference Data
	B.2.3. PDF Signed Data Reference Data
	B.2.4. PDF Signer Certificate References

	B.3. JOSE Header
	B.3.1. SVT Signing Key Reference

	Appendix C. JWS Profile
	C.1. SVT in JWS
	C.1.1. "svt" Header Parameter
	C.1.2. Multiple SVTs in a JWS Signature

	C.2. JWS Signature SVT Claims
	C.2.1. JWS Profile Identifier
	C.2.2. JWS Signature Reference Data
	C.2.3. JWS Signed Data Reference Data
	C.2.4. JWS Signer Certificate References

	C.3. SVT JOSE Header
	C.3.1. SVT Signing Key Reference

	Appendix D. Schemas
	D.1. Concise Data Definition Language (CDDL)
	D.2. JSON Schema

	Appendix E. Examples
	Authors' Addresses

