rfc9340v7.txt   rfc9340.txt 
skipping to change at line 14 skipping to change at line 14
Category: Informational QuTech Category: Informational QuTech
ISSN: 2070-1721 R. Van Meter ISSN: 2070-1721 R. Van Meter
Keio University Keio University
B. Rijsman B. Rijsman
Individual Individual
A. S. Cacciapuoti A. S. Cacciapuoti
M. Caleffi M. Caleffi
University of Naples Federico II University of Naples Federico II
S. Nagayama S. Nagayama
Mercari, Inc. Mercari, Inc.
January 2023 February 2023
Architectural Principles for a Quantum Internet Architectural Principles for a Quantum Internet
Abstract Abstract
The vision of a quantum internet is to enhance existing Internet The vision of a quantum internet is to enhance existing Internet
technology by enabling quantum communication between any two points technology by enabling quantum communication between any two points
on Earth. To achieve this goal, a quantum network stack should be on Earth. To achieve this goal, a quantum network stack should be
built from the ground up to account for the fundamentally new built from the ground up to account for the fundamentally new
properties of quantum entanglement. The first quantum entanglement properties of quantum entanglement. The first quantum entanglement
skipping to change at line 229 skipping to change at line 229
technologies such as electron spin, photon polarisation, atomic technologies such as electron spin, photon polarisation, atomic
energy levels, and so on. energy levels, and so on.
Upon measurement, the qubit loses its superposition and irreversibly Upon measurement, the qubit loses its superposition and irreversibly
collapses into one of the two basis states, either |0⟩ or |1⟩. Which collapses into one of the two basis states, either |0⟩ or |1⟩. Which
of the two states it ends up in may not be deterministic but can be of the two states it ends up in may not be deterministic but can be
determined from the readout of the measurement. The measurement determined from the readout of the measurement. The measurement
result is a classical bit, 0 or 1, corresponding to |0⟩ and |1⟩, result is a classical bit, 0 or 1, corresponding to |0⟩ and |1⟩,
respectively. The probability of measuring the state in the |0⟩ respectively. The probability of measuring the state in the |0⟩
state is |a|^2; similarly, the probability of measuring the state in state is |a|^2; similarly, the probability of measuring the state in
the |1⟩ state is the |1⟩ state is |b|^2, where |a|^2 + |b|^2 = 1. This randomness is
|b|^2, where |a|^2 + |b|^2 = 1. This randomness is not due to our not due to our ignorance of the underlying mechanisms but rather is a
ignorance of the underlying mechanisms but rather is a fundamental fundamental feature of a quantum mechanical system [Aspect81].
feature of a quantum mechanical system [Aspect81].
The superposition property plays an important role in fundamental The superposition property plays an important role in fundamental
gate operations on qubits. Since a qubit can exist in a gate operations on qubits. Since a qubit can exist in a
superposition of its basis states, the elementary quantum gates are superposition of its basis states, the elementary quantum gates are
able to act on all states of the superposition at the same time. For able to act on all states of the superposition at the same time. For
example, consider the NOT gate: example, consider the NOT gate:
NOT (a |0⟩ + b |1⟩) ➔ a |1⟩ + b |0⟩. NOT (a |0⟩ + b |1⟩) ➔ a |1⟩ + b |0⟩.
It is important to note that "qubit" can have two meanings. In the It is important to note that "qubit" can have two meanings. In the
skipping to change at line 1644 skipping to change at line 1643
right abstractions will be one of the biggest challenges when right abstractions will be one of the biggest challenges when
designing interoperable quantum network protocols. designing interoperable quantum network protocols.
In quantum networks, control plane traffic (routing and signalling In quantum networks, control plane traffic (routing and signalling
messages) is exchanged over a classical channel, whereas data plane messages) is exchanged over a classical channel, whereas data plane
traffic (the actual Bell pair qubits) is exchanged over a separate traffic (the actual Bell pair qubits) is exchanged over a separate
quantum channel. This is in contrast to most classical networks, quantum channel. This is in contrast to most classical networks,
where control plane traffic and data plane traffic share the same where control plane traffic and data plane traffic share the same
channel and where a single packet contains both user fields and channel and where a single packet contains both user fields and
header fields. There is, however, a classical analogy to the way header fields. There is, however, a classical analogy to the way
quantum networks work: Generalised MPLS (GMPLS) networks use separate quantum networks work: generalised MPLS (GMPLS) networks use separate
channels for control plane traffic and data plane traffic. channels for control plane traffic and data plane traffic.
Furthermore, GMPLS networks support data planes where there is no Furthermore, GMPLS networks support data planes where there is no
such thing as data plane headers (e.g., Dense Wavelength Division such thing as data plane headers (e.g., Dense Wavelength Division
Multiplexing (DWDM) or Time-Division Multiplexing (TDM) networks). Multiplexing (DWDM) or Time-Division Multiplexing (TDM) networks).
8. Security Considerations 8. Security Considerations
Security is listed as an explicit goal for the architecture; this Security is listed as an explicit goal for the architecture; this
issue is addressed in Section 6.1. However, as this is an issue is addressed in Section 6.1. However, as this is an
Informational document, it does not propose any concrete mechanisms Informational document, it does not propose any concrete mechanisms
to achieve these goals. to achieve these goals.
9. IANA Considerations 9. IANA Considerations
This document has no IANA actions. This document has no IANA actions.
10. Informative References 10. Informative References
[Abobeih18] [Abobeih18]
Abobeih, M.H., Cramer, J., Bakker, M.A., Kalb, N., Abobeih, M.H., Cramer, J., Bakker, M.A., Kalb, N.,
Twitchen, D.J., Markham, M., and T.H. Taminiau, "One- Markham, M., Twitchen, D.J., and T.H. Taminiau, "One-
second coherence for a single electron spin coupled to a second coherence for a single electron spin coupled to a
multi-qubit nuclear-spin environment", Nature multi-qubit nuclear-spin environment", Nature
communications Vol. 9, Iss. 1, pp. 1-8, communications Vol. 9, Iss. 1, pp. 1-8,
DOI 10.48550/arXiv.1801.01196, June 2018, DOI 10.1038/s41467-018-04916-z, June 2018,
<https://arxiv.org/abs/1801.01196>. <https://www.nature.com/articles/s41467-018-04916-z>.
[Aguado19] Aguado, A., Lopez, V., Lopez, D., Peev, M., Poppe, A., [Aguado19] Aguado, A., Lopez, V., Lopez, D., Peev, M., Poppe, A.,
Pastor, A., Folgueira, J., and V. Martiin [sic], "The Pastor, A., Folgueira, J., and V. Martin, "The Engineering
Engineering of Software-Defined Quantum Key Distribution of Software-Defined Quantum Key Distribution Networks",
Networks", IEEE Communications Magazine Vol. 57, Iss. 7, IEEE Communications Magazine Vol. 57, Iss. 7, pp. 20-26,
pp. 20-26, DOI 10.48550/arXiv.1907.00174, July 2019, DOI 10.1109/MCOM.2019.1800763, July 2019,
<https://arxiv.org/abs/1907.00174>. <https://ieeexplore.ieee.org/document/8767074>.
[Askarani21] [Askarani21]
Askarani, M.F., Chakraborty, K., and G.C. do Amaral, Askarani, M.F., Chakraborty, K., and G.C. do Amaral,
"Entanglement Distribution in Multi-Platform Buffered- "Entanglement distribution in multi-platform buffered-
Router-Assisted Frequency-Multiplexed Automated Repeater router-assisted frequency-multiplexed automated repeater
Chains", arXiv 2106.04671, DOI 10.48550/arXiv.2106.04671, chains", New Journal of Physics Vol. 23, Iss. 6, 063078,
June 2021, <https://arxiv.org/abs/2106.04671>. DOI 10.1088/1367-2630/ac0a35, June 2021,
<https://iopscience.iop.org/article/10.1088/1367-2630/
ac0a35>.
[Aspect81] Aspect, A., Grangier, P., and G. Roger, "Experimental [Aspect81] Aspect, A., Grangier, P., and G. Roger, "Experimental
Tests of Realistic local Theories via Bell's Theorem", Tests of Realistic local Theories via Bell's Theorem",
Physical Review Letters Vol. 47, Iss. 7, pp. 460-463, Physical Review Letters Vol. 47, Iss. 7, pp. 460-463,
DOI 10.1103/PhysRevLett.47.460, August 1981, DOI 10.1103/PhysRevLett.47.460, August 1981,
<https://journals.aps.org/prl/abstract/10.1103/ <https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.47.460>. PhysRevLett.47.460>.
[Bennett14] [Bennett14]
Bennett, C.H. and G. Brassard, "Quantum cryptography: Bennett, C.H. and G. Brassard, "Quantum cryptography:
Public key distribution and coin tossing", Theoretical Public key distribution and coin tossing", Theoretical
Computer Science Vol. 560 (Part 1), pp. 7-11, Computer Science Vol. 560 (Part 1), pp. 7-11,
DOI 10.48550/arXiv.2003.06557, December 2014, DOI 10.1016/j.tcs.2014.05.025, December 2014,
<https://arxiv.org/abs/2003.06557>. <https://www.sciencedirect.com/science/article/pii/
S0304397514004241?via%3Dihub>.
[Bennett93] [Bennett93]
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R.,
Peres, A., and W.K. Wootters, "Teleporting an unknown Peres, A., and W.K. Wootters, "Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky- quantum state via dual classical and Einstein-Podolsky-
Rosen channels", Physical Review Letters Vol. 70, Iss. 13, Rosen channels", Physical Review Letters Vol. 70, Iss. 13,
pp. 1895-1899, DOI 10.1103/PhysRevLett.70.1895, March pp. 1895-1899, DOI 10.1103/PhysRevLett.70.1895, March
1993, <https://journals.aps.org/prl/abstract/10.1103/ 1993, <https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.70.1895>. PhysRevLett.70.1895>.
[Bennett96] [Bennett96]
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., and W.K. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., and W.K.
Wootters, "Mixed State Entanglement and Quantum Error Wootters, "Mixed-state entanglement and quantum error
Correction", Physical Review A Vol. 54, Iss. 5, pp. correction", Physical Review A Vol. 54, Iss. 5, pp.
3824-3851, DOI 10.48550/arXiv.quant-ph/9604024, November 3824-3851, DOI 10.1103/PhysRevA.54.3824, November 1996,
1996, <https://arxiv.org/abs/quant-ph/9604024>. <https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.54.3824>.
[Bradley19] [Bradley19]
Bradley, C.E., Randall, J., Abobeih, M.H., Berrevoets, Bradley, C.E., Randall, J., Abobeih, M.H., Berrevoets,
R.C., Degen, M.J., Bakker, M.A., Markham, M., Twitchen, R.C., Degen, M.J., Bakker, M.A., Markham, M., Twitchen,
D.J., and T.H. Taminiau, "A 10-qubit solid-state spin D.J., and T.H. Taminiau, "A Ten-Qubit Solid-State Spin
register with quantum memory up to one minute", Physical Register with Quantum Memory up to One Minute", Physical
Review X Vol. 9, Iss. 3, 031045, Review X Vol. 9, Iss. 3, 031045,
DOI 10.48550/arXiv.1905.02094, September 2019, DOI 10.1103/PhysRevX.9.031045, September 2019,
<https://arxiv.org/abs/1905.02094>. <https://journals.aps.org/prx/abstract/10.1103/
PhysRevX.9.031045>.
[Briegel98] [Briegel98]
Briegel, H.-J., Dür, W., Cirac, J.I., and P. Zoller, Briegel, H.-J., Dür, W., Cirac, J.I., and P. Zoller,
"Quantum Repeaters: The Role of Imperfect Local Operations "Quantum Repeaters: The Role of Imperfect Local Operations
in Quantum Communication", Physical Review Letters Vol. in Quantum Communication", Physical Review Letters Vol.
81, Iss. 26, pp. 5932-5935, 81, Iss. 26, pp. 5932-5935,
DOI 10.1103/PhysRevLett.81.5932, December 1998, DOI 10.1103/PhysRevLett.81.5932, December 1998,
<https://journals.aps.org/prl/abstract/10.1103/ <https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.81.5932>. PhysRevLett.81.5932>.
[Broadbent10] [Broadbent10]
Broadbent, A., Fitzsimons, J., and E. Kashefi, Broadbent, A., Fitzsimons, J., and E. Kashefi,
"Measurement-Based and Universal Blind Quantum "Measurement-Based and Universal Blind Quantum
Computation", Springer-Verlag 978-3-642-13678-8, Computation", Springer-Verlag 978-3-642-13678-8,
DOI 10.1007/978-3-642-13678-8_2, June 2010, DOI 10.1007/978-3-642-13678-8_2, June 2010,
<https://link.springer.com/ <https://link.springer.com/
chapter/10.1007/978-3-642-13678-8_2>. chapter/10.1007/978-3-642-13678-8_2>.
[Cacciapuoti19] [Cacciapuoti19]
Cacciapuoti, A.S., Caleffi, M., Van Meter, R., and L. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., and L.
Hanzo, "When Entanglement meets Classical Communications: Hanzo, "When Entanglement Meets Classical Communications:
Quantum Teleportation for the Quantum Internet", IEEE Quantum Teleportation for the Quantum Internet", IEEE
Transactions on Communications Vol. 68, Iss. 6, pp. Transactions on Communications Vol. 68, Iss. 6, pp.
3808-3833, DOI 10.48550/arXiv.1907.06197, June 2020, 3808-3833, DOI 10.1109/TCOMM.2020.2978071, June 2020,
<https://arxiv.org/abs/1907.06197>. <https://ieeexplore.ieee.org/document/9023997>.
[Cirac99] Cirac, J.I., Ekert, A.K., Huelga, S.F., and C. [Cirac99] Cirac, J.I., Ekert, A.K., Huelga, S.F., and C.
Macchiavello, "Distributed Quantum Computation over Noisy Macchiavello, "Distributed quantum computation over noisy
Channels", Physical Review A Vol. 59, Iss. 6, 4249, DOI channels", Physical Review A Vol. 59, Iss. 6, 4249,
10.48550/arXiv.quant-ph/9803017, June 1999, DOI 10.1103/PhysRevA.59.4249, June 1999,
<https://arxiv.org/abs/quant-ph/9803017>. <https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.59.4249>.
[Clark88] Clark, D., "The design philosophy of the DARPA internet [Clark88] Clark, D., "The design philosophy of the DARPA internet
protocols", SIGCOMM '88: Symposium proceedings on protocols", SIGCOMM '88: Symposium proceedings on
Communications architectures and protocols, pp. 106-114, Communications architectures and protocols, pp. 106-114,
DOI 10.1145/52324.52336, August 1988, DOI 10.1145/52324.52336, August 1988,
<https://dl.acm.org/doi/abs/10.1145/52324.52336>. <https://dl.acm.org/doi/abs/10.1145/52324.52336>.
[Crepeau02] [Crepeau02]
Crépeau, C., Gottesman, D., and A. Smith, "Secure Multi- Crépeau, C., Gottesman, D., and A. Smith, "Secure multi-
party Quantum Computation", STOC '02: Proceedings of the party quantum computation", STOC '02: Proceedings of the
thiry-fourth [sic] annual ACM symposium on Theory of thiry-fourth [sic] annual ACM symposium on Theory of
computing, pp. 643-652, DOI 10.48550/arXiv.quant- computing, pp. 643-652, DOI 10.1145/509907.510000, May
ph/0206138, May 2002, 2002, <https://dl.acm.org/doi/10.1145/509907.510000>.
<https://arxiv.org/abs/quant-ph/0206138>.
[Dahlberg19] [Dahlberg19]
Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L., Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L.,
Rozpędek, F., Pompili, M., Stolk, A., Pawełczak, P., Rozpędek, F., Pompili, M., Stolk, A., Pawełczak, P.,
Knegjens, R., de Oliveira Filho, J., Hanson, R., and S. Knegjens, R., de Oliveira Filho, J., Hanson, R., and S.
Wehner, "A Link Layer Protocol for Quantum Networks", Wehner, "A link layer protocol for quantum networks",
SIGCOMM '19 Proceedings of the ACM Special Interest Group SIGCOMM '19 Proceedings of the ACM Special Interest Group
on Data Communication, pp. 159-173, on Data Communication, pp. 159-173,
DOI 10.48550/arXiv.1903.09778, August 2019, DOI 10.1145/3341302.3342070, August 2019,
<https://arxiv.org/abs/1903.09778>. <https://dl.acm.org/doi/10.1145/3341302.3342070>.
[Devitt13] Devitt, S.J., Nemoto, K., and W.J. Munro, "Quantum Error [Devitt13] Devitt, S.J., Munro, W.J., and K. Nemoto, "Quantum error
Correction for Beginners", Reports on Progress in Physics correction for beginners", Reports on Progress in Physics
Vol. 76, Iss. 7, 076001, DOI 10.48550/arXiv.0905.2794, Vol. 76, Iss. 7, 076001,
June 2013, <https://arxiv.org/abs/0905.2794>. DOI 10.1088/0034-4885/76/7/076001, June 2013,
<https://iopscience.iop.org/
article/10.1088/0034-4885/76/7/076001>.
[DistCNOT] "Distributed CNOT", Quantum Network Explorer by QuTech, [DistCNOT] "Distributed CNOT", Quantum Network Explorer by QuTech,
2023, <https://www.quantum-network.com/applications/7/>. 2023, <https://www.quantum-network.com/applications/7/>.
[Dur07] Dür, W. and H.J. Briegel, "Entanglement purification and [Dur07] Dür, W. and H.J. Briegel, "Entanglement purification and
quantum error correction", Reports on Progress in Physics quantum error correction", Reports on Progress in Physics
Vol. 70, Iss. 8, pp. 1381-1424, Vol. 70, Iss. 8, pp. 1381-1424,
DOI 10.1088/0034-4885/70/8/R03, July 2007, DOI 10.1088/0034-4885/70/8/R03, July 2007,
<https://iopscience.iop.org/article/10.1088/0034- <https://iopscience.iop.org/article/10.1088/0034-
4885/70/8/R03>. 4885/70/8/R03>.
skipping to change at line 1810 skipping to change at line 1816
[Elkouss11] [Elkouss11]
Elkouss, D., Martinez-Mateo, J., and V. Martin, Elkouss, D., Martinez-Mateo, J., and V. Martin,
"Information Reconciliation for Quantum Key Distribution", "Information Reconciliation for Quantum Key Distribution",
Quantum Information and Computation Vol. 11, No. 3 and 4, Quantum Information and Computation Vol. 11, No. 3 and 4,
pp. 0226-0238, DOI 10.48550/arXiv.1007.1616, March 2011, pp. 0226-0238, DOI 10.48550/arXiv.1007.1616, March 2011,
<https://arxiv.org/abs/1007.1616>. <https://arxiv.org/abs/1007.1616>.
[Elliott03] [Elliott03]
Elliott, C., Pearson, D., and G. Troxel, "Quantum Elliott, C., Pearson, D., and G. Troxel, "Quantum
Cryptography in Practice", SIGCOMM 2003: Proceedings of cryptography in practice", SIGCOMM 2003: Proceedings of
the 2003 conference on Applications, technologies, the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, architectures, and protocols for computer communications,
pp. 227-238, DOI 10.48550/arXiv.quant-ph/0307049, August pp. 227-238, DOI 10.1145/863955.863982, August 2003,
2003, <https://arxiv.org/abs/quant-ph/0307049>. <https://dl.acm.org/doi/abs/10.1145/863955.863982>.
[Fitzsimons17] [Fitzsimons17]
Fitzsimons, J.F. and E. Kashefi, "Unconditionally Fitzsimons, J.F. and E. Kashefi, "Unconditionally
verifiable blind quantum computation", Physical Review A verifiable blind quantum computation", Physical Review A
Vol. 96, Iss. 1, 012303, DOI 10.48550/arXiv.1203.5217, Vol. 96, Iss. 1, 012303, DOI 10.1103/PhysRevA.96.012303,
July 2017, <https://arxiv.org/abs/1203.5217>. July 2017, <https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.96.012303>.
[Fowler10] Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Van [Fowler10] Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Van
Meter, R., and L.C.L. Hollenberg, "Surface code quantum Meter, R., and L.C.L. Hollenberg, "Surface Code Quantum
communication", Physical Review Letters Vol. 104, Iss. 18, Communication", Physical Review Letters Vol. 104, Iss. 18,
180503, DOI 10.48550/arXiv.0910.4074, May 2010, 180503, DOI 10.1103/PhysRevLett.104.180503, May 2010,
<https://arxiv.org/abs/0910.4074>. <https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.104.180503>.
[Giovannetti04] [Giovannetti04]
Giovannetti, V., Lloyd, S., and L. Maccone, "Quantum- Giovannetti, V., Lloyd, S., and L. Maccone, "Quantum-
enhanced measurements: beating the standard quantum Enhanced Measurements: Beating the Standard Quantum
limit", Science Vol. 306, Iss. 5700, pp. 1330-1336, DOI Limit", Science Vol. 306, Iss. 5700, pp. 1330-1336,
10.48550/arXiv.quant-ph/0412078, November 2004, DOI 10.1126/science.1104149, November 2004,
<https://arxiv.org/abs/quant-ph/0412078>. <https://www.science.org/doi/10.1126/science.1104149>.
[Gottesman12] [Gottesman12]
Gottesman, D., Jennewein, T., and S. Croke, "Longer- Gottesman, D., Jennewein, T., and S. Croke, "Longer-
Baseline Telescopes Using Quantum Repeaters", Physical Baseline Telescopes Using Quantum Repeaters", Physical
Review Letters Vol. 109, Iss. 7, 070503, Review Letters Vol. 109, Iss. 7, 070503,
DOI 10.48550/arXiv.1107.2939, August 2012, DOI 10.1103/PhysRevLett.109.070503, August 2012,
<https://arxiv.org/abs/1107.2939>. <https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.109.070503>.
[Hensen15] Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, [Hensen15] Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb,
N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L.,
Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V.,
Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D.,
Wehner, S., Taminiau, T.H., and R. Hanson, "Loophole-free Wehner, S., Taminiau, T.H., and R. Hanson, "Loophole-free
Bell inequality violation using electron spins separated Bell inequality violation using electron spins separated
by 1.3 kilometres", Nature Vol. 526, pp. 682-686, by 1.3 kilometres", Nature Vol. 526, pp. 682-686,
DOI 10.1038/nature15759, October 2015, DOI 10.1038/nature15759, October 2015,
<https://doi.org/10.1038/nature15759>. <https://www.nature.com/articles/nature15759>.
[Jiang09] Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van [Jiang09] Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van
Meter, R., and M.D. Lukin, "Quantum Repeater with Meter, R., and M.D. Lukin, "Quantum repeater with
Encoding", Physical Review A Vol. 79, Iss. 3, 032325, encoding", Physical Review A Vol. 79, Iss. 3, 032325,
DOI 10.48550/arXiv.0809.3629, March 2009, DOI 10.1103/PhysRevA.79.032325, March 2009,
<https://arxiv.org/abs/0809.3629>. <https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.79.032325>.
[Joshi20] Joshi, S.K., Aktas, D., Wengerowsky, S., Lončarić, M., [Joshi20] Joshi, S.K., Aktas, D., Wengerowsky, S., Lončarić, M.,
Neumann, S.P., Liu, B., Scheidl, T., Currás-Lorenzo, G., Neumann, S.P., Liu, B., Scheidl, T., Currás-Lorenzo, G.,
Samec, Z., Kling, L., Qiu, A., Razavi, M., Stipčević, M., Samec, Z., Kling, L., Qiu, A., Razavi, M., Stipčević, M.,
Rarity, J.G., and R. Ursin, "A trusted-node-free eight- Rarity, J.G., and R. Ursin, "A trusted node–free eight-
user metropolitan quantum communication network", Science user metropolitan quantum communication network", Science
Advances Vol. 6, no. 36, eaba0959, Advances Vol. 6, no. 36, eaba0959,
DOI 10.48550/arXiv.1907.08229, September 2020, DOI 10.1126/sciadv.aba0959, September 2020,
<https://arxiv.org/abs/1907.08229>. <https://www.science.org/doi/10.1126/sciadv.aba0959>.
[Kimble08] Kimble, H.J., "The Quantum Internet", Nature Vol. 453, [Kimble08] Kimble, H.J., "The quantum internet", Nature Vol. 453,
Iss. 7198, pp. 1023-1030, DOI 10.48550/arXiv.0806.4195, Iss. 7198, pp. 1023-1030, DOI 10.1038/nature07127, June
June 2008, <https://arxiv.org/abs/0806.4195>. 2008, <https://www.nature.com/articles/nature07127>.
[Komar14] Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, [Komar14] Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen,
A.S., Ye, J., and M.D. Lukin, "A quantum network of A.S., Ye, J., and M.D. Lukin, "A quantum network of
clocks", Nature Physics Vol. 10, Iss. 8, pp. 582-587, clocks", Nature Physics Vol. 10, Iss. 8, pp. 582-587,
DOI 10.48550/arXiv.1310.6045, June 2014, DOI 10.1038/nphys3000, June 2014,
<https://arxiv.org/abs/1310.6045>. <https://www.nature.com/articles/nphys3000>.
[Meignant19] [Meignant19]
Meignant, C., Markham, D., and F. Grosshans, "Distributing Meignant, C., Markham, D., and F. Grosshans, "Distributing
Graph States over Arbitrary Quantum Networks", Physical graph states over arbitrary quantum networks", Physical
Review A Vol. 100, Iss. 5, 052333, Review A Vol. 100, Iss. 5, 052333,
DOI 10.48550/arXiv.1811.05445, November 2019, DOI 10.1103/PhysRevA.100.052333, November 2019,
<https://arxiv.org/abs/1811.05445>. <https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.100.052333>.
[Moehring07] [Moehring07]
Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C.,
Matsukevich, D.N., Duan, L.-M., and C. Monroe, Matsukevich, D.N., Duan, L.-M., and C. Monroe,
"Entanglement of single-atom quantum bits at a distance", "Entanglement of single-atom quantum bits at a distance",
Nature Vol. 449, Iss. 7158, pp. 68-71, Nature Vol. 449, Iss. 7158, pp. 68-71,
DOI 10.1038/nature06118, September 2007, DOI 10.1038/nature06118, September 2007,
<https://www.nature.com/articles/nature06118>. <https://www.nature.com/articles/nature06118>.
[Mural16] Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, [Mural16] Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin,
M.D., and L. Jiang, "Optimal architectures for long M.D., and L. Jiang, "Optimal architectures for long
distance quantum communication", Scientific Reports Vol. distance quantum communication", Scientific Reports Vol.
6, pp. 1-10, DOI 10.1038/srep20463, February 2016, 6, pp. 1-10, DOI 10.1038/srep20463, February 2016,
<https://www.nature.com/articles/srep20463>. <https://www.nature.com/articles/srep20463>.
[Murta20] Murta, G., Grasselli, F., Kampermann, H., and D. Bruß, [Murta20] Murta, G., Grasselli, F., Kampermann, H., and D. Bruß,
"Quantum Conference Key Agreement: A Review", Advanced "Quantum Conference Key Agreement: A Review", Advanced
Quantum Technologies Vol. 3, Iss. 11, 2000025, Quantum Technologies Vol. 3, Iss. 11, 2000025,
DOI 10.48550/arXiv.2003.10186, September 2020, DOI 10.1002/qute.202000025, September 2020,
<https://arxiv.org/abs/2003.10186>. <https://onlinelibrary.wiley.com/doi/10.1002/
qute.202000025>.
[Nagayama16] [Nagayama16]
Nagayama, S., Choi, B.-S., Devitt, S., Suzuki, S., and R. Nagayama, S., Choi, B.-S., Devitt, S., Suzuki, S., and R.
Van Meter, "Interoperability in encoded quantum repeater Van Meter, "Interoperability in encoded quantum repeater
networks", Physical Review A Vol. 93, Iss. 4, 042338, networks", Physical Review A Vol. 93, Iss. 4, 042338,
DOI 10.48550/arXiv.1508.04599, April 2016, DOI 10.1103/PhysRevA.93.042338, April 2016,
<https://arxiv.org/abs/1508.04599>. <https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.93.042338>.
[Nagayama21] [Nagayama21]
Nagayama, S., "Towards End-to-End Error Management for a Nagayama, S., "Towards End-to-End Error Management for a
Quantum Internet", arXiv 2112.07185, Quantum Internet", arXiv 2112.07185,
DOI 10.48550/arXiv.2112.07185, December 2021, DOI 10.48550/arXiv.2112.07185, December 2021,
<https://arxiv.org/abs/2112.07185>. <https://arxiv.org/abs/2112.07185>.
[NielsenChuang] [NielsenChuang]
Nielsen, M.A. and I.L. Chuang, "Quantum Computation and Nielsen, M.A. and I.L. Chuang, "Quantum Computation and
Quantum Information", Cambridge University Press, 2010, Quantum Information", Cambridge University Press, 2010,
<http://mmrc.amss.cas.cn/tlb/201702/ <http://mmrc.amss.cas.cn/tlb/201702/
W020170224608149940643.pdf>. W020170224608149940643.pdf>.
[Park70] Park, J.L., "The concept of transition in quantum [Park70] Park, J.L., "The concept of transition in quantum
mechanics", Foundations of Physics Vol. 1, Iss. 1, pp. mechanics", Foundations of Physics Vol. 1, Iss. 1, pp.
23-33, DOI 10.1007/BF00708652, March 1970, 23-33, DOI 10.1007/BF00708652, March 1970,
<https://link.springer.com/content/pdf/10.1007/ <https://link.springer.com/article/10.1007/BF00708652>.
BF00708652.pdf>.
[Peev09] Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, [Peev09] Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda,
J., Boxleitner, W., Debuisschert, T., Diamanti, E., J., Boxleitner, W., Debuisschert, T., Diamanti, E.,
Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst, Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst,
M., Gautier, J.-D., Gay, O., Gisin, N., Grangier, P., M., Gautier, J.-D., Gay, O., Gisin, N., Grangier, P.,
Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer, Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer,
G., Länger, T., Legré, M., Lieger, R., Lodewyck, J., G., Länger, T., Legré, M., Lieger, R., Lodewyck, J.,
Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T., Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T.,
Maurhart, O., Monat, L., Nauerth, S., Page, J.-B., Poppe, Maurhart, O., Monat, L., Nauerth, S., Page, J.-B., Poppe,
A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L., A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L.,
skipping to change at line 1953 skipping to change at line 1965
distribution network in Vienna", New Journal of Physics distribution network in Vienna", New Journal of Physics
Vol. 11, Iss. 7, 075001, Vol. 11, Iss. 7, 075001,
DOI 10.1088/1367-2630/11/7/075001, July 2009, DOI 10.1088/1367-2630/11/7/075001, July 2009,
<https://iopscience.iop.org/ <https://iopscience.iop.org/
article/10.1088/1367-2630/11/7/075001>. article/10.1088/1367-2630/11/7/075001>.
[Pompili21.1] [Pompili21.1]
Pompili, M., Hermans, S.L.N., Baier, S., Beukers, H.K.C., Pompili, M., Hermans, S.L.N., Baier, S., Beukers, H.K.C.,
Humphreys, P.C., Schouten, R.N., Vermeulen, R.F.L., Humphreys, P.C., Schouten, R.N., Vermeulen, R.F.L.,
Tiggelman, M.J., dos Santos Martins, L., Dirkse, B., Tiggelman, M.J., dos Santos Martins, L., Dirkse, B.,
Wehner, S., and R. Hanson, "Realization of a multi-node Wehner, S., and R. Hanson, "Realization of a multinode
quantum network of remote solid-state qubits", Science quantum network of remote solid-state qubits", Science
Vol. 372, No. 6539, pp. 259-264, Vol. 372, No. 6539, pp. 259-264,
DOI 10.48550/arXiv.2102.04471, April 2021, DOI 10.1126/science.abg1919, April 2021,
<https://arxiv.org/abs/2102.04471>. <https://www.science.org/doi/10.1126/science.abg1919>.
[Pompili21.2] [Pompili21.2]
Pompili, M., Delle Donne, C., te Raa, I., van der Vecht, Pompili, M., Delle Donne, C., te Raa, I., van der Vecht,
B., Skrzypczyk, M., Ferreira, G., de Kluijver, L., Stolk, B., Skrzypczyk, M., Ferreira, G., de Kluijver, L., Stolk,
A.J., Hermans, S.L.N., Pawełczak, P., Kozlowski, W., A.J., Hermans, S.L.N., Pawełczak, P., Kozlowski, W.,
Hanson, R., and S. Wehner, "Experimental demonstration of Hanson, R., and S. Wehner, "Experimental demonstration of
entanglement delivery using a quantum network stack", entanglement delivery using a quantum network stack", npj
arXiv 2111.11332, DOI 10.48550/arXiv.2111.11332, November Quantum Information Vol. 8, 121, DOI 10.4121/16912522,
2021, <https://arxiv.org/abs/2111.11332>. October 2022,
<https://www.nature.com/articles/s41534-022-00631-2>.
[QI-Scenarios] [QI-Scenarios]
Wang, C., Rahman, A., Li, R., Aelmans, M., and K. Wang, C., Rahman, A., Li, R., Aelmans, M., and K.
Chakraborty, "Application Scenarios for the Quantum Chakraborty, "Application Scenarios for the Quantum
Internet", Work in Progress, Internet-Draft, draft-irtf- Internet", Work in Progress, Internet-Draft, draft-irtf-
qirg-quantum-internet-use-cases-14, 11 December 2022, qirg-quantum-internet-use-cases-14, 11 December 2022,
<https://datatracker.ietf.org/doc/html/draft-irtf-qirg- <https://datatracker.ietf.org/doc/html/draft-irtf-qirg-
quantum-internet-use-cases-14>. quantum-internet-use-cases-14>.
[Qin17] Qin, H. and Y. Dai, "Dynamic quantum secret sharing by [Qin17] Qin, H. and Y. Dai, "Dynamic quantum secret sharing by
using d-dimensional GHZ state", Quantum information using d-dimensional GHZ state", Quantum information
processing Vol. 16, Iss. 3, 64, processing Vol. 16, Iss. 3, 64,
DOI 10.1007/s11128-017-1525-y, January 2017, DOI 10.1007/s11128-017-1525-y, January 2017,
<https://link.springer.com/content/pdf/10.1007/ <https://link.springer.com/article/10.1007/
s11128-017-1525-y.pdf>. s11128-017-1525-y>.
[QKD] "Quantum Key Distribution", Quantum Network Explorer by [QKD] "Quantum Key Distribution", Quantum Network Explorer by
QuTech, 2023, QuTech, 2023,
<https://www.quantum-network.com/applications/5/>. <https://www.quantum-network.com/applications/5/>.
[RFC1958] Carpenter, B., Ed., "Architectural Principles of the [RFC1958] Carpenter, B., Ed., "Architectural Principles of the
Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996, Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,
<https://www.rfc-editor.org/info/rfc1958>. <https://www.rfc-editor.org/info/rfc1958>.
[Sangouard11] [Sangouard11]
Sangouard, N., Simon, C., de Riedmatten, H., and N. Gisin, Sangouard, N., Simon, C., de Riedmatten, H., and N. Gisin,
"Quantum repeaters based on atomic ensembles and linear "Quantum repeaters based on atomic ensembles and linear
optics", Reviews of Modern Physics Vol. 83, Iss. 1, pp. optics", Reviews of Modern Physics Vol. 83, Iss. 1, pp.
33-80, DOI 10.1103/RevModPhys.83.33, March 2011, 33-80, DOI 10.1103/RevModPhys.83.33, March 2011,
<https://journals.aps.org/rmp/abstract/10.1103/ <https://journals.aps.org/rmp/abstract/10.1103/
RevModPhys.83.33>. RevModPhys.83.33>.
[Satoh17] Satoh, T., Nagayama, S., and R. Van Meter, "The Network [Satoh17] Satoh, T., Nagayama, S., Oka, T., and R. Van Meter, "The
Impact of Hijacking a Quantum Repeater", Quantum Science network impact of hijacking a quantum repeater", Quantum
and Technology Vol. 3, Iss. 3, 034008, Science and Technology Vol. 3, Iss. 3, 034008,
DOI 10.48550/arXiv.1701.04587, May 2018, DOI 10.1088/2058-9565/aac11f, May 2018,
<https://arxiv.org/abs/1701.04587>. <https://iopscience.iop.org/article/10.1088/2058-9565/
aac11f>.
[Satoh20] Satoh, T., Nagayama, S., Suzuki, S., Matsuo, T., Hajdušek, [Satoh20] Satoh, T., Nagayama, S., Suzuki, S., Matsuo, T., Hajdušek,
M., and R. Van Meter, "Attacking the Quantum Internet", M., and R. Van Meter, "Attacking the Quantum Internet",
arXiv 2005.04617, DOI 10.48550/arXiv.2005.04617, September IEEE Transactions on Quantum Engineering, vol. 2, pp.
2021, <https://arxiv.org/abs/2005.04617>. 1-17, DOI 10.1109/TQE.2021.3094983, September 2021,
<https://ieeexplore.ieee.org/document/9477172>.
[SutorBook] [SutorBook]
Sutor, R.S., "Dancing with Qubits", Packt Publishing, Sutor, R.S., "Dancing with Qubits", Packt Publishing,
November 2019, <https://www.packtpub.com/product/dancing- November 2019, <https://www.packtpub.com/product/dancing-
with-qubits/9781838827366>. with-qubits/9781838827366>.
[Tang19] Tang, B.-Y., Liu, B., Zhai, Y.-P., Wu, C.-Q., and W.-R. [Tang19] Tang, B.-Y., Liu, B., Zhai, Y.-P., Wu, C.-Q., and W.-R.
Yu, "High-speed and Large-scale Privacy Amplification Yu, "High-speed and Large-scale Privacy Amplification
Scheme for Quantum Key Distribution", Scientific Reports Scheme for Quantum Key Distribution", Scientific Reports
Vol. 9, DOI 10.1038/s41598-019-50290-1, October 2019, Vol. 9, DOI 10.1038/s41598-019-50290-1, October 2019,
skipping to change at line 2038 skipping to change at line 2053
<https://ieeexplore.ieee.org/document/5388928>. <https://ieeexplore.ieee.org/document/5388928>.
[VanMeter13.1] [VanMeter13.1]
Van Meter, R. and J. Touch, "Designing quantum repeater Van Meter, R. and J. Touch, "Designing quantum repeater
networks", IEEE Communications Magazine Vol. 51, Iss. 8, networks", IEEE Communications Magazine Vol. 51, Iss. 8,
pp. 64-71, DOI 10.1109/MCOM.2013.6576340, August 2013, pp. 64-71, DOI 10.1109/MCOM.2013.6576340, August 2013,
<https://ieeexplore.ieee.org/document/6576340>. <https://ieeexplore.ieee.org/document/6576340>.
[VanMeter13.2] [VanMeter13.2]
Van Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., and K. Van Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., and K.
Nemoto, "Path Selection for Quantum Repeater Networks", Nemoto, "Path selection for quantum repeater networks",
Networking Science Vol. 3, Iss. 1-4, pp. 82-95, Networking Science Vol. 3, Iss. 1-4, pp. 82-95,
DOI 10.48550/arXiv.1206.5655, December 2013, DOI 10.1007/s13119-013-0026-2, December 2013,
<https://arxiv.org/abs/1206.5655>. <https://link.springer.com/article/10.1007/
s13119-013-0026-2>.
[VanMeterBook] [VanMeterBook]
Van Meter, R., "Quantum Networking", ISTE Ltd/John Wiley Van Meter, R., "Quantum Networking", ISTE Ltd/John Wiley
and Sons. Inc., Print ISBN 978-1-84821-537-5, and Sons. Inc., Print ISBN 978-1-84821-537-5,
DOI 10.1002/9781118648919, April 2014, DOI 10.1002/9781118648919, April 2014,
<https://onlinelibrary.wiley.com/doi/ <https://onlinelibrary.wiley.com/doi/
book/10.1002/9781118648919>. book/10.1002/9781118648919>.
[Wang21] Wang, L.-J., Zhang, K.-Y., Wang, J.-Y., Cheng, J., Yang, [Wang21] Wang, L.-J., Zhang, K.-Y., Wang, J.-Y., Cheng, J., Yang,
Y.-H., Tang, S.-B., Yan, D., Tang, Y.-L., Liu, Z., Yu, Y., Y.-H., Tang, S.-B., Yan, D., Tang, Y.-L., Liu, Z., Yu, Y.,
skipping to change at line 2067 skipping to change at line 2083
[Wehner18] Wehner, S., Elkouss, D., and R. Hanson, "Quantum internet: [Wehner18] Wehner, S., Elkouss, D., and R. Hanson, "Quantum internet:
A vision for the road ahead", Science Vol. 362, Iss. 6412, A vision for the road ahead", Science Vol. 362, Iss. 6412,
DOI 10.1126/science.aam9288, October 2018, DOI 10.1126/science.aam9288, October 2018,
<https://www.science.org/doi/full/10.1126/ <https://www.science.org/doi/full/10.1126/
science.aam9288>. science.aam9288>.
[Wei22] Wei, S.-H., Jing, B., Zhang, X.-Y., Liao, J.-Y., Yuan, C.- [Wei22] Wei, S.-H., Jing, B., Zhang, X.-Y., Liao, J.-Y., Yuan, C.-
Z., Fan, B.-Y., Lyu, C., Zhou, D.-L., Wang, Y., Deng, G.- Z., Fan, B.-Y., Lyu, C., Zhou, D.-L., Wang, Y., Deng, G.-
W., Song, H.-Z., Oblak, D., Guo, G.-C., and Q. Zhou, W., Song, H.-Z., Oblak, D., Guo, G.-C., and Q. Zhou,
"Towards real-world quantum networks: a review", arXiv "Towards Real-World Quantum Networks: A Review", Laser and
2201.04802, DOI 10.48550/arXiv.2201.04802, January 2022, Photonics Reviews Vol. 16, 2100219,
<https://arxiv.org/abs/2201.04802>. DOI 10.1002/lpor.202100219, January 2022,
<https://onlinelibrary.wiley.com/doi/10.1002/
lpor.202100219>.
[Wootters82] [Wootters82]
Wootters, W.K. and W.H. Zurek, "A single quantum cannot be Wootters, W.K. and W.H. Zurek, "A single quantum cannot be
cloned", Nature Vol. 299, Iss. 5886, pp. 802-803, cloned", Nature Vol. 299, Iss. 5886, pp. 802-803,
DOI 10.1038/299802a0, October 1982, DOI 10.1038/299802a0, October 1982,
<https://www.nature.com/articles/299802a0>. <https://www.nature.com/articles/299802a0>.
[ZOO] "The Quantum Protocol Zoo", November 2019, [ZOO] "The Quantum Protocol Zoo", November 2019,
<https://wiki.veriqloud.fr/>. <https://wiki.veriqloud.fr/>.
Acknowledgements Acknowledgements
The authors want to thank Carlo Delle Donne, Matthew Skrzypczyk, Axel The authors want to thank Carlo Delle Donne, Matthew Skrzypczyk, Axel
Dahlberg, Mathias van den Bossche, Patrick Gelard, Chonggang Wang, Dahlberg, Mathias van den Bossche, Patrick Gelard, Chonggang Wang,
Scott Fluhrer, Joey Salazar, Joseph Touch, and the rest of the QIRG Scott Fluhrer, Joey Salazar, Joseph Touch, and the rest of the QIRG
community as a whole for their very useful reviews and comments on community as a whole for their very useful reviews and comments on
this document. this document.
WK and SW acknowledge funding received from the EU Flagship on
Quantum Technologies, Quantum Internet Alliance (No. 820445).
rdv acknowledges support by the Air Force Office of Scientific rdv acknowledges support by the Air Force Office of Scientific
Research under award number FA2386-19-1-4038. Research under award number FA2386-19-1-4038.
Authors' Addresses Authors' Addresses
Wojciech Kozlowski Wojciech Kozlowski
QuTech QuTech
Building 22 Building 22
Lorentzweg 1 Lorentzweg 1
2628 CJ Delft 2628 CJ Delft
 End of changes. 46 change blocks. 
105 lines changed or deleted 126 lines changed or added

This html diff was produced by rfcdiff 1.48.