
RFC 9344

CCNinfo: Discovering Content and Network

Information in Content-Centric Networks

Abstract

This document describes a mechanism named "CCNinfo" that discovers information about the

network topology and in-network cache in Content-Centric Networks (CCNs). CCNinfo

investigates 1) the CCN routing path information per name prefix, 2) the Round-Trip Time (RTT)

between the content forwarder and the consumer, and 3) the states of in-network cache per

name prefix. CCNinfo is useful to understand and debug the behavior of testbed networks and

other experimental deployments of CCN systems.

This document is a product of the IRTF Information-Centric Networking Research Group (ICNRG).

This document represents the consensus view of ICNRG and has been reviewed extensively by

several members of the ICN community and the RG. The authors and RG chairs approve of the

contents. The document is sponsored under the IRTF, is not issued by the IETF, and is not an IETF

standard. This is an experimental protocol and the specification may change in the future.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Research Task Force (IRTF)

9344

Experimental

February 2023

2070-1721

 H. Asaeda

NICT

A. Ooka

NICT

X. Shao

Toyohashi University of Technology

Status of This Memo

This document is not an Internet Standards Track specification; it is published for examination,

experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This document is a

product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-

related research and development activities. These results might not be suitable for deployment.

This RFC represents the consensus of the Information-Centric Networking Research Group of the

Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not

candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9344

Asaeda, et al. Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9344
https://www.rfc-editor.org/info/rfc9344

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. CCNinfo as an Experimental Tool

2. Terminology

2.1. Definitions

3. CCNinfo Message Formats

3.1. Request Message

3.1.1. Request Header Block and Request Block

3.1.2. Report Block TLV

3.1.3. Content Name Specification

3.2. Reply Message

3.2.1. Reply Block TLV

3.2.1.1. Reply Sub-Block TLV

4. CCNinfo User Behavior

4.1. Sending CCNinfo Request

4.1.1. Routing Path Information

4.1.2. In-Network Cache Information

4.2. Receiving CCNinfo Reply

5. Router Behavior

5.1. User and Neighbor Verification

5.2. Receiving CCNinfo Request

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 2

https://trustee.ietf.org/license-info

5.3. Forwarding CCNinfo Request

5.3.1. Regular Request

5.3.2. Full Discovery Request

5.4. Sending CCNinfo Reply

5.5. Forwarding CCNinfo Reply

5.6. PIT Entry Management for Multipath Support

6. CCNinfo Termination

6.1. Arriving at First-Hop Router

6.2. Arriving at Router Having Cache

6.3. Arriving at Last Router

6.4. Invalid Request

6.5. No Route

6.6. No Information

6.7. No Space

6.8. Fatal Error

6.9. CCNinfo Reply Timeout

6.10. Non-Supported Node

6.11. Administratively Prohibited

7. Configurations

7.1. CCNinfo Reply Timeout

7.2. HopLimit in Fixed Header

7.3. Access Control

8. Diagnosis and Analysis

8.1. Number of Hops and RTT

8.2. Caching Router Identification

8.3. TTL or Hop Limit

8.4. Time Delay

8.5. Path Stretch

8.6. Cache Hit Probability

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 3

9. IANA Considerations

9.1. Packet Type Registry

9.2. Top-Level Type Registry

9.3. Hop-by-Hop Type Registry

9.4. Message Type Registry

9.5. Reply Type Registry

10. Security Considerations

10.1. Policy-Based Information Provisioning for Request

10.2. Filtering CCNinfo Users Located in Invalid Networks

10.3. Topology Discovery

10.4. Characteristics of Content

10.5. Computational Attacks

10.6. Longer or Shorter CCNinfo Reply Timeout

10.7. Limiting Request Rates

10.8. Limiting Reply Rates

10.9. Adjacency Verification

11. References

11.1. Normative References

11.2. Informative References

Appendix A. ccninfo Command and Options

Acknowledgements

Authors' Addresses

1. Introduction

In Content-Centric Networks (CCNs), publishers provide the content through the network, and

receivers retrieve it by name. In this network architecture, routers forward content requests

through their Forwarding Information Bases (FIBs), which are populated by name-based routing

protocols. CCN also enables receivers to retrieve content from an in-network cache.

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 4

In CCN, while consumers do not generally need to know the content forwarder that is

transmitting the content to them, the operators and developers may want to identify the content

forwarder and observe the routing path information per name prefix for troubleshooting or

investigating the network conditions.

IP traceroute is a useful tool for discovering the routing conditions in IP networks because it

provides intermediate router addresses along the path between the source and the destination,

and the Round-Trip Time (RTT) for the path. However, this IP-based network tool cannot trace

the name prefix paths used in CCN. Moreover, such IP-based network tools do not obtain the

states of the in-network cache to be discovered.

Contrace enables end users (i.e., consumers) to investigate path and in-network cache

conditions in CCN. Contrace is implemented as an external daemon process running over TCP/IP

that can interact with a previous CCNx forwarding daemon (CCNx-0.8.2) to retrieve the caching

information on the forwarding daemon. This solution is flexible, but it requires defining the

common APIs used for global deployment in TCP/IP networks. ICN (Information-Centric

Networking) ping and traceroute are lightweight operational

tools that enable a user to explore the path(s) that reach a publisher or a cache storing the named

content. ICN ping and traceroute, however, do not expose detailed information about the

forwarders deployed by a network operator.

This document describes the specifications of "CCNinfo", an active networking tool for

discovering the path and content-caching information in CCN. CCNinfo defines the protocol

messages to investigate path and in-network cache conditions in CCN. It is embedded in the CCNx

forwarding process and can facilitate with non-IP networks as with the basic CCN concept.

The two message types, Request and Reply messages, are encoded in the CCNx TLV format

. The Request-and-Reply message flow, walking up the tree from a consumer toward a

publisher, is similar to the behavior of the IP multicast traceroute facility .

CCNinfo facilitates the tracing of a routing path and provides 1) the RTT between the content

forwarder (i.e., caching router or first-hop router) and consumer, 2) the states of the in-network

cache per name prefix, and 3) the routing path information per name prefix.

In addition, CCNinfo identifies the states of the cache, such as the metrics for Content Store (CS)

in the content forwarder as follows: 1) size of cached Content Objects, 2) number of cached

Content Objects, 3) number of accesses (i.e., received Interests) per content, and 4) elapsed cache

time and remaining cache lifetime of content.

CCNinfo supports multipath forwarding. The Request messages can be forwarded to multiple

neighbor routers. When the Request messages are forwarded to multiple routers, the different

Reply messages are forwarded from different routers or publishers.

Furthermore, CCNinfo implements policy-based information provisioning that enables

administrators to "hide" secure or private information but does not disrupt message forwarding.

This policy-based information provisioning reduces the deployment barrier faced by operators in

installing and running CCNinfo on their routers.

[Contrace]

[ICN-PING] [ICN-TRACEROUTE]

[RFC8609]

[RFC8487]

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 5

The document represents the consensus of the Information-Centric Networking Research Group

(ICNRG). This document was read and reviewed by the active research group members. It is not

an IETF product and is not a standard.

1.1. CCNinfo as an Experimental Tool

In order to carry out meaningful experimentation with CCNx protocols, comprehensive

instrumentation and management information is needed to take measurements and explore

both the performance and robustness characteristics of the protocols and of the applications

using them. CCNinfo's primary goal is to gather and report this information. As experience is

gained with both the CCNx protocols and CCNinfo itself, we can refine the instrumentation

capabilities and discover what additional capabilities might be needed in CCNinfo and

conversely which features wind up not being of sufficient value to justify the implementation

complexity and execution overhead.

CCNinfo is intended as a comprehensive experimental tool for CCNx-based networks. It provides

a wealth of information from forwarders, including on-path in-network cache conditions as well

as forwarding path instrumentation of multiple paths toward content forwarders. As an

experimental capability that exposes detailed information about the forwarders deployed by a

network operator, CCNinfo employs more granular authorization policies than those required of

ICN ping or ICN traceroute.

CCNinfo uses two message types: Request and Reply. A CCNinfo user, e.g., consumer, initiates a

CCNinfo Request message when they want to obtain routing path and cache information. When

an adjacent neighbor router receives the Request message, it examines its own cache

information. If the router does not cache the specified content, it inserts its Report block into the

hop-by-hop header of the Request message and forwards the message to its upstream neighbor

router(s) decided by its FIB. In Figure 1, CCNinfo user and routers (Routers A, B, C) insert their

own Report blocks into the Request message and forward the message toward the content

forwarder.

Figure 1: Request Message Invoked by the CCNinfo User and Forwarded by Routers

 1. Request 2. Request 3. Request
 (U) (U+A) (U+A+B)
 +----+ +----+ +----+
 | | | | | |
 | v | v | v
+--------+ +--------+ +--------+ +--------+ +---------+
| CCNinfo|----| Router |----| Router |----| Router |----|Publisher|
| user | | A | | B | | C | | |
+--------+ +--------+ +--------+ +--------+ +---------+
 \
 \ +-------+
 3. Request \ | Cache |
 (U+A+B) \ +---------+ |
 v| Caching |----+
 | router |
 +---------+

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 6

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

2.1. Definitions

This document follows the basic terminologies and definitions described in . Although

CCNinfo requests flow in the opposite direction to the data flow, we refer to "upstream" and

"downstream" with respect to data, unless explicitly specified.

Scheme name:

A scheme name indicates a URI and protocol. This document only considers "ccnx:/" as the

scheme name.

Prefix name:

A prefix name, which is defined in , is a name that does not uniquely identify a

single Content Object, but rather a namespace or prefix of an existing Content Object name.

When the Request message reaches the content forwarder, the content forwarder forms the

Reply message; it inserts its own Reply block TLV and Reply sub-block TLV(s) to the Request

message. The Reply message is then forwarded back toward the user in a hop-by-hop manner

along the Pending Interest Table (PIT) entries. In Figure 2, each router (Routers C, B, and A)

forwards the Reply message along its PIT entry, and finally, the CCNinfo user receives a Reply

message from Router C, which is the first-hop router for the publisher. Another Reply message

from the caching router (i.e., Reply(C)) is discarded at Router B if the other Reply message (i.e.,

Reply(P)) was already forwarded by Router B.

Figure 2: Reply Messages Forwarded by Routers, and One Reply Message is Received by the CCNinfo

User

 3. Reply(P) 2. Reply(P) 1. Reply(P)
 +----+ +----+ +----+
 | | | | | |
 v | v | v |
+--------+ +--------+ +--------+ +--------+ +---------+
| CCNinfo|----| Router |----| Router |----| Router |----|Publisher|
| user | | A | | B | | C | | |
+--------+ +--------+ +--------+ +--------+ +---------+
 ^
 \ +-------+
 1. Reply(C) \ | Cache |
 \ +---------+ |
 \| Caching |----+
 | router |
 +---------+

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8609]

[RFC8569]

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 7

Exact name:

An exact name, which is defined in , is one that uniquely identifies the name of a

Content Object.

Node:

A node within a CCN network can fulfill the role of a data publisher, a data consumer, and/or

a forwarder for Interest and Content Object, as described in .

Consumer:

A node that requests Content Objects by generating and sending out Interests. It is the same

definition of ICN Consumer, as given in .

Publisher:

A node that creates Content Objects and makes them available for retrieval. It is the same

definition of ICN Producer, as given in .

Router:

A node that implements stateful forwarding in the path between consumer and publisher.

Caching router:

A node that temporarily stores and potentially carries Interests or Content Objects before

forwarding it to the next node.

Content forwarder:

A content forwarder is either a caching router or a first-hop router that forwards Content

Objects to consumers.

CCNinfo user:

A node that initiates the CCNinfo Request, which is either a consumer or a router that invokes

the CCNinfo user program with the name prefix of the content. The CCNinfo user program,

such as "ccninfo" command described in Appendix A or other similar commands, initiates the

Request message to obtain routing path and cache information.

Incoming face:

The face on which data are expected to arrive from the specified name prefix.

Outgoing face:

The face to which data from the publisher or router are expected to transmit for the specified

name prefix. It is also the face on which the Request messages is received.

Upstream router:

The router that connects to an Incoming face of a router.

Downstream router:

The router that connects to an Outgoing face of a router.

First-hop router (FHR):

The router that matches a FIB entry with an Outgoing face referring to a local application or a

publisher.

[RFC8569]

[RFC8793]

[RFC8793]

[RFC8793]

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 8

Last-hop router (LHR):

The router that is directly connected to a consumer.

3. CCNinfo Message Formats

CCNinfo Request and Reply messages are encoded in the CCNx TLV format (see and

Figure 3). The Request message consists of a fixed header, Request block TLV (Figure 5), and

Report block TLV(s) (Figure 7). The Reply message consists of a fixed header, Request block TLV,

Report block TLV(s), Reply block TLV (Figure 9), and Reply sub-block TLV(s) (Figure 10).

The PacketType values in the fixed header shown in Figure 3 are PT_CCNINFO_REQUEST and

PT_CCNINFO_REPLY (see Table 1). CCNinfo Request and Reply messages are forwarded in a hop-

by-hop manner. When the Request message reaches the content forwarder, the content

forwarder turns it into a Reply message by changing the Type field value in the fixed header

from PT_CCNINFO_REQUEST to PT_CCNINFO_REPLY and forwards it back toward the node that

initiated the Request message.

[RFC8609]

Figure 3: Packet Format [RFC8609]

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PacketType | PacketLength |
+---------------+---------------+---------------+---------------+
| PacketType specific fields | HeaderLength |
+---------------+---------------+---------------+---------------+
/ Optional Hop-by-hop header TLVs /
+---------------+---------------+---------------+---------------+
/ PacketPayload TLVs /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationAlgorithm TLV /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /
+---------------+---------------+---------------+---------------+

Type Name

0x00 PT_INTEREST

0x01 PT_CONTENT

0x02 PT_RETURN

0x03 PT_CCNINFO_REQUEST

0x04 PT_CCNINFO_REPLY

Table 1: CCNx Packet Types

[RFC8609]

[RFC8609]

[RFC8609]

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 9

Following a fixed header, there can be a sequence of optional hop-by-hop header TLV(s) for a

Request message. In the case of a Request message, it is followed by a sequence of Report blocks,

each from a router on the path toward the publisher or caching router.

At the beginning of PacketPayload TLVs, a top-level TLV type, T_DISCOVERY (Table 2), exists at the

outermost level of a CCNx protocol message. This TLV indicates that the Name segment TLV(s)

and Reply block TLV(s) would follow in the Request or Reply message.

Type Name

0x0000 Reserved

0x0001 T_INTEREST

0x0002 T_OBJECT

0x0003 T_VALIDATION_ALG

0x0004 T_VALIDATION_PAYLOAD

0x0005 T_DISCOVERY

Table 2: CCNx Top-Level Types

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

3.1. Request Message

When a CCNinfo user initiates a discovery request (e.g., via the ccninfo command described in

Appendix A), a CCNinfo Request message is created and forwarded to its upstream router

through the Incoming face(s) determined by its FIB.

The Request message format is shown in Figure 4. It consists of a fixed header, Request header

block TLV (Figure 5), Report block TLV(s) (Figure 7), Name TLV, and Request block TLV. Request

header block TLV and Report block TLV(s) are contained in the hop-by-hop header, as those

might change from hop to hop. Request block TLV is encoded in the PacketPayload TLV by

content forwarder as the protocol message itself. The PacketType value of the Request message is

PT_CCNINFO_REQUEST (Table 1). The Type value of the CCNx Top-Level type is T_DISCOVERY

(Table 2).

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 10

HopLimit:

ReturnCode:

8 bits

HopLimit is a counter that is decremented with each hop whenever a Request packet is

forwarded. It is specified by the CCNinfo user program. The HopLimit value be

decremented by 1 prior to forwarding the Request packet. The packet is discarded if HopLimit

is decremented to zero. HopLimit limits the distance that a Request may travel on the

network. Only the specified number of hops from the CCNinfo user traces the Request. The

last router stops the trace and sends the Reply message back to the CCNinfo user.

8 bits

ReturnCode is used for the Reply message. This value is replaced by the content forwarder

when the Request message is returned as the Reply message (see Section 3.2). Until then, this

field be transmitted as zeros and ignored on receipt.

Value Name Description

0x00 NO_ERROR No error

Figure 4: Request Message

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PacketType | PacketLength |
+---------------+---------------+---------------+---------------+
| HopLimit | ReturnCode | Reserved(MBZ) | HeaderLength |
+===============+===============+===============+===============+
/ Request header block TLV /
+---------------+---------------+---------------+---------------+
/ Report block TLV 1 /
+---------------+---------------+---------------+---------------+
/ Report block TLV 2 /
+---------------+---------------+---------------+---------------+
/ . /
/ . /
+---------------+---------------+---------------+---------------+
/ Report block TLV n /
+===============+===============+===============+===============+
| Type (=T_DISCOVERY) | MessageLength |
+---------------+---------------+---------------+---------------+
| T_NAME | Length |
+---------------+---------------+---------------+---------------+
/ Name segment TLVs (name prefix specified by CCNinfo user) /
+---------------+---------------+---------------+---------------+
/ Request block TLV /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationAlgorithm TLV /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /
+---------------+---------------+---------------+---------------+

MUST

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 11

Reserved (MBZ):

Value Name Description

0x01 WRONG_IF CCNinfo Request arrived on an interface to which this

router would not forward for the specified name and/or

function toward the publisher.

0x02 INVALID_REQUEST Invalid CCNinfo Request is received.

0x03 NO_ROUTE This router has no route for the name prefix and no way

to determine a route.

0x04 NO_INFO This router has no cache information for the specified

name prefix.

0x05 NO_SPACE There was not enough room to insert another Report

block in the packet.

0x06 INFO_HIDDEN Information is hidden from this discovery owing to

some policy.

0x0E ADMIN_PROHIB CCNinfo Request is administratively prohibited.

0x0F UNKNOWN_REQUEST This router does not support or recognize the Request

message.

0x80 FATAL_ERROR In a fatal error, the router may know the upstream

router but cannot forward the message to it.

Table 3: ReturnCode Used for the Reply Message

8 bits

The reserved fields in the Value field be transmitted as zeros and ignored on receipt.MUST

3.1.1. Request Header Block and Request Block

When a CCNinfo user transmits the Request message, they insert their Request header

block TLV (Figure 5) into the hop-by-hop header and Request block TLV (Figure 6) into the

message before sending it through the Incoming face(s).

MUST

Figure 5: Request Header Block TLV (Hop-by-Hop Header)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Type (=T_DISC_REQHDR) | Length |
+---------------+---------------+-------+-------+-------+-+-+-+-+
| Request ID |SkipHop| Flags |V|F|O|C|
+---------------+---------------+-------+-------+-------+-+-+-+-+

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 12

Type:

Length:

Request ID:

SkipHop (Skip Hop Count):

Flags:

16 bits

Format of the Value field. The type value of the Request header block TLV be

T_DISC_REQHDR.

16 bits

Length of the Value field in octets.

16 bits

This field is used as a unique identifier for the CCNinfo Request so that the duplicate or

delayed Reply messages can be detected.

4 bits

Number of skipped routers for a Request. It is specified by the CCNinfo user program. The

number of routers corresponding to the value specified in this field are skipped, and the

CCNinfo Request messages are forwarded to the next router without the addition of Report

blocks; the next upstream router then starts the trace. The maximum value of this parameter

is 15. This value be lower than that of HopLimit at the fixed header.

12 bits

Type Name

0x0000 Reserved

0x0001 T_INTLIFE

0x0002 T_CACHETIME

0x0003 T_MSGHASH

0x0004-0x0007 Reserved

0x0008 T_DISC_REQHDR

0x0009 T_DISC_REPORT

0x0FFE T_PAD

0x0FFF T_ORG

0x1000-0x1FFF Reserved

Table 4: CCNx Hop-by-Hop Types

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

MUST

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 13

The Flags field is used to indicate the types of the content or path discoveries. Currently, as

shown in Table 5, four bits ("C", "O", "F", and "V") are assigned, and the other 8 bits are

reserved (MBZ) for the future use. Each flag can be mutually specified with other flags. These

flags are set by the CCNinfo user program when they initiate Requests (see Appendix A), and

the routers that receive the Requests deal with the flags and change the behaviors (see Section

5 for details). The Flag values defined in this Flags field correspond to the Reply sub-blocks.

Flag Value Description

C 0 Path discovery (i.e., no cache information retrieved) (default)

C 1 Path and cache information retrieval

O 0 Request to any content forwarder (default)

O 1 Publisher discovery (i.e., only FHR can reply)

F 0 Request based on FIB's forwarding strategy (default)

F 1 Full discovery request. Request to possible multiple upstream routers

specified in FIB simultaneously

V 0 No reply validation (default)

V 1 Reply sender validates Reply message

Table 5: Codes and Types Specified in Flags Field

Figure 6: Request Block TLV (Packet Payload)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Type (=T_DISC_REQ) | Length |
+---------------+---------------+---------------+---------------+
| Request Arrival Time |
+---------------+---------------+---------------+---------------+
/ Node Identifier /
+---------------+---------------+---------------+---------------+

Type Name

0x0000 T_NAME

0x0001 T_PAYLOAD

0x0002 T_KEYIDRESTR

0x0003 T_OBJHASHRESTR

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 14

Type:

Length:

Request Arrival Time:

16 bits

Format of the Value field. For the Request block TLV, the type value(s) be T_DISC_REQ

(see Table 6) in the current specification.

16 bits

Length of the Value field in octets.

32 bits

The Request Arrival Time is a 32-bit NTP timestamp specifying the arrival time of the CCNinfo

Request message at the router. The 32-bit form of an NTP timestamp consists of the middle 32

bits of the full 64-bit form, that is, the low 16 bits of the integer part and the high 16 bits of the

fractional part.

The following formula converts from a timespec (fractional part in nanoseconds) to a 32-bit

NTP timestamp:

The constant 32384 is the number of seconds from Jan 1, 1900 to Jan 1, 1970 truncated to 16

bits. ((tv.tv_nsec << 7) / 1953125) is a reduction of ((tv.tv_nsec / 1000000000) << 16), where "<<"

denotes a logical left shift.

Type Name

0x0005 T_PAYLDTYPE

0x0006 T_EXPIRY

0x0007-0x000C Reserved

0x000D T_DISC_REQ

0x000E T_DISC_REPLY

0x0FFE T_PAD

0x0FFF T_ORG

0x1000-0x1FFF Reserved

Table 6: CCNx Message Types

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

[RFC8609]

MUST

request_arrival_time
= ((tv.tv_sec + 32384) << 16) + ((tv.tv_nsec << 7) / 1953125)

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 15

Node Identifier:

Note that it is for all the routers on the path to have synchronized clocks to

measure one-way latency per hop; however, even if they do not have synchronized clocks,

CCNinfo measures the RTT between the content forwarder and the consumer.

variable length

This field specifies the node identifier (e.g., node name or hash-based self-certifying name

) or all-zeros if unknown. This document assumes that the Name TLV defined in the

CCNx TLV format can be used for this field and the node identifier is specified in it.

RECOMMENDED

[DCAuth]

[RFC8609]

Type:

Length:

Request Arrival Time:

Node Identifier:

3.1.2. Report Block TLV

A CCNinfo user and each upstream router along the path would insert their own Report block

TLV without changing the Type field of the fixed header of the Request message until one of these

routers is ready to send a Reply. In the Report block TLV (Figure 7), the Request Arrival Time and

Node Identifier values be inserted.

16 bits

Format of the Value field. For the Report block TLV, the type value(s) be T_DISC_REPORT

in the current specification. For all the available types of the CCNx hop-by-hop types, please

see Table 4.

16 bits

Length of the Value field in octets.

32 bits

Same definition as given in Section 3.1.1.

variable length

Same definition as given in Section 3.1.1.

MUST

Figure 7: Report Block TLV (Hop-by-Hop Header)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Type (=T_DISC_REPORT) | Length |
+---------------+---------------+---------------+---------------+
| Request Arrival Time |
+---------------+---------------+---------------+---------------+
/ Node Identifier /
+---------------+---------------+---------------+---------------+

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 16

3.1.3. Content Name Specification

Specifications of the Name TLV (whose type value is T_NAME) and the Name Segment TLVs are

described in , which is followed by CCNinfo. CCNinfo enables the specification of the

content name with either a prefix name without chunk number (such as "ccnx:/news/today") or

an exact name (such as "ccnx:/news/today/Chunk=10"). When a CCNinfo user specifies a prefix

name, they will obtain the summary information of the matched Content Objects in the content

forwarder. In contrast, when a CCNinfo user specifies an exact name, they will obtain

information only about the specified Content Object in the content forwarder. A CCNinfo Request

message be sent only with a scheme name, ccnx:/. It will be rejected and discarded by

routers.

[RFC8609]

MUST NOT

3.2. Reply Message

When a content forwarder receives a CCNinfo Request message from an appropriate adjacent

neighbor router, it inserts its own Reply block TLV and Reply sub-block TLV(s) to the Request

message and turns the Request into the Reply by changing the Type field of the fixed header of

the Request message from PT_CCNINFO_REQUEST to PT_CCNINFO_REPLY. The Reply message

(see Figure 8) is then forwarded back toward the CCNinfo user in a hop-by-hop manner.

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 17

Figure 8: Reply Message

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Version | PacketType | PacketLength |
+---------------+---------------+-------------+-+---------------+
| HopLimit | ReturnCode | Reserved(MBZ) | HeaderLength |
+===============+===============+=============+=+===============+
/ Request header block TLV /
+---------------+---------------+---------------+---------------+
/ . /
/ . /
/ n Report block TLVs /
/ . /
/ . /
+===============+===============+===============+===============+
| Type (=T_DISCOVERY) | MessageLength |
+---------------+---------------+---------------+---------------+
| T_NAME | Length |
+---------------+---------------+---------------+---------------+
/ Name segment TLVs (name prefix specified by CCNinfo user) /
+---------------+---------------+---------------+---------------+
/ Request block TLV /
+---------------+---------------+---------------+---------------+
/ Reply block TLV /
+---------------+---------------+---------------+---------------+
/ Reply sub-block TLV 1 /
+---------------+---------------+---------------+---------------+
/ . /
/ . /
+---------------+---------------+---------------+---------------+
/ Reply sub-block TLV k /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationAlgorithm TLV /
+---------------+---------------+---------------+---------------+
/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /
+---------------+---------------+---------------+---------------+

3.2.1. Reply Block TLV

The Reply block TLV is an envelope for the Reply sub-block TLV(s) (explained in the next section).

Figure 9: Reply Block TLV (Packet Payload)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Type (=T_DISC_REPLY) | Length |
+---------------+---------------+---------------+---------------+
| Request Arrival Time |
+---------------+---------------+---------------+---------------+
/ Node Identifier /
+---------------+---------------+---------------+---------------+

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 18

Type:

Length:

Request Arrival Time:

Node Identifier:

16 bits

Format of the Value field. For the Reply block TLV, the type value be T_DISC_REPLY

shown in Table 6 in the current specification.

16 bits

Length of the Value field in octets. This length is the total length of the Reply sub-block(s).

32 bits

Same definition as given in Section 3.1.1.

variable length

Same definition as given in Section 3.1.1.

MUST

3.2.1.1. Reply Sub-Block TLV

The router on the traced path will add one or multiple Reply sub-blocks followed by the Reply

block TLV before sending the Reply to its neighbor router. This section describes the Reply sub-

block TLV for informing various cache states and conditions as shown in Figure 10. (Other Reply

sub-block TLVs will be discussed in separate document(s).)

Note that some routers may not be capable of reporting the following values: Object Size, Object

Count, # Received Interest, First Seqnum, Last Seqnum, Elapsed Cache Time, and Remain Cache

Lifetime (shown in Figure 10). Or, some routers do not report these values due to their policy. In

that case, the routers set these fields to a value of all ones (i.e., 0xFFFFFFFF). The value of

each field be also all-one when the value is equal to or bigger than the maximum size

expressed by the 32-bit field. The CCNinfo user program inform that these values are not

valid if the fields received are set to the value of all ones.

If the cache is refreshed after reboot, the value in each field be refreshed (i.e., be set

to 0). If the cache remains after reboot, the value be refreshed (i.e., be reflected

as it is).

MUST

MUST

MUST

MUST MUST

MUST NOT MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 19

Type:

Length:

Object Size:

16 bits

Format of the Value field. For the Reply sub-block TLV, the type value be either

T_DISC_CONTENT or T_DISC_CONTENT_PUBLISHER defined in the CCNx Reply Types (Table

7). T_DISC_CONTENT is specified when a content forwarder replies with the cache

information. T_DISC_CONTENT_PUBLISHER is specified when a FHR attached to a publisher

replies with the original content information.

16 bits

Length of the Value field in octets.

32 bits

Figure 10: Reply Sub-Block TLV for T_DISC_CONTENT and T_DISC_CONTENT_PUBLISHER (Packet

Payload)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+---------------+---------------+
| Type | Length |
+---------------+---------------+---------------+---------------+
| Object Size |
+---------------+---------------+---------------+---------------+
| Object Count |
+---------------+---------------+---------------+---------------+
| # Received Interest |
+---------------+---------------+---------------+---------------+
| First Seqnum |
+---------------+---------------+---------------+---------------+
| Last Seqnum |
+---------------+---------------+---------------+---------------+
| Elapsed Cache Time |
+---------------+---------------+---------------+---------------+
| Remain Cache Lifetime |
+---------------+---------------+---------------+---------------+
| T_NAME | Length |
+---------------+---------------+---------------+---------------+
/ Name Segment TLVs /
+---------------+---------------+---------------+---------------+

Type Name

0x0000 T_DISC_CONTENT

0x0001 T_DISC_CONTENT_PUBLISHER

0x0FFF T_ORG

0x1000-0x1FFF Reserved for Experimental Use

Table 7: CCNx Reply Types

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 20

Object Count:

Received Interest:

First Seqnum:

Last Seqnum:

Elapsed Cache Time:

Remain Cache Lifetime:

The total size (KB) of the unexpired Content Objects. Values less than 1 KB are truncated. Note

that the maximum size expressed by the 32-bit field is approximately 4.29 TB.

32 bits

The number of the unexpired Content Objects. Note that the maximum count expressed by

the 32-bit field is approximately 4.29 billion.

32 bits

The total number of the received Interest messages to retrieve the cached Content Objects.

32 bits

The first sequential number of the unexpired Content Objects.

32 bits

The last sequential number of the unexpired Content Objects. The First Seqnum and Last

Seqnum do not guarantee the consecutiveness of the cached Content Objects; however,

knowing these values may help in the analysis of consecutive or discontinuous chunks such

as .

32 bits

The elapsed time (seconds) after the oldest Content Object of the content is cached.

32 bits

The lifetime (seconds) of a Content Object, which is lastly cached.

[CONSEC-CACHING]

4. CCNinfo User Behavior

4.1. Sending CCNinfo Request

A CCNinfo user invokes a CCNinfo user program (e.g., ccninfo command) that initiates a CCNinfo

Request message and sends it to the user's adjacent neighbor router(s) of interest. The user later

obtains both the routing path information and in-network cache information in the single Reply.

When the CCNinfo user program initiates a Request message, it insert the necessary values,

i.e., the "Request ID" and the "Node Identifier", in the Request block. The Request ID be

unique for the CCNinfo user until they receive the corresponding Reply message(s) or the

Request is timed out.

Owing to some policies, a router may want to validate the CCNinfo Requests using the CCNx

ValidationPayload TLV (whether it accepts the Request or not) especially when the router

receives the "full discovery request" (see Section 5.3.2). Accordingly, the CCNinfo user program

MUST

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 21

 require validating the Request message and appending the user's signature into the CCNx

ValidationPayload TLV. The router then forwards the Request message. If the router does not

approve the Request, it rejects the Request message as described in Section 6.11.

After the CCNinfo user program sends the Request message, until the Reply is timed out or the

expected numbers of Replies or a Reply message with a non-zero ReturnCode in the fixed header

is received, the CCNinfo user program keep the following information: HopLimit (specified

in the fixed header), Request ID and Flags (specified in the Request header block), and Node

Identifier and Request Arrival Time (specified in the Request block).

MAY

MUST

4.1.1. Routing Path Information

A CCNinfo user can send a CCNinfo Request for investigating the routing path information for the

specified named content. Using the Request, a legitimate user can obtain 1) the node identifiers of

the intermediate routers, 2) the node identifier of the content forwarder, 3) the number of hops

between the content forwarder and the consumer, and 4) the RTT between the content

forwarder and the consumer, per name prefix. This CCNinfo Request is terminated when it

reaches the content forwarder.

4.1.2. In-Network Cache Information

A CCNinfo user can send a CCNinfo Request for investigating in-network cache information.

Using the Request, a legitimate user can obtain 1) the size of cached Content Objects, 2) the

number of cached Content Objects, 3) the number of accesses (i.e., received Interests) per

content, and 4) the lifetime and expiration time of the cached Content Objects, for Content Store

(CS) in the content forwarder, unless the content forwarder is capable of reporting them (see

Section 3.2.1.1). This CCNinfo Request is terminated when it reaches the content forwarder.

4.2. Receiving CCNinfo Reply

A CCNinfo user program will receive one or multiple CCNinfo Reply messages from the adjacent

neighbor router(s). When the program receives the Reply, it compare the kept Request ID

and Node Identifier values to identify the Request and Reply pair. If they do not match, the Reply

message be silently discarded.

If the number of Report blocks in the received Reply is more than the initial HopLimit value

(which was inserted in the original Request), the Reply be silently ignored.

After the CCNinfo user has determined that they have traced the whole path or the maximum

path that they can be expected to, they might collect statistics by waiting for a timeout. Useful

statistics provided by CCNinfo are stated in Section 8.

MUST

MUST

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 22

5. Router Behavior

5.1. User and Neighbor Verification

Upon receiving a CCNinfo Request message, a router examine whether a valid CCNinfo user

has sent the message. If the router recognizes that the Request sender's signature specified in the

Request is invalid, it terminate the Request, as defined in Section 6.4.

Upon receiving a CCNinfo Request or Reply message, a router examine whether the message

comes from a valid adjacent neighbor node. If the router recognizes that the Request or Reply

sender is invalid, it silently ignore the message, as specified in Section 10.9.

MAY

SHOULD

MAY

SHOULD

5.2. Receiving CCNinfo Request

After a router accepts the CCNinfo Request message, it performs the following steps.

The value of "HopLimit" in the fixed header and the value of "SkipHop (Skip Hop Count)" in

the Request block are counters that are decremented with each hop. If the HopLimit value is

zero, the router terminates the Request, as defined in Section 6.5. If the SkipHop value is

equal to or more than the HopLimit value, the router terminates the Request, as defined in

Section 6.4; otherwise, until the SkipHop value becomes zero, the router forwards the

Request message to the upstream router(s) without adding its own Report block and without

replying to the Request. If the router does not know the upstream router(s) regarding the

specified name prefix, it terminates the Request, as defined in Section 6.5. It should be noted

that the Request messages are terminated at the FHR; therefore, although the maximum

value for the HopLimit is 255 and that for SkipHop is 15, if the Request messages reach the

FHR before the HopLimit or SkipHop value becomes 0, the FHR silently discards the Request

message and the Request is timed out.

The router examines the Flags field (specified in Table 5) in the Request block of the received

CCNinfo Request. If the "C" flag is not set, it is categorized as the "routing path information

discovery". If the "C" flag is set, it is the "cache information discovery". If the "O" flag is set, it

is the "publisher discovery".

If the Request is either "cache information discovery" or "routing path information

discovery", the router examines its FIB and CS. If the router caches the specified content, it

sends the Reply message with its own Reply block and sub-block(s). If the router cannot

insert its own Reply block or sub-block(s) because of no space, it terminates the Request, as

specified in Section 6.7. If the router does not cache the specified content but knows the

upstream neighbor router(s) for the specified name prefix, it creates the PIT entry, inserts its

own Report block in the hop-by-hop header, and forwards the Request to the upstream

neighbor(s). If the router cannot insert its own Report block because of no space, or if the

router does not cache the specified content and does not know the upstream neighbor

router(s) for the specified name prefix, it terminates the Request, as defined in Section 6.5.

If the Request is the "publisher discovery", the router examines whether it is the FHR for the

requested content. If the router is the FHR, it sends the Reply message with its own Report

1.

2.

3.

4.

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 23

block and sub-blocks (in the case of cache information discovery) or the Reply message with

its own Report block without adding any Reply sub-blocks (in the case of routing path

information discovery). If the router is not the FHR but knows the upstream neighbor

router(s) for the specified name prefix, it creates the PIT entry, inserts its own Report block,

and forwards the Request to the upstream neighbor(s). If the router cannot insert its own

Report block in the hop-by-hop header because of no space, it terminates the Request, as

specified in Section 6.7. If the router is not the FHR and does not know the upstream

neighbor router(s) for the specified name prefix, it terminates the Request, as defined in

Section 6.5. Note that in Cefore , there is an API by which a publisher informs the

application prefix to the FHR, and the FHR registers it into the FIB. The prefix entry then can

be statically configured on other routers or announced by a routing protocol.

[Cefore-site]

5.3. Forwarding CCNinfo Request

5.3.1. Regular Request

When a router decides to forward a Request message with its Report block to its upstream

router(s), it specifies the Request Arrival Time and Node Identifier values in the Report block of

the Request message. The router then forwards the Request message upstream toward the

publisher or caching router based on the FIB entry like the ordinary Interest-Data exchanges in

CCN.

When the router forwards the Request message, it record the F flag and Request ID in the

Request block of the Request message and exploiting path labels (specified in Section 1) at the

corresponding PIT entry. The router can later check the PIT entry to correctly forward the Reply

message(s) back.

CCNinfo supports multipath forwarding. The Request messages can be forwarded to multiple

neighbor routers. Some routers may have a strategy for multipath forwarding; when a router

sends Interest messages to multiple neighbor routers, it may delay or prioritize to send the

message to the upstream routers. The CCNinfo Request, as the default, complies with such

strategies; a CCNinfo user could trace the actual forwarding path based on the forwarding

strategy and will receive a single Reply message such as a Content Object.

MUST

5.3.2. Full Discovery Request

There may be a case wherein a CCNinfo user wants to discover all possible forwarding paths and

content forwarders based on the routers' FIBs. The "full discovery request" enables this

functionality. If a CCNinfo user sets the F flag in the Request block of the Request message (as

seen in Table 5) to request the full discovery, the upstream routers simultaneously forward the

Requests to all multiple upstream routers based on the FIBs. Then, the CCNinfo user can trace all

possible forwarding paths. As seen in Figure 11, each router forwards the Reply message along

its PIT entry, and finally, the CCNinfo user receives two Reply messages: one from the FHR

(Router C) and the other from the Caching router.

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 24

To receive different Reply messages forwarded from different routers, the PIT entries initiated by

CCNinfo remain until the configured CCNinfo Reply Timeout (Section 7.1) is expired. In other

words, unlike the ordinary Interest-Data exchanges in CCN, if routers that accept the full

discovery request receive the full discovery request, the routers remove the PIT

entry created by the full discovery request until the CCNinfo Reply Timeout value expires.

Note that the full discovery request is an implementation of CCNinfo; it may not be

implemented on routers. Even if it is implemented on a router, it may not accept the full

discovery request from non-validated CCNinfo users or routers or because of its policy. If a

router does not accept the full discovery request, it rejects the full discovery request as described

in Section 6.11. Routers that enable the full discovery request rate-limit Replies, as described

in Section 10.8 as well.

Figure 11: Full Discovery Request: Reply Messages Forwarded by the Publisher and Routers

 3. Reply(C) 2. Reply(C)
 3. Reply(P) 2. Reply(P) 1. Reply(P)
 +----+ +----+ +----+
 | | | | | |
 v | v | v |
+--------+ +--------+ +--------+ +--------+ +---------+
| CCNinfo|----| Router |----| Router |----| Router |----|Publisher|
| user | | A | | B | | C | | |
+--------+ +--------+ +--------+ +--------+ +---------+
 ^
 \ +-------+
 1. Reply(C) \ | Cache |
 \ +---------+ |
 \| Caching |----+
 | router |
 +---------+

SHOULD NOT

OPTIONAL

MAY

5.4. Sending CCNinfo Reply

If there is a caching router or FHR for the specified content within the specified hop count along

the path, the caching router or FHR sends back the Reply message toward the CCNinfo user and

terminates the Request.

When a router decides to send a Reply message to its downstream neighbor router or the

CCNinfo user with a NO_ERROR return code, it inserts a Report block with the Request Arrival

Time and Node Identifier values to the Request message. Then, the router inserts the

corresponding Reply sub-block(s) (Figure 10) to the payload. The router finally changes the Type

field in the fixed header from PT_CCNINFO_REQUEST to PT_CCNINFO_REPLY and forwards the

message back as the Reply toward the CCNinfo user in a hop-by-hop manner.

If a router cannot continue the Request, the router put an appropriate ReturnCode in the

Request message, change the Type field value in the fixed header from PT_CCNINFO_REQUEST to

PT_CCNINFO_REPLY, and forward the Reply message back toward the CCNinfo user to terminate

the Request (see Section 6).

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 25

5.5. Forwarding CCNinfo Reply

When a router receives a CCNinfo Reply whose Request ID and Node Identifier values match

those in the PIT entry, which is sent from a valid adjacent neighbor router, it forwards the

CCNinfo Reply back toward the CCNinfo user. If the router does not receive the corresponding

Reply within the [CCNinfo Reply Timeout] period, then it removes the corresponding PIT entry

and terminates the trace.

The Flags field in the Request block TLV is used to indicate whether the router keeps the PIT

entry during the CCNinfo Reply Timeout even after one or more corresponding Reply messages

are forwarded. When the CCNinfo user does not set the F flag (i.e., "0"), the intermediate routers

immediately remove the PIT entry whenever they forward the corresponding Reply message.

When the CCNinfo user sets the F flag (i.e., "1"), which means the CCNinfo user chooses the "full

discovery request" (see Section 5.3.2), the intermediate routers keep the PIT entry within the

[CCNinfo Reply Timeout] period. After this timeout, the PIT entry is removed.

CCNinfo Replies be cached in routers upon the transmission of Reply messages.

5.6. PIT Entry Management for Multipath Support

Within a network with a multipath condition, there is a case (Figure 12) wherein a single

CCNinfo Request is split into multiple Requests (e.g., at Router A), which are injected into a single

router (Router D). In this case, multiple Replies with the same Request ID and Node Identifier

values, including different Report blocks, are received by the router (Router D).

To recognize different CCNinfo Reply messages, the routers distinguish the PIT entries by

the Request ID and exploiting path labels, which could be a hash value of the concatenation

information of the cumulate node identifiers in the hop-by-hop header and the specified content

name. For example, when Router D in Figure 12 receives a CCNinfo Request from Router B, its

PIT includes the Request ID and value such as H((Router_A|Router_B)|content_name), where "H"

MUST NOT

Figure 12: An Example of Multipath Network Topology

 +--------+
 | Router |
 | B |
 +--------+
 / \
 / \
+--------+ +--------+ +--------+ +---------+
| CCNinfo|----| Router | | Router | ... |Publisher|
| user | | A | | D | | |
+--------+ +--------+ +--------+ +---------+
 \ /
 \ /
 +--------+
 | Router |
 | C |
 +--------+

MUST

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 26

indicates some hash function and "|" indicates concatenation. When Router D receives a CCNinfo

Request from Router C, its PIT includes the same Request ID and value of H((Router_A|

Router_C)|content_name). Two different Replies are later received on Router D, and each Reply

is appropriately forwarded to Router B and Router C, respectively. Note that two Reply messages

coming from Router B and Router C are reached at Router A, but the CCNinfo user can only

receive the first Reply message either from Router B or Router C as Router A removes the

corresponding PIT entry after it forwards the first Reply.

To avoid routing loops, when a router seeks the cumulate node identifiers of the Report blocks in

the hop-by-hop header, it examine whether its own node identifier is not previously

inserted. If a router detects its own node identifier in the hop-by-hop header, the router inserts

its Report block and terminates the Request as will be described in Section 6.8.

MUST

6. CCNinfo Termination

When performing a hop-by-hop trace, it is necessary to determine when to stop the trace. There

are several cases when an intermediate router might return a Reply before a Request reaches the

caching router or the FHR.

6.1. Arriving at First-Hop Router

A CCNinfo Request can be determined to have arrived at the FHR. To ensure that a router

recognizes that it is the FHR for the specified content, it needs to have a FIB entry (or to attach) to

the corresponding publisher or the content.

6.2. Arriving at Router Having Cache

A CCNinfo Request can be determined to have arrived at the router having the specified content

cache within the specified HopLimit.

6.3. Arriving at Last Router

A CCNinfo Request can be determined to have arrived at the last router of the specified

HopLimit. If the last router does not have the corresponding cache, it insert its Report

block and send the Reply message with a NO_INFO return code without appending any Reply

block or sub-block TLVs.

MUST

6.4. Invalid Request

If the router does not validate the Request or the Reply even it is required, the router note

a ReturnCode of INVALID_REQUEST in the fixed header of the message, insert its Report block,

and forward the message as the Reply back to the CCNinfo user. The router , however,

randomly ignore the received invalid messages. (See Section 10.7.)

MUST

MAY

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 27

6.6. No Information

If the router does not have any information about the specified name prefix within the specified

HopLimit, it note a ReturnCode of NO_INFO in the fixed header of the message, insert its

Report block, and forward the message as the Reply back to the CCNinfo user.

6.9. CCNinfo Reply Timeout

If a router receives the Request or Reply message that expires its own [CCNinfo Reply Timeout]

value (Section 7.1), the router will silently discard the Request or Reply message.

6.5. No Route

If the router cannot determine the routing paths or neighbor routers for the specified name

prefix within the specified HopLimit, it note a ReturnCode of NO_ROUTE in the fixed

header of the message, insert its Report block, and forward the message as the Reply back to the

CCNinfo user.

MUST

MUST

6.7. No Space

If appending the Report block, the Reply block, or Reply sub-block would make the hop-by-hop

header longer than 247 bytes or the Request packet longer than the MTU of the Incoming face,

the router note a ReturnCode of NO_SPACE in the fixed header of the message and forward

the message as the Reply back to the CCNinfo user.

MUST

6.8. Fatal Error

If a CCNinfo Request has encountered a fatal error, the router note a ReturnCode of

FATAL_ERROR in the fixed header of the message and forward the message as the Reply back to

the CCNinfo user. This may happen, for example, when the router detects some routing loop in

the Request blocks (see Section 1). The fatal error can be encoded with another error: if a router

detects routing loop but cannot insert its Report block, it note NO_SPACE and

FATAL_ERROR ReturnCodes (i.e., 0x85) in the fixed header and forward the message back to the

CCNinfo user.

MUST

MUST

6.10. Non-Supported Node

Cases will arise in which a router or a FHR along the path does not support CCNinfo. In such

cases, a CCNinfo user and routers that forward the CCNinfo Request will time out the CCNinfo

request.

6.11. Administratively Prohibited

If CCNinfo is administratively prohibited, the router rejects the Request message and send

the CCNinfo Reply with the ReturnCode of ADMIN_PROHIB. The router , however, randomly

ignore the Request messages to be rejected (see Section 10.7).

MUST

MAY

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 28

7. Configurations

7.2. HopLimit in Fixed Header

If a CCNinfo user does not specify the HopLimit value in the fixed header for a Request message

as the HopLimit, the HopLimit is set to 32. Note that 0 HopLimit is an invalid Request; hence, the

router in this case follows the way defined in Section 6.4.

7.1. CCNinfo Reply Timeout

The [CCNinfo Reply Timeout] value is used to time out a CCNinfo Reply. The value for a router

can be statically configured by the router's administrators and/or operators. The default value is

3 (seconds). The [CCNinfo Reply Timeout] value be larger than 4 (seconds) and

 be lower than 2 (seconds).

SHOULD NOT

SHOULD NOT

7.3. Access Control

A router configure the valid or invalid networks to enable an access control. The access

control be defined per name prefix, such as "who can retrieve which name prefix" (see

Section 10.2).

MAY

MAY

8. Diagnosis and Analysis

8.1. Number of Hops and RTT

A CCNinfo Request message is forwarded in a hop-by-hop manner and each forwarding router

appends its own Report block. We can then verify the number of hops to reach the content

forwarder or publisher and the RTT between the content forwarder or publisher.

8.2. Caching Router Identification

While some routers may hide their node identifiers with all-zeros in the Report blocks (as seen in

Section 10.1), the routers in the path from the CCNinfo user to the content forwarder can be

identified.

8.3. TTL or Hop Limit

By taking the HopLimit from the content forwarder and forwarding the TTL threshold over all

hops, it is possible to discover the TTL or hop limit required for the content forwarder to reach

the CCNinfo user.

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 29

8.5. Path Stretch

By obtaining the path stretch "d / P", where "d" is the hop count of the data and "P" is the hop

count from the consumer to the publisher, we can measure the improvements in path stretch in

various cases, such as in different caching and routing algorithms. We can then facilitate the

investigation of the performance of the protocol.

8.6. Cache Hit Probability

CCNinfo can show the number of received Interests per cache or chunk on a router. Accordingly,

CCNinfo measures the content popularity (i.e., the number of accesses for each content and/or

cache), thereby enabling the investigation of the routing/caching strategy in networks.

8.4. Time Delay

If the routers have synchronized clocks, it is possible to estimate the propagation and queuing

delays from the differences between the timestamps at the successive hops. However, this delay

includes the control processing overhead; therefore, it is not necessarily indicative of the delay

that would be experienced by the data traffic.

9. IANA Considerations

This section details each kind of CCNx protocol value that has been registered. As per ,

four assignments have been made in existing registries, and a new Reply Type registry has been

created in the "Content-Centric Networking (CCNx)" registry group.

[RFC8126]

9.1. Packet Type Registry

As shown in Table 1, CCNinfo defines two packet types, PT_CCNINFO_REQUEST and

PT_CCNINFO_REPLY, whose values are 0x03 and 0x04, respectively.

9.2. Top-Level Type Registry

As shown in Table 2, CCNinfo defines one top-level type, T_DISCOVERY, whose value is 0x0005.

9.3. Hop-by-Hop Type Registry

As shown in Table 4, CCNinfo defines two hop-by-hop types, T_DISC_REQHDR and

T_DISC_REPORT, whose values are 0x0008 and 0x0009, respectively.

9.4. Message Type Registry

As shown in Table 6, CCNinfo defines two message types, T_DISC_REQ and T_DISC_REPLY, whose

values are 0x000D and 0x000E, respectively.

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 30

9.5. Reply Type Registry

IANA has created the "CCNx Reply Types" registry and allocated the reply types. The registration

procedure is "RFC Required" . The Type value is 2 octets. The range is 0x0000-0xFFFF.

As shown in Table 7, CCNinfo defines three reply types, T_DISC_CONTENT,

T_DISC_CONTENT_PUBLISHER, and T_ORG, whose values are 0x0000, 0x0001, and 0x0FFF,

respectively.

[RFC8126]

10. Security Considerations

This section addresses some of the security considerations.

10.1. Policy-Based Information Provisioning for Request

Although CCNinfo gives excellent troubleshooting cues, some network administrators or

operators may not want to disclose everything about their network to the public or may wish to

securely transmit private information to specific members of their networks. CCNinfo provides

policy-based information provisioning, thereby allowing network administrators to specify their

response policy for each router.

The access policy regarding "who is allowed to retrieve" and/or "what kind of cache information"

can be defined for each router. For the former type of access policy, routers with the specified

content examine the signature enclosed in the Request message and decide whether they

should notify the content information in the Reply. If the routers decide to not notify the content

information, they send the CCNinfo Reply with the ReturnCode of ADMIN_PROHIB without

appending any Reply block or sub-block TLVs. For the latter type of policy, the permission,

whether (1) All (all cache information is disclosed), (2) Partial (cache information with a

particular name prefix can (or cannot) be disclosed), or (3) Deny (no cache information is

disclosed), is defined at the routers.

In contrast, we entail that each router does not disrupt the forwarding of CCNinfo Request and

Reply messages. When a Request message is received, the router insert the Report block

if the ReturnCode is NO_ERROR. Here, according to the policy configuration, the Node Identifier

field in the Report block be null (i.e., all-zeros), but the Request Arrival Time field

 be null. Finally, the router forward the Request message to the upstream router

toward the content forwarder if the ReturnCode is kept with NO_ERROR.

MAY

MUST

SHOULD

MAY SHOULD

NOT SHOULD

10.2. Filtering CCNinfo Users Located in Invalid Networks

A router support an access control mechanism to filter out Requests from invalid CCNinfo

users. To accomplish this, invalid networks (or domains) could, for example, be configured via a

list of allowed or disallowed networks (as observed in Section 7.3). If a Request is received from a

disallowed network (according to the node identifier in the Request block), the Request

 be processed and the Reply with the ReturnCode of INFO_HIDDEN be used to note

that. The router , however, perform rate-limited logging of such events.

MAY

MUST

NOT SHOULD

MAY

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 31

10.3. Topology Discovery

CCNinfo can be used to discover actively used topologies. If a network topology is not disclosed,

CCNinfo Requests be restricted at the border of the domain using the ADMIN_PROHIB

return code.

10.4. Characteristics of Content

CCNinfo can be used to discover the type of content being sent by publishers. If this information

is a secret, CCNinfo Requests be restricted at the border of the domain, using the

ADMIN_PROHIB return code.

SHOULD

SHOULD

10.5. Computational Attacks

CCNinfo may impose heavy tasks at content forwarders because it makes content forwarders

seek their internal cache states reported in the Reply messages whenever they form the Reply

messages. The current CCNinfo specification allows to return null values for several fields, such

as First/Last Seqnum or Elapsed Cache Time fields in the Reply sub-block. As mentioned in

Section 3.2.1.1, these values be null. This means that the content forwarder cannot only hide

these values owing to privacy and security policies but also skip the implementations of the

complex functions to report these values.

MAY

10.6. Longer or Shorter CCNinfo Reply Timeout

Routers can configure CCNinfo Reply Timeout (Section 7.1), which is the allowable timeout value

to keep the PIT entry. If routers configure a longer timeout value, there may be an attractive

attack vector against the PIT memory. Moreover, especially when the full discovery request

option (Section 5.3) is specified for the CCNinfo Request, several Reply messages may be returned

and cause a response storm. (See Section 10.8 for rate-limiting to avoid the storm). To avoid DoS

attacks, routers configure the timeout value, which is shorter than the user-configured

CCNinfo timeout value. However, if it is too short, the Request may be timed out and the CCNinfo

user does not receive all Replies; they only retrieve the partial path information (i.e., information

about a part of the tree).

There may be a way to enable incremental exploration (i.e., to explore the part of the tree that

was not explored by the previous operation); however, discussing such mechanisms is out of

scope of this document.

MAY

10.7. Limiting Request Rates

A router rate-limit CCNinfo Requests by ignoring some of the consecutive messages. The

router randomly ignore the received messages to minimize the processing overhead, i.e., to

keep fairness in processing requests or to prevent traffic amplification. In such a case, no error

message is returned. The rate limit function is left to the router's implementation.

MAY

MAY

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 32

[RFC2119]

[RFC8126]

[RFC8174]

[RFC8569]

[RFC8609]

[Cefore]

11. References

11.1. Normative References

, , ,

, , March 1997,

.

, , and ,

, , , , June

2017, .

, ,

, , , May 2017,

.

, , and ,

, , , July 2019,

.

, , and ,

, , , July 2019,

.

11.2. Informative References

, , , and ,

,

,

, September 2019, .

10.8. Limiting Reply Rates

CCNinfo supporting multipath forwarding may result in one Request returning multiple Reply

messages. To prevent abuse, the routers in the traced path need to rate-limit the Replies. In

such a case, no error message is returned. The rate limit function is left to the router's

implementation.

MAY

10.9. Adjacency Verification

It is assumed that the CCNinfo Request and Reply messages are forwarded by adjacent neighbor

nodes or routers. The CCNx message format or semantics do not define a secure way to verify the

node and/or router adjacency, while a hop-by-hop authentication such as provides a

possible method for an adjacency verification and defines the corresponding message format for

adjacency verification as well as the router behaviors. CCNinfo use a similar method for

node adjacency verification.

[DCAuth]

MAY

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Mosko, M. Solis, I. C. Wood "Content-Centric Networking (CCNx)

Semantics" RFC 8569 DOI 10.17487/RFC8569 <https://www.rfc-

editor.org/info/rfc8569>

Mosko, M. Solis, I. C. Wood "Content-Centric Networking (CCNx) Messages

in TLV Format" RFC 8609 DOI 10.17487/RFC8609 <https://www.rfc-

editor.org/info/rfc8609>

Asaeda, H. Ooka, A. Matsuzono, K. R. Li "Cefore: Software Platform

Enabling Content-Centric Networking and Beyond" IEICE Transaction on

Communications, Volume E102-B, Issue 9, pp. 1792-1803 DOI 10.1587/transcom.

2018EII0001 <https://doi.org/10.1587/transcom.2018EII0001>

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 33

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8569
https://www.rfc-editor.org/info/rfc8569
https://www.rfc-editor.org/info/rfc8609
https://www.rfc-editor.org/info/rfc8609
https://doi.org/10.1587/transcom.2018EII0001

[Cefore-site]

[CONSEC-CACHING]

[Contrace]

[DCAuth]

[ICN-PING]

[ICN-TRACEROUTE]

[RFC8487]

[RFC8793]

, .

, , , and ,

,

, , May 2018,

.

, , and ,

,

, , March 2015,

.

, , and ,

,

, , October

2018, .

, , , , and ,

, ,

, 16 October 2022,

.

, , , , and ,

, ,

, 16 October 2022,

.

, , and ,

, , , October 2018,

.

, , , , , and ,

, , ,

June 2020, .

"Cefore" <https://cefore.net/>

Li, R. Matsuzono, K. Asaeda, H. X. Fu "Consecutive Caching and

Adaptive Retrieval for In-Network Big Data Sharing" Proc. IEEE ICC, Kansas City,

MO, USA DOI 10.1109/ICC.2018.8422233 <https://doi.org/10.1109/ICC.

2018.8422233>

Asaeda, H. Matsuzono, K. T. Turletti "Contrace: A tool for measuring and

tracing content-centric networks" IEEE Communications Magazine, Vol. 53, No.

3, pp. 182-188 DOI 10.1109/MCOM.2015.7060502 <https://doi.org/

10.1109/MCOM.2015.7060502>

Li, R. Asaeda, H. J. Wu "DCAuth: Data-Centric Authentication for Secure In-

Network Big-Data Retrieval" IEEE Transactions on Network Science and

Engineering, Vol. 7, No. 1, pp. 15-27 DOI 10.1109/TNSE.2018.2872049

<https://doi.org/10.1109/TNSE.2018.2872049>

Mastorakis, S. Oran, D. R. Gibson, J. Moiseenko, I. R. Droms "ICN Ping

Protocol Specification" Work in Progress Internet-Draft, draft-irtf-icnrg-

icnping-07 <https://datatracker.ietf.org/doc/html/draft-irtf-

icnrg-icnping-07>

Mastorakis, S. Oran, D. R. Moiseenko, I. Gibson, J. R. Droms "ICN

Traceroute Protocol Specification" Work in Progress Internet-Draft, draft-irtf-

icnrg-icntraceroute-07 <https://datatracker.ietf.org/doc/html/

draft-irtf-icnrg-icntraceroute-07>

Asaeda, H. Meyer, K. W. Lee, Ed. "Mtrace Version 2: Traceroute Facility for

IP Multicast" RFC 8487 DOI 10.17487/RFC8487 <https://www.rfc-

editor.org/info/rfc8487>

Wissingh, B. Wood, C. Afanasyev, A. Zhang, L. Oran, D. C. Tschudin

"Information-Centric Networking (ICN): Content-Centric Networking (CCNx) and

Named Data Networking (NDN) Terminology" RFC 8793 DOI 10.17487/RFC8793

<https://www.rfc-editor.org/info/rfc8793>

Appendix A. ccninfo Command and Options

CCNinfo is implemented in Cefore . The command invoked by the CCNinfo

user (e.g., consumer) is named "ccninfo". The ccninfo command sends the Request message and

receives the Reply message(s). There are several options that can be specified with ccninfo, while

the content name prefix (e.g., ccnx:/news/today) is the mandatory parameter.

The usage of the ccninfo command is as follows:

[Cefore] [Cefore-site]

ccninfo [-c] [-f] [-o] [-V] [-r hop_count] [-s hop_count]
 [-v algorithm] name_prefix

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 34

https://cefore.net/
https://doi.org/10.1109/ICC.2018.8422233
https://doi.org/10.1109/ICC.2018.8422233
https://doi.org/10.1109/MCOM.2015.7060502
https://doi.org/10.1109/MCOM.2015.7060502
https://doi.org/10.1109/TNSE.2018.2872049
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icnping-07
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icnping-07
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icntraceroute-07
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icntraceroute-07
https://www.rfc-editor.org/info/rfc8487
https://www.rfc-editor.org/info/rfc8487
https://www.rfc-editor.org/info/rfc8793

Acknowledgements

The authors would like to thank , , , ,

, , and for their valuable comments and suggestions

on this document.

name_prefix:

The prefix name of content (e.g., ccnx:/news/today) or exact name of content (e.g., ccnx:/news/

today/Chunk=10) the CCNinfo user wants to trace.

c option:

This option can be specified if a CCNinfo user needs the cache information as well as the

routing path information for the specified content/cache and RTT between the CCNinfo user

and content forwarder.

f option:

This option enables the "full discovery request"; routers send CCNinfo Requests to multiple

upstream faces based on their FIBs simultaneously. The CCNinfo user can then trace all

possible forwarding paths.

o option:

This option enables the tracing of the path to the content publisher. Each router along the

path to the publisher inserts each Report block and forwards the Request message. It does not

send Reply even if it caches the specified content. FHR that attaches the publisher (who has

the complete set of content and is not a caching router) sends the Reply message.

V option:

This option requests the Reply sender to validate the Reply message with the Reply sender's

signature. The Reply message will then include the CCNx ValidationPayload TLV. The

validation algorithm is selected by the Reply sender.

r option:

The number of traced routers. This value is set in the "HopLimit" field located in the fixed

header of the Request. For example, when the CCNinfo user invokes the ccninfo command

with this option, such as "-r 3", only three routers along the path examine their path and

cache information.

s option:

The number of skipped routers. This value is set in the "SkipHop" field located in the Request

block TLV. For example, when the CCNinfo user invokes the ccninfo command with this

option, such as "-s 3", three upstream routers along the path only forward the Request

message but do not append their Report blocks in the hop-by-hop header and do not send

Reply messages despite having the corresponding cache.

v option:

This option enables the CCNinfo user to validate the Request message with their signature.

The Request message will include the CCNx ValidationPayload TLV. The validation algorithm

is specified by the CCNinfo user.

Jérôme François Erik Kline Spyridon Mastorakis Paulo Mendes

Ilya Moiseenko David Oran Thierry Turletti

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 35

Authors' Addresses

Hitoshi Asaeda

National Institute of Information and Communications

Technology

, 4-2-1 Nukui-Kitamachi, Koganei Tokyo

184-8795

Japan

 asaeda@nict.go.jp Email:

Atsushi Ooka

National Institute of Information and Communications

Technology

, 4-2-1 Nukui-Kitamachi, Koganei Tokyo

184-8795

Japan

 a-ooka@nict.go.jp Email:

Xun Shao

Toyohashi University of Technology

, 1-1 Hibarigaoka Tempaku-cho, Toyohashi Aichi

441-8580

Japan

 shao.xun.ls@tut.jp Email:

RFC 9344 CCNinfo February 2023

Asaeda, et al. Experimental Page 36

mailto:asaeda@nict.go.jp
mailto:a-ooka@nict.go.jp
mailto:shao.xun.ls@tut.jp

	RFC 9344
	CCNinfo: Discovering Content and Network Information in Content-Centric Networks
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. CCNinfo as an Experimental Tool

	2. Terminology
	2.1. Definitions

	3. CCNinfo Message Formats
	3.1. Request Message
	3.1.1. Request Header Block and Request Block
	3.1.2. Report Block TLV
	3.1.3. Content Name Specification

	3.2. Reply Message
	3.2.1. Reply Block TLV
	3.2.1.1. Reply Sub-Block TLV

	4. CCNinfo User Behavior
	4.1. Sending CCNinfo Request
	4.1.1. Routing Path Information
	4.1.2. In-Network Cache Information

	4.2. Receiving CCNinfo Reply

	5. Router Behavior
	5.1. User and Neighbor Verification
	5.2. Receiving CCNinfo Request
	5.3. Forwarding CCNinfo Request
	5.3.1. Regular Request
	5.3.2. Full Discovery Request

	5.4. Sending CCNinfo Reply
	5.5. Forwarding CCNinfo Reply
	5.6. PIT Entry Management for Multipath Support

	6. CCNinfo Termination
	6.1. Arriving at First-Hop Router
	6.2. Arriving at Router Having Cache
	6.3. Arriving at Last Router
	6.4. Invalid Request
	6.5. No Route
	6.6. No Information
	6.7. No Space
	6.8. Fatal Error
	6.9. CCNinfo Reply Timeout
	6.10. Non-Supported Node
	6.11. Administratively Prohibited

	7. Configurations
	7.1. CCNinfo Reply Timeout
	7.2. HopLimit in Fixed Header
	7.3. Access Control

	8. Diagnosis and Analysis
	8.1. Number of Hops and RTT
	8.2. Caching Router Identification
	8.3. TTL or Hop Limit
	8.4. Time Delay
	8.5. Path Stretch
	8.6. Cache Hit Probability

	9. IANA Considerations
	9.1. Packet Type Registry
	9.2. Top-Level Type Registry
	9.3. Hop-by-Hop Type Registry
	9.4. Message Type Registry
	9.5. Reply Type Registry

	10. Security Considerations
	10.1. Policy-Based Information Provisioning for Request
	10.2. Filtering CCNinfo Users Located in Invalid Networks
	10.3. Topology Discovery
	10.4. Characteristics of Content
	10.5. Computational Attacks
	10.6. Longer or Shorter CCNinfo Reply Timeout
	10.7. Limiting Request Rates
	10.8. Limiting Reply Rates
	10.9. Adjacency Verification

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. ccninfo Command and Options
	Acknowledgements
	Authors' Addresses

