
RFC 9621
Architecture and Requirements for Transport
Services

Abstract
This document describes an architecture that exposes transport protocol features to applications
for network communication. The Transport Services Application Programming Interface (API) is
based on an asynchronous, event-driven interaction pattern. This API uses Messages for
representing data transfer to applications and describes how a Transport Services
Implementation can use multiple IP addresses, multiple protocols, and multiple paths and can
provide multiple application streams. This document provides the architecture and
requirements. It defines common terminology and concepts to be used in definitions of a
Transport Services API and a Transport Services Implementation.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9621
Standards Track
January 2025
2070-1721
T. Pauly, Ed.
Apple Inc.

B. Trammell, Ed.
Google Switzerland GmbH

A. Brunstrom
Karlstad University

G. Fairhurst
University of Aberdeen

C. S. Perkins
University of Glasgow

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9621

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

Pauly, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9621
https://www.rfc-editor.org/info/rfc9621

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Background

1.2. Overview

1.3. Specification of Requirements

1.4. Glossary of Key Terms

2. API Model

2.1. Event-Driven API

2.2. Data Transfer Using Messages

2.3. Flexible Implementation

2.4. Coexistence

3. API and Implementation Requirements

3.1. Provide Common APIs for Common Features

3.2. Allow Access to Specialized Features

3.3. Select Between Equivalent Protocol Stacks

3.4. Maintain Interoperability

3.5. Support Monitoring

4. Transport Services Architecture and Concepts

4.1. Transport Services API Concepts

4.1.1. Endpoint Objects

4.1.2. Connections and Related Objects

4.1.3. Preestablishment

4.1.4. Establishment Actions

4.1.5. Data Transfer Objects and Actions

4.1.6. Event Handling

3

4

5

5

5

8

9

10

11

11

12

12

13

14

15

15

15

17

18

19

20

20

21

22

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

4.1.7. Termination Actions

4.1.8. Connection Groups

4.2. Transport Services Implementation

4.2.1. Candidate Gathering

4.2.2. Candidate Racing

4.2.3. Separating Connection Contexts

5. IANA Considerations

6. Security and Privacy Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Authors' Addresses

22

23

23

24

25

25

25

26

26

26

27

28

29

1. Introduction
Many Application Programming Interfaces (APIs) to provide transport interfaces to networks
have been deployed, perhaps the most widely known and imitated being the Socket interface
(Socket API) . The naming of objects and functions across these APIs is not consistent and
varies, depending on the protocol being used. For example, the concept of sending and receiving
streams of data is the same for both an unencrypted Transmission Control Protocol (TCP) stream
and operating on an encrypted Transport Layer Security (TLS) stream over TCP, but
applications cannot use the same socket send() and recv() calls on top of both kinds of
connections. Similarly, terminology for the implementation of transport protocols varies based
on the context of the protocols themselves: terms such as "flow", "stream", "message", and
"connection" can take on many different meanings. This variety can lead to confusion when
trying to understand the similarities and differences between protocols and how applications
can use them effectively.

The goal of the Transport Services System architecture is to provide a flexible and reusable
system with a common interface for transport protocols. An application uses the Transport
Services System through an abstract Connection (we use capitalization to distinguish these from
the underlying connections of, for example, TCP). This provides flexible Connection
establishment allowing an application to request or require a set of Properties.

[POSIX]

[RFC8446]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 3

As applications adopt this interface, they will benefit from a wide set of transport features that
can evolve over time and will ensure that the system providing the interface can optimize its
behavior based on the application requirements and network conditions, without requiring
changes to the applications. This flexibility enables faster deployment of new features and
protocols.

This architecture can also support applications by offering racing mechanisms (attempting
multiple IP addresses, protocols, or network paths in parallel), which otherwise need to be
implemented in each application separately (see Section 4.2.2). Racing selects one or more
candidates, each with equivalent Protocol Stacks that are used to identify an optimal
combination of a transport protocol instance such as TCP, UDP, or another transport, together
with configuration of parameters and interfaces. A Connection represents an object that, once
established, can be used to send and receive Messages. A Connection can also be created from
another Connection, by cloning, and then forms a part of a Connection Group whose Connections
share Properties.

This document was developed in parallel with the specification of the Transport Services API
 and implementation guidelines . Although following the Transport Services

Architecture does not require all APIs and implementations to be identical, a common minimal
set of features represented in a consistent fashion will enable applications to be easily ported
from one implementation of the Transport Services System to another.

[RFC9622] [RFC9623]

1.1. Background
The architecture of the Transport Services System is based on the survey of services provided by
IETF transport protocols and congestion control mechanisms and the distilled minimal
set of the features offered by transport protocols . These documents identified common
features and patterns across all transport protocols developed thus far in the IETF.

Since transport security is an increasingly relevant aspect of using transport protocols on the
Internet, this document also considers the impact of transport security protocols on the feature
set exposed by Transport Services .

One of the key insights to come from identifying the minimal set of features provided by
transport protocols was that features either (1) require application interaction and
guidance (referred to in that document as Functional or Optimizing Features) or (2) can be
handled automatically by an implementation of the Transport Services System (referred to as
Automatable Features). Among the identified Functional and Optimizing Features, some are
common across all or nearly all transport protocols, while others present features that, if
specified, would only be useful with a subset of protocols, but would not harm the functionality
of other protocols. For example, some protocols can deliver messages more quickly for
applications that do not require messages to arrive in the order in which they were sent. This
functionality needs to be explicitly allowed by the application, since reordering messages would
be undesirable in many cases.

[RFC8095]
[RFC8923]

[RFC8922]

[RFC8923]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 4

1.2. Overview
The following sections describe the Transport Services System:

Section 2 describes how the Transport Services API model differs from that of socket-based
APIs. Specifically, it offers asynchronous event-driven interaction, the use of Messages for
data transfer, and the flexibility to use different transport protocols and paths without
requiring major changes to the application.
Section 3 explains the fundamental requirements for a Transport Services System. These
principles are intended to make sure that transport protocols can continue to be enhanced
and evolve without requiring significant changes by application developers.
Section 4 presents the Transport Services Implementation and defines the concepts that are
used by the API and described in the implementation guidelines . This
introduces the Preconnection, which allows applications to configure Connection Properties.

•

•

•
[RFC9622] [RFC9623]

1.3. Specification of Requirements
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Application:

Cached State:

Candidate Path:

Candidate Protocol Stack:

Client:

Clone:

1.4. Glossary of Key Terms
This subsection provides a glossary of key terms related to the Transport Services Architecture. It
provides a short description of key terms that are defined later in this document.

An entity that uses the transport layer for end-to-end delivery of data across the
network .

The state and history that the Transport Services Implementation keeps for each
set of the associated Endpoints that have been used previously.

One path that is available to an application and conforms to the Selection
Properties and System Policy during racing.

One Protocol Stack that can be used by an application for a
Connection during racing.

The peer responsible for initiating a Connection.

A Connection that was created from another Connection and that forms a part of a
Connection Group.

[RFC8095]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 5

Connection:

Connection Context:

Connection Group:

Connection Property:

Endpoint:

Endpoint Identifier:

Equivalent Protocol Stacks:

Event:

Framer:

Local Endpoint:

Local Endpoint Identifier:

Message:

Message Property:

Parameter:

Path:

Peer:

Preconnection:

Preference:

Primitive:

Shared state of two or more Endpoints that persists across Messages that are
transmitted and received between these Endpoints . When this document and other
Transport Services documents use the capitalized "Connection" term, it refers to a Connection
object that is being offered by the Transport Services System, as opposed to more generic uses
of the word "connection".

A set of stored Properties across Connections, such as cached protocol
state, cached path state, and heuristics, which can include one or more Connection Groups.

A set of Connections that share Properties and caches.

A Transport Property that controls per-Connection behavior of a
Transport Services Implementation.

An entity that communicates with one or more other Endpoints using a transport
protocol.

An identifier that specifies one side of a Connection (local or remote), such
as a hostname or URL.

Protocol Stacks that can be safely swapped or raced in parallel
during establishment of a Connection.

A primitive that is invoked by an Endpoint .

A data translation layer that can be added to a Connection to define how application-
layer Messages are transmitted over a Protocol Stack.

The local Endpoint.

A representation of the application's identifier for itself that it uses
for a Connection.

A unit of data that can be transferred between two Endpoints over a Connection.

A property that can be used to specify details about Message transmission or
obtain details about the transmission after receiving a Message.

A value passed between an application and a transport protocol by a primitive
.

A representation of an available set of Properties that a Local Endpoint can use to
communicate with a Remote Endpoint.

An Endpoint application party to a Connection.

An object that represents a Connection that has not yet been established.

A preference for prohibiting, avoiding, ignoring, preferring, or requiring a specific
transport feature.

A function call that is used to locally communicate between an application and an
Endpoint, which is related to one or more transport features .

[RFC8303]

[RFC8303]

[RFC8303]

[RFC8303]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 6

Protocol Instance:

Protocol Stack:

Racing:

Remote Endpoint:

Remote Endpoint Identifier:

Rendezvous:

Security Parameters:

Selection Property:

Server:

Socket:

System Policy:

Transport Feature:

Transport Property:

Transport Service:

Transport Services API:

Transport Services Implementation:

Transport Services System:

A single instance of one protocol, including any state necessary to establish
connectivity or send and receive Messages.

A set of protocol instances that are used together to establish connectivity or
send and receive Messages.

The attempt to select between multiple Protocol Stacks based on the Selection and
Connection Properties communicated by the application, along with any Security Parameters.

The peer that a Local Endpoint can communicate with when a Connection is
established.

A representation of the application's identifier for a peer that can
participate in establishing a Connection.

The action of establishing a peer-to-peer Connection with a Remote Endpoint.

Parameters that define an application's requirements for authentication
and encryption on a Connection.

A Transport Property that can be set to influence the selection of paths
between the Local and Remote Endpoints.

The peer responsible for responding to a Connection initiation.

The combination of a destination IP address and a destination port number .

The input from an operating system or other global preferences that can
constrain or influence how an implementation will gather Candidate Paths and Candidate
Protocol Stacks and race the candidates during establishment of a Connection.

A specific end-to-end feature that the transport layer provides to an
application.

A property of a transport protocol and the services it provides .

A set of transport features, not associated with any given framing protocol,
that provides a complete service to an application.

The abstract interface to a Transport Services
Implementation .

All objects and protocol instances used internally to a
system or library to implement the functionality needed to provide a transport service across
a network, as required by the abstract interface.

The Transport Services Implementation and the Transport Services
API.

[RFC8303]

[RFC8095]

[RFC9622]
[RFC9623]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 7

2. API Model
The model of using sockets can be represented as follows (see Figure 1):

Applications create connections and transfer data using the Socket API.
The Socket API provides the interface to the implementations of TCP and UDP (typically
implemented in the system's kernel).
TCP and UDP in the kernel send and receive data over the available network-layer interfaces.
Sockets are bound directly to transport-layer and network-layer addresses, obtained via a
separate resolution step, usually performed by a system-provided DNS stub resolver.

The architecture of the Transport Services System is an evolution of this general model of
interaction. It both modernizes the API presented to applications by the transport layer and
enriches the capabilities of the Transport Services Implementation below this API.

The Transport Services API defines the interface for an application to create
Connections and transfer data. It combines interfaces for multiple interaction patterns into a
unified whole (see Figure 2). This offers generic functions and also the protocol-specific
mappings for TCP, UDP, UDP-Lite, and other protocol layers. These mappings are extensible.
Future documents could define similar mappings for new layers and for other transport
protocols, such as QUIC .

•
•

•
•

Figure 1: Socket API Model

+---+
| Application |
+---+
 | | |
 +------------+ +------------+ +--------------+
 | DNS Stub | | Stream API | | Datagram API |
 | Resolver | +------------+ +--------------+
 +------------+ | |
 +---------------------------------+
 | TCP UDP |
 | Kernel Networking Stack |
 +---------------------------------+
 |
+---+
| Network-Layer Interface |
+---+

[RFC9622]

[RFC9000]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 8

By combining name resolution with Connection establishment and data transfer in a single API,
it allows for more flexible implementations to provide path and transport protocol agility on the
application's behalf.

The Transport Services Implementation is the component of the Transport Services
System that implements the transport-layer protocols and other functions needed to send and
receive data. It is responsible for mapping the API to a specific available transport Protocol Stack
and managing the available network interfaces and paths.

There are key differences between the architecture of the Transport Services System and the
architecture of the Socket API. The API of the Transport Services System:

is asynchronous and event-driven;
uses Messages for representing data transfer to applications;
describes how a Transport Services Implementation can resolve Endpoint Identifiers to use
multiple IP addresses, multiple protocols, and multiple paths and to provide multiple
application streams.

Figure 2: Transport Services API Model

+---+
| Application |
+---+
 |
+---+
| Transport Services API |
+---+
 |
+---+
| Transport Services Implementation |
| (Using DNS, UDP, TCP, SCTP, DCCP, TLS, QUIC, etc.) |
+---+
 |
+---+
| Network-Layer Interface |
+---+

[RFC9623]

•
•
•

2.1. Event-Driven API
Originally, the Socket API presented a blocking interface for establishing connections and
transferring data. However, most modern applications interact with the network
asynchronously. Emulation of an asynchronous interface using the Socket API can use a try-and-
fail model: if the application wants to read but data has not yet been received from the peer, the
call to read will fail. The application then waits and can try again later.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 9

In contrast to the Socket API, all interactions using the Transport Services API are expected to be
asynchronous. The API is defined around an event-driven model (see Section 4.1.6), which
models this asynchronous interaction. Other forms of asynchronous communication could also
be available to applications, depending on the platform implementing the interface.

For example, when an application that uses the Transport Services API wants to receive data, it
issues an asynchronous call to receive new data from the Connection. When delivered data
becomes available, this data is delivered to the application using asynchronous events that
contain the data. Error handling is also asynchronous, resulting in asynchronous error events.

This API also delivers events regarding the lifetime of a connection and changes in the available
network links, which were not previously made explicit in the Socket API.

Using asynchronous events allows for a more natural interaction model when establishing
connections and transferring data. Events in time more closely reflect the nature of interactions
over networks, as opposed to how the Socket API represents network resources as file system
objects that may be temporarily unavailable.

Separate from events, callbacks are also provided for asynchronous interactions with the
Transport Services API that are not directly related to events on the network or network
interfaces.

2.2. Data Transfer Using Messages
The Socket API provides a message interface for datagram protocols like UDP but provides an
unstructured stream abstraction for TCP. While TCP has the ability to send and receive data as a
byte-stream, most applications need to interpret structure within this byte-stream. For example,
HTTP/1.1 uses character delimiters to segment messages over a byte-stream ; TLS
record headers carry a version, content type, and length ; and HTTP/2 uses frames to
segment its headers and bodies .

The Transport Services API represents data as Messages, so that it more closely matches the way
applications use the network. A Message-based abstraction provides many benefits, such as:

providing additional information to the Protocol Stack;
the ability to associate deadlines with Messages, for applications that care about timing;
the ability to control reliability, which Messages to retransmit when there is packet loss, and
how best to make use of the data that arrived;
the ability to automatically assign Messages and connections to underlying transport
connections to utilize multistreaming and create Pooled Connections.

Allowing applications to interact with Messages is backward-compatible with existing protocols
and APIs because it does not change the wire format of any protocol. Instead, it provides the
Protocol Stack with additional information to allow it to make better use of modern transport
protocols, while simplifying the application's role in parsing data. For protocols that inherently
use a streaming abstraction, Framers (Section 4.1.5) bridge the gap between the two abstractions.

[RFC9112]
[RFC8446]

[RFC9113]

•
•
•

•

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 10

2.3. Flexible Implementation
The Socket API for protocols like TCP is generally limited to connecting to a single address over a
single interface (IP source address). It also presents a single stream to the application. Software
layers built upon this API often propagate this limitation of a single-address single-stream model.
The Transport Services Architecture is designed to:

handle multiple candidate endpoints, protocols, and paths;
support candidate protocol racing to select the most optimal stack in each situation;
support multipath and multistreaming protocols;
provide state caching and application control over it.

A Transport Services Implementation is intended to be flexible at Connection establishment time,
considering many different options and trying to select the most optimal combinations by racing
them and measuring the results (see Sections 4.2.1 and 4.2.2). This requires applications to
specify identifiers for the Local and Remote Endpoint that are at a higher level than IP addresses,
such as a hostname or URL. These identifiers are used by a Transport Services Implementation
for resolution, path selection, and racing. An implementation can further implement fallback
mechanisms if connection establishment for one protocol fails or performance is determined to
be unsatisfactory.

Information used in Connection establishment (e.g., cryptographic resumption tokens,
information about usability of certain protocols on the path, results of racing in previous
connections) is cached in the Transport Services Implementation. Applications have control over
whether this information is used for a specific establishment, in order to allow trade-offs
between efficiency and linkability.

Flexibility after Connection establishment is also important. Transport protocols that can migrate
between multiple network-layer interfaces need to be able to process and react to interface
changes. Protocols that support multiple application-layer streams need to support initiating and
receiving new streams using existing connections.

•
•
•
•

2.4. Coexistence
While the architecture of the Transport Services System is designed as an enhanced replacement
for the Socket API, it need not replace it entirely on a system or platform; indeed, coexistence has
been recommended for incremental deployability . The architecture is therefore
designed such that it can run alongside (or, indeed, on top of) an existing Socket API
implementation; only applications built on the Transport Services API are managed by the
system's Transport Services Implementation.

[RFC8170]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 11

3. API and Implementation Requirements
One goal of the architecture is to redefine the interface between applications and transports in a
way that allows the transport layer to evolve and improve without fundamentally changing the
contract with the application. This requires careful consideration of how to expose the
capabilities of protocols. The architecture also encompasses system policies that can influence
and inform how transport protocols use a network path or interface.

There are several ways the Transport Services System can offer flexibility to an application. It
can:

provide access to transport protocols and protocol features;
use these protocols across multiple paths that could have different performance and
functional characteristics;
communicate with different remote systems to optimize performance, robustness to failure,
or some other metric.

Beyond these, if the Transport Services API remains the same over time, new protocols and
features can be added to the Transport Services Implementation without requiring changes in
applications for adoption. Similarly, this can provide a common basis for utilizing information
about a network path or interface, enabling evolution below the transport layer.

The normative requirements described in this section allow Transport Services APIs and
Transport Services Implementations to provide this functionality without causing
incompatibility or introducing security vulnerabilities.

•
•

•

3.1. Provide Common APIs for Common Features
Any functionality that is common across multiple transport protocols be made
accessible through a unified set of calls using the Transport Services API. As a baseline, any
Transport Services API allow access to the minimal set of features offered by transport
protocols . If that minimal set is updated or expanded in the future, the Transport
Services API ought to be extended to match.

An application can specify constraints and preferences for the protocols, features, and network
interfaces it will use via Properties. Properties are used by an application to declare its
preferences for how the transport service should operate at each stage in the lifetime of a
connection. Transport Properties are subdivided into the following:

Selection Properties, which specify which paths and Protocol Stacks can be used and are
preferred by the application;
Connection Properties, which inform decisions made during Connection establishment and
fine-tune the established connection; and
Message Properties, which can be set on individual Messages.

SHOULD

SHOULD
[RFC8923]

•

•

•

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 12

It is that the Transport Services API offer Properties that are common to multiple
transport protocols. This enables a Transport Services System to appropriately select between
protocols that offer equivalent features. Similarly, it is that the Properties offered
by the Transport Services API be applicable to a variety of network-layer interfaces and paths, to
permit racing of different network paths without affecting the applications using the API. Each is
expected to have a default value.

It is that the default values for Properties be selected to ensure correctness for
the widest set of applications, while providing the widest set of options for selection. For
example, since both applications that require reliability and those that do not require reliability
can function correctly when a protocol provides reliability, reliability ought to be enabled by
default. As another example, the default value for a Property regarding the selection of network
interfaces ought to permit as many interfaces as possible.

Applications using the Transport Services API need to be designed to be robust to the automated
selection provided by the Transport Services System. This automated selection is constrained by
the preferences expressed by the application and requires applications to explicitly set
Properties that define any necessary constraints on protocol, path, and interface selection.

RECOMMENDED

RECOMMENDED

RECOMMENDED

3.2. Allow Access to Specialized Features
There are applications that will need to control fine-grained details of transport protocols to
optimize their behavior and ensure compatibility with remote systems. It is therefore

 that the Transport Services API and the Transport Services Implementation
permit more specialized protocol features to be used.

Some specialized features could be needed by an application only when using a specific protocol
and not when using others. For example, if an application is using TCP, it could require control
over the User Timeout Option for TCP . Such features would not take effect for other
transport protocols. In such cases, the API ought to expose the features in such a way that they
take effect when a particular protocol is selected but do not imply that only that protocol could
be used. For example, if the API allows an application to specify a preference for using the User
Timeout Option, communication would not fail when a protocol such as UDP is selected.

Other specialized features, however, can also be strictly required by an application and thus
further constrain the set of protocols that can be used. For example, if an application requires
support for automatic handover or failover for a connection, only Protocol Stacks that provide
this feature are eligible to be used, e.g., Protocol Stacks that include a multipath protocol or a
protocol that supports connection migration. A Transport Services API needs to allow
applications to define such requirements and constrain the options available to a Transport
Services Implementation. Since such options are not part of the core/common features, it will
generally be simple for an application to modify its set of constraints and change the set of
allowable protocol features without changing the core implementation.

RECOMMENDED

[RFC5482]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 13

To control these specialized features, the application can declare its preference: whether the
presence of a specific feature is prohibited, should be avoided, can be ignored, is preferred, or is
required in the preestablishment phase. An implementation of a Transport Services API would
honor this preference and allow the application to query the availability of each specialized
feature after successful establishment.

3.3. Select Between Equivalent Protocol Stacks
A Transport Services Implementation can attempt to use, and select between, multiple Protocol
Stacks based on the Selection and Connection Properties communicated by the application, along
with any Security Parameters. The implementation can only attempt to use multiple Protocol
Stacks when they are "equivalent", which means that the stacks can provide the same Transport
Properties and interface expectations as requested by the application. Equivalent Protocol Stacks
can be safely swapped or raced in parallel (see Section 4.2.2) during Connection establishment.

The following two examples show non-equivalent Protocol Stacks:

If the application requires preservation of Message boundaries, a Protocol Stack that runs
UDP as the top-level interface to the application is not equivalent to a Protocol Stack that
runs TCP as the top-level interface. A UDP stack would allow an application to read out
Message boundaries based on datagrams sent from the remote system, whereas TCP does not
preserve Message boundaries on its own but needs a framing protocol on top to determine
Message boundaries.
If the application specifies that it requires reliable transmission of data, then a Protocol Stack
using UDP without any reliability layer on top would not be allowed to replace a Protocol
Stack using TCP.

The following example shows equivalent Protocol Stacks:

If the application does not require reliable transmission of data, then a Protocol Stack that
adds reliability could be regarded as an equivalent Protocol Stack as long as providing this
would not conflict with any other application-requested Properties.

A Transport Services Implementation can race different security protocols, e.g., if the System
Policy is explicitly configured to consider them equivalent. A Transport Services Implementation

 only race Protocol Stacks where the transport security protocols within the stacks are
identical. To ensure that security protocols are not incorrectly swapped, a Transport Services
Implementation only select Protocol Stacks that meet application requirements .
A Transport Services Implementation automatically fall back from secure protocols to
insecure protocols or fall back to weaker versions of secure protocols. A Transport Services
Implementation allow applications to explicitly specify which versions of a protocol ought
to be permitted, e.g., to allow a minimum version of TLS 1.2 if TLS 1.3 is not available.

A Transport Services Implementation specify security Properties relating to how the system
operates (e.g., requirements, prohibitions, and preferences for the use of DNS Security
Extensions (DNSSEC) or DNS over HTTPS (DoH)).

•

•

•

SHOULD

MUST [RFC8922]
MUST NOT

MAY

MAY

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 14

3.4. Maintain Interoperability
It is important to note that neither the Transport Services API nor the guidelines for
implementation of the Transport Services System define new protocols or protocol
capabilities that affect what is communicated across the network. A Transport Services System

 require that a peer on the other side of a connection use the same API or
implementation. A Transport Services Implementation acting as a connection initiator is able to
communicate with any existing Endpoint that implements the transport protocol(s) and all the
required Properties selected. Similarly, a Transport Services Implementation acting as a Listener
can receive connections for any protocol that is supported from an existing initiator that
implements the protocol, independently of whether or not the initiator uses the Transport
Services System.

A Transport Services Implementation makes decisions that select protocols and interfaces. In
normal use, a given version of a Transport Services System result in consistent protocol
and interface selection decisions for the same network conditions, given the same set of
Properties. This is intended to provide predictable outcomes to the application using the API.

[RFC9622]
[RFC9623]

MUST NOT

SHOULD

3.5. Support Monitoring
The Transport Services API increases the layer of abstraction for applications, and it enables
greater automation below the API. Such increased abstraction comes at the cost of increased
complexity when application programmers, users, or system administrators try to understand
why any issues and failures may be happening. A Transport Services System should therefore
offer monitoring functions that provide relevant debug and diagnostics information. For
example, such monitoring functions could indicate the protocol(s) in use, the number of open
connections per protocol, and any statistics that these protocols may offer.

4. Transport Services Architecture and Concepts
This section describes the architecture non-normatively and explains the operation of a
Transport Services Implementation. The concepts defined in this document are intended
primarily for use in the documents and specifications that describe the Transport Services
System. This includes the architecture, the Transport Services API, and the associated Transport
Services Implementation. While the specific terminology can be used in some implementations,
it is expected that there will remain a variety of terms used by running code.

The architecture divides the concepts for the Transport Services System into two categories:

API concepts, which are intended to be exposed to applications; and
System-implementation concepts, which are intended to be internally used by a Transport
Services Implementation.

The following diagram summarizes the top-level concepts in a Transport Services System and
how they relate to one another.

1.
2.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 15

The Transport Services Implementation includes the Cached State and System Policy.

The System Policy provides input from an operating system or other global preferences that can
constrain or influence how an implementation will gather Candidate Paths and Protocol Stacks
and race the candidates when establishing a Connection. As the details of System Policy
configuration and enforcement are largely dependent on the platform and implementation and
do not affect application-level interoperability, the Transport Services API does not
specify an interface for reading or writing System Policy.

The Cached State is the state and history that the Transport Services Implementation keeps for
each set of associated Endpoints that have previously been used. An application ought to
explicitly request any required or preferred Properties via the Transport Services API.

Figure 3: Concepts and Relationships in the Architecture of the Transport Services System

 +---+
 | Application |
 +-+----------------+------^-------+--------^----------+
 | | | | |
 pre- | data | events
 establishment | transfer | |
 | establishment | termination |
 | | | | |
 | +--v------v-------v+ |
 +-v-------------+ Connection(s) +-------+----------+
 | Transport +--------+---------+ |
 | Services | |
 | API | +-------------+ |
 +------------------------+--+ Framer(s) |-----------+
 | +-------------+
 +------------------------|----------------------------+
Transport			
System	+-----------------+		
Implementation		Cached	
		State	
(Candidate Gathering)	+-----------------+		
(Candidate Racing)	+-----------------+		
		System	
		Policy	
+----------v-----+ +-----------------+			
	Protocol		
 +-------------+ Stack(s) +----------------------+
 +-------+--------+
 V
+---+
| Network-Layer Interface |
+---+

[RFC9622]

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 16

4.1. Transport Services API Concepts
Fundamentally, a Transport Services API needs to provide Connection objects (Section 4.1.2) that
allow applications to establish communication and then send and receive data. These could be
exposed as handles or referenced objects, depending on the chosen programming language.

Beyond the Connection objects, there are several high-level groups of actions that any Transport
Services API needs to provide:

Preestablishment (Section 4.1.3) encompasses the Properties that an application can pass to
describe its intent, requirements, prohibitions, and preferences for its networking
operations. These Properties apply to multiple transport protocols, unless otherwise
specified. Properties specified during preestablishment can have a large impact on the rest of
the interface: they modify how establishment occurs, influence the expectations around data
transfer, and determine the set of events that will be supported.
Establishment (Section 4.1.4) focuses on the actions that an application takes on the
Connection objects to prepare for data transfer.
Data transfer (Section 4.1.5) consists of how an application represents the data to be sent and
received, the functions required to send and receive that data, and how the application is
notified of the status of its data transfer.
Event handling (Section 4.1.6) defines categories of notifications that an application can
receive during the lifetime of a Connection. Events also provide opportunities for the
application to interact with the underlying transport by querying state or updating
maintenance options.
Termination (Section 4.1.7) focuses on the methods by which data transmission is stopped
and connection state is torn down.

The diagram below provides a high-level view of the actions and events during the lifetime of a
Connection object. Note that some actions are alternatives (e.g., whether to initiate a connection
or listen for incoming connections), while others are optional (e.g., setting Connection and
Message Properties in preestablishment) or have been omitted for brevity and simplicity.

•

•

•

•

•

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 17

In this diagram, the lifetime of a Connection object is divided into three phases:
preestablishment, the Established state, and termination of a Connection.

Preestablishment is based around a Preconnection object containing various sub-objects that
describe the Properties and parameters of desired Connections (Local and Remote Endpoints,
Transport Properties, and Security Parameters). A Preconnection can be used to start listening
for inbound connections -- in which case a Listener object is created -- or can be used to establish
a new connection directly using Initiate (for outbound connections) or Rendezvous (for peer-
to-peer connections).

Once a Connection is in the Established state, an application can send and receive Message
objects and can receive state updates.

Closing or aborting a Connection, either locally or from the peer, can terminate a Connection.

Figure 4: The Lifetime of a Connection Object

 Preestablishment : Established : Termination
 ----------------- : ----------- : -----------
 : :
+-- Local Endpoint : Message :
+-- Remote Endpoint : Receive() | :
+-- Transport Properties : Send() | :
+-- Security Parameters : | :
| : | :
| InitiateWithSend() | Close() :
| +---------------+ Initiate() +-----+------+ Abort() :
+---+ Preconnection |------------->| Connection |-----------> Closed
 +---------------+ Rendezvous() +------------+ :
 Listen() | : | | :
 | : | v :
 v : | Connection :
 +----------+ : | Ready :
 | Listener |----------------------+ :
 +----------+ Connection Received :
 : :

Remote Endpoint Identifier:

4.1.1. Endpoint Objects

An Endpoint Identifier specifies one side of a transport connection. Endpoints can be Local
Endpoints or Remote Endpoints, and the Endpoint Identifiers can respectively represent an
identity that the application uses for the source or destination of a connection. An Endpoint
Identifier can be specified at various levels of abstraction. An Endpoint Identifier at a higher
level of abstraction (such as a hostname) can be resolved to more concrete identities (such as IP
addresses). A Remote Endpoint Identifier can also represent a multicast group or anycast
address. In the case of multicast, a multicast transport will be selected for communication.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 18

Local Endpoint Identifier:

The Remote Endpoint Identifier represents the application's identifier for a peer that can
participate in a transport connection, for example, the combination of a DNS name for the
peer and a service name/port.

The Local Endpoint Identifier represents the application's identifier
for itself that it uses for transport connections, for example, a local IP address and port.

Connection:

Preconnection:

Transport Properties:

Selection Properties (Section 4.1.3):

Connection Properties (Section 4.1.3):

Message Properties (Section 4.1.5):

4.1.2. Connections and Related Objects

A Connection object represents one or more active transport protocol instances
that can send and/or receive Messages between Local and Remote Endpoints. It is an
abstraction that represents the communication. The Connection object holds state pertaining
to the underlying transport protocol instances and any ongoing data transfers. For example,
an active Connection can represent a connection-oriented protocol such as TCP, or it can
represent a fully specified 5-tuple for a connectionless protocol such as UDP, where the
Connection remains an abstraction at the endpoints. It can also represent a pool of transport
protocol instances, e.g., a set of TCP and QUIC connections to equivalent endpoints, or a
stream of a multistreaming transport protocol instance. Connections can be created from a
Preconnection or by a Listener.

A Preconnection object is a representation of a Connection that has not yet been
established. It has state that describes parameters of the Connection: the Local Endpoint
Identifier from which that Connection will be established, the Remote Endpoint Identifier to
which it will connect, and Transport Properties that influence the paths and protocols a
Connection will use. A Preconnection can be either fully specified (representing a single
possible Connection) or partially specified (representing a family of possible Connections).
The Local Endpoint (Section 4.1.3) is required for a Preconnection used to Listen for
incoming Connections but is optional if it is used to Initiate a Connection. The Remote
Endpoint Identifier is required in a Preconnection that is used to Initiate a Connection but
is optional if it is used to Listen for incoming Connections. The Local Endpoint Identifier and
the Remote Endpoint Identifier are both required if a peer-to-peer Rendezvous is to occur
based on the Preconnection.

Transport Properties allow the application to express requirements,
prohibitions, and preferences and configure a Transport Services Implementation. There are
three kinds of Transport Properties:

Selection Properties can only be specified on a
Preconnection.

Connection Properties can be specified on a
Preconnection and changed on the Connection.

Message Properties can be specified as defaults on a
Preconnection or a Connection and can also be specified during data transfer to affect
specific Messages.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 19

Listener: A Listener object accepts incoming transport protocol connections from Remote
Endpoints and generates corresponding Connection objects. It is created from a
Preconnection object that specifies the type of incoming Connections it will accept.

Selection Properties:

Connection Properties:

Security Parameters:

4.1.3. Preestablishment

Selection Properties consist of the Properties that an application can set to
influence the selection of paths between the Local and Remote Endpoints, influence the
selection of transport protocols, or configure the behavior of generic transport protocol
features. These Properties can take the form of requirements, prohibitions, or preferences.
Examples of Properties that influence path selection include the interface type (such as a Wi-
Fi connection or a Cellular LTE connection), requirements around the largest Message that
can be sent, or preferences for throughput and latency. Examples of Properties that influence
protocol selection and configuration of transport protocol features include reliability,
multipath support, and support for TCP Fast Open.

Connection Properties are used to configure protocol-specific options
and control per-connection behavior of a Transport Services Implementation; for example, a
protocol-specific Connection Property can express that if TCP is used, the implementation
ought to use the User Timeout Option. Note that the presence of such a property does not
require that a specific protocol be used. In general, these Properties do not explicitly
determine the selection of paths or protocols but can be used by an implementation during
Connection establishment. Connection Properties are specified on a Preconnection prior to
Connection establishment and can be modified on the Connection later. Changes made to
Connection Properties after Connection establishment take effect on a best-effort basis.

Security Parameters define an application's requirements for
authentication and encryption on a Connection. They are used by transport security protocols
(such as those described in) to establish secure Connections. Examples of
parameters that can be set include local identities, private keys, supported cryptographic
algorithms, and requirements for validating trust of remote identities. Security Parameters
are primarily associated with a Preconnection object, but Properties related to identities can
be associated directly with Endpoints.

[RFC8922]

Initiate:

4.1.4. Establishment Actions

The primary action that an application can take to create a Connection to a Remote
Endpoint and prepare any required local or remote state to enable the transmission of
Messages. For some protocols, this will initiate a client-to-server-style handshake; for other
protocols, this will just establish local state (e.g., with connectionless protocols such as UDP).
The process of identifying options for connecting, such as resolution of the Remote Endpoint
Identifier, occurs in response to calling Initiate.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 20

Listen:

Rendezvous:

Enables a Listener to accept incoming connections. The Listener will then create
Connection objects as incoming connections are accepted (Section 4.1.6). Listeners by default
register with multiple paths, protocols, and Local Endpoints, unless constrained by Selection
Properties and/or the specified Local Endpoint Identifier(s). Connections can be accepted on
any of the available paths or endpoints.

The action of establishing a peer-to-peer connection with a Remote Endpoint. It
simultaneously attempts to initiate a connection to a Remote Endpoint while listening for an
incoming connection from that Endpoint. The process of identifying options for the
connection, such as resolution of the Remote Endpoint Identifier(s), occurs in response to
calling Rendezvous. As with Listeners, the set of local paths and endpoints is constrained by
Selection Properties. If successful, calling Rendezvous generates and asynchronously returns
a Connection object to represent the established peer-to-peer connection. The processes by
which connections are initiated during a Rendezvous action will depend on the set of Local
and Remote Endpoints configured on the Preconnection. For example, if the Local and Remote
Endpoints are TCP host candidates, then a TCP simultaneous open might be
performed. However, if the set of Local Endpoints includes server-reflexive candidates, such
as those provided by STUN (Session Traversal Utilities for NAT) , a Rendezvous
action will race candidates in the style of the ICE (Interactive Connectivity Establishment)
algorithm to perform NAT binding discovery and initiate a peer-to-peer connection.

[RFC9293]

[RFC8489]

[RFC8445]

Message:

Message Properties:

Send:

4.1.5. Data Transfer Objects and Actions

A Message object is a unit of data that can be represented as bytes that can be
transferred between two endpoints over a transport connection. The bytes within a Message
are assumed to be ordered. If an application does not care about the order in which a peer
receives two distinct spans of bytes, those spans of bytes are considered independent
Messages. Messages are sent in the payload of IP packets. One packet can carry one or more
Messages or parts of a Message.

Message Properties are used to specify details about Message transmission.
They can be specified directly on individual Messages or can be set on a Preconnection or
Connection as defaults. These Properties might only apply to how a Message is sent (such as
how the transport will treat prioritization and reliability) but can also include Properties that
specific protocols encode and communicate to the Remote Endpoint. When receiving
Messages, Message Properties can contain information about the received Message, such as
metadata generated at the receiver and information signaled by the Remote Endpoint. For
example, a Message can be marked with a Message Property indicating that it is the final
Message on a Connection.

The Send action transmits a Message over a Connection to the Remote Endpoint. The
interface to Send can accept Message Properties specific to how the Message content is to be
sent. The status of the Send action is delivered back to the sending application in an event
(Section 4.1.6).

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 21

Receive:

Framer:

The Receive action indicates that the application is ready to asynchronously accept a
Message over a Connection from a Remote Endpoint, while the Message content itself will be
delivered in an event (Section 4.1.6). The interface to Receive can include Message Properties
specific to the Message that is to be delivered to the application.

A Framer is a data translation layer that can be added to a Connection. Framers allow
extending a Connection's Protocol Stack to define how to encapsulate or encode outbound
Messages and how to decapsulate or decode inbound data into Messages. In this way, Message
boundaries can be preserved when using a Connection object, even with a protocol that
otherwise presents unstructured streams, such as TCP. This is designed based on the fact that
many of the current application protocols evolved over TCP, which does not provide Message
boundary preservation, and since many of these protocols require Message boundaries to
function, each application-layer protocol has defined its own framing. For example, when an
HTTP application sends and receives HTTP Messages over a byte-stream transport, it must
parse the boundaries of HTTP Messages from the stream of bytes.

Connection Ready:

Connection Closed:

Connection Received:

Message Received:

Message Sent:

Path Properties Changed:

4.1.6. Event Handling

The following categories of events can be delivered to an application:

Signals to an application that a given Connection is ready to send and/or
receive Messages. If the Connection relies on handshakes to establish state between peers,
then it is assumed that these steps have been taken.

Signals to an application that a given Connection is no longer usable for
sending or receiving Messages. The event delivers a reason or error to the application that
describes the nature of the termination.

Signals to an application that a given Listener has received a Connection.

Delivers received Message content to the application, based on a Receive
action. To allow an application to limit the occurrence of such events, each call to Receive
will be paired with a single Receive event. This can include an error if the Receive action
cannot be satisfied, e.g., due to the Connection being closed.

Notifies the application of the status of its Send action. This might indicate a
failure if the Message cannot be sent or might indicate that the Message has been processed
by the Transport Services System.

Notifies the application that a Property of the Connection has
changed that might influence how and where data is sent and/or received.

Close:

4.1.7. Termination Actions

The action an application takes on a Connection to indicate that it no longer intends to
send data or is no longer willing to receive data. The protocol should signal this state to the
Remote Endpoint if the transport protocol permits it. (Note that this is distinct from the

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 22

Abort:

concept of "half-closing" a bidirectional connection, such as when a FIN is sent in one
direction of a TCP connection . The end of a stream can also be indicated using
Message Properties when sending.)

The action the application takes on a Connection to indicate that the Transport Services
System should not attempt to deliver any outstanding data and that it should immediately
close and drop the connection. This is intended for immediate, usually abnormal, termination
of a connection.

[RFC9293]

4.1.8. Connection Groups

A Connection Group is a set of Connections that shares Connection Properties and Cached State
generated by protocols. A Connection Group represents state for managing Connections within a
single application and does not require end-to-end protocol signaling. For transport protocols
that support multiplexing, only Connections within the same Connection Group are allowed to be
multiplexed together.

The API allows a Connection to be created from another Connection. This adds the new
Connection to the Connection Group. A change to one of the Connection Properties on any
Connection in the Connection Group automatically changes the Connection Property for all
others. All Connections in a Connection Group share the same set of Connection Properties
except for the Connection Priority. These Connection Properties are said to be entangled.

Passive Connections can also be added to a Connection Group, e.g., when a Listener receives a
new Connection that is just a new stream of an already-active multistreaming protocol instance.

While Connection Groups are managed by the Transport Services Implementation, an
application can define different Connection Contexts for different Connection Groups to
explicitly control caching boundaries, as discussed in Section 4.2.3.

Path:

Protocol Instance:

4.2. Transport Services Implementation
This section defines the key architectural concepts for the Transport Services Implementation
within the Transport Services System.

The Transport Services System consists of the Transport Services Implementation and the
Transport Services API. The Transport Services Implementation consists of all objects and
protocol instances used internally to a system or library to implement the functionality needed to
provide a transport service across a network, as required by the abstract interface.

Represents an available set of Properties that a Local Endpoint can use to communicate
with a Remote Endpoint, such as routes, addresses, and physical and virtual network
interfaces.

A single instance of one protocol, including any state necessary to establish
connectivity or send and receive Messages.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 23

Protocol Stack:

Candidate Path:

Candidate Protocol Stack:

System Policy:

Cached State:

A set of protocol instances (including relevant application, security, transport, or
Internet protocols) that are used together to establish connectivity or send and receive
Messages. A single stack can be simple (e.g., one application stream carried over TCP running
over IP) or complex (e.g,. multiple application streams carried over a multipath transport
protocol using multiple subflows over IP).

One path that is available to an application and conforms to the Selection
Properties and System Policy, of which there can be several. Candidate Paths are identified
during the gathering phase (Section 4.2.1) and can be used during the racing phase (Section
4.2.2).

One Protocol Stack that can be used by an application for a
connection, for which there can be several candidates. Candidate Protocol Stacks are
identified during the gathering phase (Section 4.2.1) and are started during the racing phase
(Section 4.2.2).

The input from an operating system or other global preferences that can
constrain or influence how an implementation will gather Candidate Paths and Candidate
Protocol Stacks (Section 4.2.1) and race the candidates during establishment (Section 4.2.2).
Specific aspects of the System Policy apply to either all Connections or only certain
Connections, depending on the runtime context and Properties of the Connection.

The state and history that the implementation keeps for each set of associated
Endpoints that have been used previously. This can include DNS results, TLS session state,
previous success and quality of transport protocols over certain paths, as well as other
information. This caching does not imply that the same decisions are necessarily made for
subsequent connections; rather, it means that Cached State is used by a Transport Services
Implementation to inform functions such as choosing the candidates to be raced, selecting
appropriate transport parameters, etc. An application rely on specific caching
behavior; instead, it ought to explicitly request any required or preferred Properties via the
Transport Services API.

SHOULD NOT

Candidate Path Selection:

Candidate Protocol Selection:

4.2.1. Candidate Gathering

Candidate Path Selection represents the act of choosing one or more
paths that are available to use based on the Selection Properties and any available Local and
Remote Endpoint Identifiers provided by the application, as well as the policies and heuristics
of a Transport Services Implementation.

Candidate Protocol Selection represents the act of choosing one or
more sets of Protocol Stacks that are available to use based on the Transport Properties
provided by the application, and the heuristics or policies within the Transport Services
Implementation.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 24

Protocol Option Racing:

Path Racing:

Remote Endpoint Racing:

4.2.2. Candidate Racing

Connection establishment attempts for a set of candidates may be performed simultaneously,
synchronously, serially, or using some combination of all of these. We refer to this process as
racing, borrowing terminology from Happy Eyeballs .

Protocol Option Racing is the act of attempting to establish, or
scheduling attempts to establish, multiple Protocol Stacks that differ based on the composition
of protocols or the options used for protocols.

Path Racing is the act of attempting to establish, or scheduling attempts to
establish, multiple Protocol Stacks that differ based on a selection from the available paths.
Since different paths will have distinct configurations (see) for local addresses and
DNS servers, attempts across different paths will perform separate DNS resolution steps,
which can lead to further racing of the resolved Remote Endpoint Identifiers.

Remote Endpoint Racing is the act of attempting to establish, or
scheduling attempts to establish, multiple Protocol Stacks that differ based on the specific
representation of the Remote Endpoint Identifier, such as a particular IP address that was
resolved from a DNS hostname.

[RFC8305]

[RFC7556]

4.2.3. Separating Connection Contexts

A Transport Services Implementation can by default share stored Properties across Connections
within an application, such as cached protocol state, cached path state, and heuristics. This
provides efficiency and convenience for the application, since the Transport Services System can
automatically optimize behavior.

The Transport Services API can allow applications to explicitly define Connection Contexts that
force separation of Cached State and Protocol Stacks. For example, a web browser application
could use Connection Contexts with separate caches when implementing different tabs. Possible
reasons to isolate Connections using separate Connection Contexts include privacy concerns
regarding:

reusing cached protocol state, as this can lead to linkability. Sensitive state could include TLS
session state and HTTP cookies . These concerns could be addressed
using Connection Contexts with separate caches, such as for different browser tabs.
allowing Connections to multiplex together, which can tell a Remote Endpoint that all of the
Connections are coming from the same application. Using Connection Contexts avoids the
Connections being multiplexed in an HTTP/2 or QUIC stream.

•
[RFC8446] [RFC6265]

•

5. IANA Considerations
This document has no IANA actions.

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 25

7. References

6. Security and Privacy Considerations
The Transport Services System does not recommend the use of specific security protocols or
algorithms. Its goal is to offer ease of use for existing protocols by providing a generic security-
related interface. Each provided interface translates to an existing protocol-specific interface
provided by supported security protocols. For example, trust verification callbacks are common
parts of TLS APIs; a Transport Services API exposes similar functionality .

As described above in Section 3.3, if a Transport Services Implementation races between two
different Protocol Stacks, both need to use the same security protocols and options. However, a
Transport Services Implementation can race different security protocols, e.g., if the application
explicitly specifies that it considers them equivalent.

The application controls whether information from previous racing attempts or other
information about past communications that was cached by the Transport Services System is
used during establishment. This allows applications to make trade-offs between efficiency
(through racing) and privacy (via information that might leak from the cache toward an on-path
observer). Some applications have features (e.g., "incognito mode") that align with this
functionality.

Applications need to ensure that they use security APIs appropriately. In cases where
applications use an interface to provide sensitive keying material, e.g., access to private keys or
copies of pre-shared keys (PSKs), key use needs to be validated and scoped to the intended
protocols and roles. For example, if an application provides a certificate to only be used as client
authentication for outbound TLS and QUIC connections, the Transport Services System
use this automatically in other contexts (such as server authentication for inbound connections
or in other security protocol handshakes that are not equivalent to TLS).

A Transport Services System automatically fall back from secure protocols to insecure
protocols or fall back to weaker versions of secure protocols (see Section 3.3). For example, if an
application requests a specific version of TLS but the desired version of TLS is not available, its
connection will fail. As described in Section 3.3, the Transport Services API can allow
applications to specify minimum versions that are allowed to be used by the Transport Services
System.

[RFC8922]

MUST NOT

MUST NOT

[RFC2119]

7.1. Normative References

, , ,
, , March 1997,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 26

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174] , ,
, , , May 2017,

.

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

[POSIX]

[RFC5482]

[RFC6265]

[RFC7556]

[RFC8095]

[RFC8170]

[RFC8303]

[RFC8305]

[RFC8445]

[RFC8446]

[RFC8489]

7.2. Informative References

, ,
, 2024,

.

 and , , ,
, March 2009, .

, , ,
, April 2011, .

, , ,
, June 2015, .

, , and ,
, ,

, March 2017, .

, ,
, , May 2017,
.

, , and ,
, , ,

February 2018, .

 and ,
, , , December 2017,

.

, , and ,

, , , July 2018,
.

, , ,
, August 2018, .

, , , , , and
, , ,

, February 2020, .

"IEEE/Open Group Standard for Information Technology - Portable Operating
System Interface (POSIX(TM)) Base Specifications, Issue 8" IEEE Std 1003.1-2024
DOI 10.1109/IEEESTD.2024.10555529 <https://ieeexplore.ieee.org/
document/10555529>

Eggert, L. F. Gont "TCP User Timeout Option" RFC 5482 DOI 10.17487/
RFC5482 <https://www.rfc-editor.org/info/rfc5482>

Barth, A. "HTTP State Management Mechanism" RFC 6265 DOI 10.17487/
RFC6265 <https://www.rfc-editor.org/info/rfc6265>

Anipko, D., Ed. "Multiple Provisioning Domain Architecture" RFC 7556 DOI
10.17487/RFC7556 <https://www.rfc-editor.org/info/rfc7556>

Fairhurst, G., Ed. Trammell, B., Ed. M. Kuehlewind, Ed. "Services Provided
by IETF Transport Protocols and Congestion Control Mechanisms" RFC 8095
DOI 10.17487/RFC8095 <https://www.rfc-editor.org/info/rfc8095>

Thaler, D., Ed. "Planning for Protocol Adoption and Subsequent Transitions"
RFC 8170 DOI 10.17487/RFC8170 <https://www.rfc-editor.org/info/
rfc8170>

Welzl, M. Tuexen, M. N. Khademi "On the Usage of Transport Features
Provided by IETF Transport Protocols" RFC 8303 DOI 10.17487/RFC8303

<https://www.rfc-editor.org/info/rfc8303>

Schinazi, D. T. Pauly "Happy Eyeballs Version 2: Better Connectivity Using
Concurrency" RFC 8305 DOI 10.17487/RFC8305 <https://
www.rfc-editor.org/info/rfc8305>

Keranen, A. Holmberg, C. J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Petit-Huguenin, M. Salgueiro, G. Rosenberg, J. Wing, D. Mahy, R. P.
Matthews "Session Traversal Utilities for NAT (STUN)" RFC 8489 DOI 10.17487/
RFC8489 <https://www.rfc-editor.org/info/rfc8489>

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 27

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://ieeexplore.ieee.org/document/10555529
https://ieeexplore.ieee.org/document/10555529
https://www.rfc-editor.org/info/rfc5482
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc7556
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8170
https://www.rfc-editor.org/info/rfc8170
https://www.rfc-editor.org/info/rfc8303
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8489

[RFC8922]

[RFC8923]

[RFC9000]

[RFC9112]

[RFC9113]

[RFC9293]

[RFC9622]

[RFC9623]

, , , , and ,
, ,

, October 2020, .

 and , ,
, , October 2020,
.

 and ,
, , , May 2021,

.

, , and , , ,
, , June 2022,

.

 and , , ,
, June 2022, .

, , , ,
, August 2022, .

, , , , ,
, , and ,

, , ,
January 2025, .

, , , , and ,
, ,

, January 2025, .

Enghardt, T. Pauly, T. Perkins, C. Rose, K. C. Wood "A Survey of the
Interaction between Security Protocols and Transport Services" RFC 8922 DOI
10.17487/RFC8922 <https://www.rfc-editor.org/info/rfc8922>

Welzl, M. S. Gjessing "A Minimal Set of Transport Services for End Systems"
RFC 8923 DOI 10.17487/RFC8923 <https://www.rfc-editor.org/info/
rfc8923>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC
9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/
rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/
RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI
10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Trammell, B., Ed. Welzl, M., Ed. Enghardt, R. Fairhurst, G. Kühlewind, M.
Perkins, C. S. Tiesel, P. T. Pauly "An Abstract Application Programming
Interface (API) for Transport Services" RFC 9622 DOI 10.17487/RFC9622

<https://www.rfc-editor.org/info/rfc9622>

Brunstrom, A., Ed. Pauly, T., Ed. Enghardt, R. Tiesel, P. M. Welzl
"Implementing Interfaces to Transport Services" RFC 9623 DOI 10.17487/
RFC9623 <https://www.rfc-editor.org/info/rfc9623>

Acknowledgements
This work has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreements No. 644334 (NEAT), No. 688421 (MAMI), and No.
815178 (5GENESIS).

This work has been supported by:

Leibniz Prize project funds from the DFG - German Research Foundation: Gottfried Wilhelm
Leibniz-Preis 2011 (FKZ FE 570/4-1).
the UK Engineering and Physical Sciences Research Council under grant EP/R04144X/1.

Thanks to , , , , and
for the discussions and feedback that helped shape the architecture of the system described here.
Particular thanks are also due to and , who were both
coauthors of this specification as it progressed through the Transport Services (TAPS) Working

•

•

Reese Enghardt Max Franke Mirja Kühlewind Jonathan Lennox Michael Welzl

Philipp S. Tiesel Christopher A. Wood

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 28

https://www.rfc-editor.org/info/rfc8922
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9622
https://www.rfc-editor.org/info/rfc9623

Group. Thanks as well to , , , and for
their implementation and design efforts, including Happy Eyeballs, that heavily influenced this
work.

Stuart Cheshire Josh Graessley David Schinazi Eric Kinnear

Authors' Addresses
Tommy Pauly ()editor
Apple Inc.
One Apple Park Way

, Cupertino CA 95014
United States of America

tpauly@apple.comEmail:

Brian Trammell ()editor
Google Switzerland GmbH
Gustav-Gull-Platz 1
CH-8004 Zurich
Switzerland

ietf@trammell.chEmail:

Anna Brunstrom
Karlstad University
Universitetsgatan 2
651 88 Karlstad
Sweden

anna.brunstrom@kau.seEmail:

Godred Fairhurst
University of Aberdeen
Fraser Noble Building
Aberdeen, AB24 3UE
United Kingdom

gorry@erg.abdn.ac.ukEmail:
https://erg.abdn.ac.uk/URI:

Colin S. Perkins
University of Glasgow
School of Computing Science
Glasgow G12 8QQ
United Kingdom

csp@csperkins.orgEmail:

RFC 9621 Transport Services Architecture January 2025

Pauly, et al. Standards Track Page 29

mailto:tpauly@apple.com
mailto:ietf@trammell.ch
mailto:anna.brunstrom@kau.se
mailto:gorry@erg.abdn.ac.uk
https://erg.abdn.ac.uk/
mailto:csp@csperkins.org

	RFC 9621
	Architecture and Requirements for Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Overview
	1.3. Specification of Requirements
	1.4. Glossary of Key Terms

	2. API Model
	2.1. Event-Driven API
	2.2. Data Transfer Using Messages
	2.3. Flexible Implementation
	2.4. Coexistence

	3. API and Implementation Requirements
	3.1. Provide Common APIs for Common Features
	3.2. Allow Access to Specialized Features
	3.3. Select Between Equivalent Protocol Stacks
	3.4. Maintain Interoperability
	3.5. Support Monitoring

	4. Transport Services Architecture and Concepts
	4.1. Transport Services API Concepts
	4.1.1. Endpoint Objects
	4.1.2. Connections and Related Objects
	4.1.3. Preestablishment
	4.1.4. Establishment Actions
	4.1.5. Data Transfer Objects and Actions
	4.1.6. Event Handling
	4.1.7. Termination Actions
	4.1.8. Connection Groups

	4.2. Transport Services Implementation
	4.2.1. Candidate Gathering
	4.2.2. Candidate Racing
	4.2.3. Separating Connection Contexts

	5. IANA Considerations
	6. Security and Privacy Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Authors' Addresses

