
RFC 9741
Concise Data Definition Language (CDDL): Additional
Control Operators for the Conversion and Processing
of Text

Abstract
The Concise Data Definition Language (CDDL), standardized in RFC 8610, provides "control
operators" as its main language extension point. RFCs have added to this extension point in both
an application-specific and a more general way.

The present document defines a number of additional generally applicable control operators for
text conversion (bytes, integers, printf-style formatting, and JSON) and for an operation on text.

Stream: Internet Engineering Task Force (IETF)
RFC: 9741
Category: Standards Track
Published: February 2025
ISSN: 2070-1721
Author: C. Bormann

Universität Bremen TZI

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9741

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9741
https://www.rfc-editor.org/info/rfc9741
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Terminology

2. Text Conversion

2.1. Byte Strings: Base 16 (Hex), Base 32, Base 45, and Base 64

2.2. Numerals

2.3. Printf-Style Formatting

2.4. JSON Values

3. Text Processing

3.1. Join

4. IANA Considerations

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

List of Figures

List of Tables

Acknowledgements

Author's Address

2

3

4

4

5

5

6

7

7

8

9

9

9

10

11

11

11

12

1. Introduction
The Concise Data Definition Language (CDDL), standardized in , provides "control
operators" as its main language extension point (). RFCs have added to
this extension point in both an application-specific and a more general way.

The present document defines a number of additional generally applicable control operators. In
Table 1, the column marked t is for "target type" (left-hand side), and the column marked c is for
"controller type" (right-hand side).

[RFC8610]
Section 3.8 of [RFC8610]

[RFC9090] [RFC9165]

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 2

https://www.rfc-editor.org/rfc/rfc8610#section-3.8

Name t c Purpose

.b64u, .b64c text bytes Base64 representation of byte strings

.b64u-sloppy, .b64c-
sloppy

text bytes Sloppy-tolerant variants of the above

.hex, .hexlc, .hexuc text bytes Base16 representation of byte strings

.b32, .h32 text bytes Base32 representation of byte strings

.b45 text bytes Base45 representation of byte strings

.base10 text int Text representation of integer numbers

.printf text array Printf-formatted text representation of
data items

.json text any Text representation of JSON values

.join text or
bytes

array Build text or byte string from array of
components

Table 1: Summary of New Control Operators in This Document

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Regular expressions mentioned in the text are as defined in .

This specification uses terminology from . In particular, with respect to control
operators, "target" refers to the left-hand-side operand and "controller" to the right-hand-side
operand. "Tool" refers to tools along the lines of that described in . Note
also that the data model underlying CDDL provides for text strings as well as byte strings as two
separate types, which are then collectively referred to as "strings".

The term "opinionated" is used in this document to explain that the selection of operators
included is somewhat frugal, based on opinions about what the preferred (and likely) usage
scenarios will be. Specifically, not including a potential choice doesn’t by itself intend to express
that the choice is unacceptable; it might still be added in a future registration if these opinions
evolve.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC9485]

[RFC8610]

Appendix F of [RFC8610]

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8610#appendix-F

2. Text Conversion

2.1. Byte Strings: Base 16 (Hex), Base 32, Base 45, and Base 64
A CDDL model often defines data that are byte strings in essence but need to be transported in
various encoded forms, such as base64 or hex. This section defines a number of control operators
to model these conversions.

The control operators generally are of a form that could be used like this:

The specification of these control operators cannot provide full coverage of the large number of
transformations in use; it focuses on and additionally , as shown in Table 2.
For the representations defined in , this specification uses names as inspired by Section
8 of RFC 8949 :

Note that this specification is somewhat opinionated here: It does not provide base64url or
base32(hex) encoding with padding or base64 classic without padding. Experience indicates that
these combinations only ever occur in error, so the usability of CDDL is increased by not
providing them in the first place. Also, adding "c" makes sure that any decision for classic base64
is actively taken.

signature-for-json = text .b64u signature
signature = bytes .cbor COSE_Sign1

[RFC4648] [RFC9285]
[RFC4648]

[STD94]

Name Meaning Reference

.b64u Base64url, no padding

.b64u-sloppy Base64url, no padding, sloppy

.b64c Base64 classic, padding

.b64c-sloppy Base64 classic, padding, sloppy

.b32 Base32, no padding

.h32 Base32 with "Extended Hex" alphabet, no padding

.hex Base16 (hex), either case

.hexlc Base16 (hex), lower case

.hexuc Base16 (hex), upper case

.b45 Base45

Table 2: Control Operators for Text Conversion of Byte Strings

Section 5 of [RFC4648]

Section 5 of [RFC4648]

Section 4 of [RFC4648]

Section 4 of [RFC4648]

Section 6 of [RFC4648]

Section 7 of [RFC4648]

Section 8 of [RFC4648]

Section 8 of [RFC4648]

Section 8 of [RFC4648]

[RFC9285]

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8949#section-8
https://www.rfc-editor.org/rfc/rfc4648#section-5
https://www.rfc-editor.org/rfc/rfc4648#section-5
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc4648#section-6
https://www.rfc-editor.org/rfc/rfc4648#section-7
https://www.rfc-editor.org/rfc/rfc4648#section-8
https://www.rfc-editor.org/rfc/rfc4648#section-8
https://www.rfc-editor.org/rfc/rfc4648#section-8

These control operators are "strict" in their matching, i.e., they only match base encodings that
conform to the mandates of their defining documents. Note that this also means that .b64u and
.b64c only match text strings composed of the set of characters defined for each of them,
respectively. (This is perhaps worth pointing out explicitly as it contrasts with the "b64" literal
prefix that can be used to notate byte strings in CDDL source code, which simply accepts
characters from either alphabet. This behavior is different from the matching behavior of the
four base64 control operators defined here.)

The additional designation "sloppy" indicates that the text string is not validated for any
additional bits being zero, in variance to what is specified in the paragraph that follows Table 1
in . Note that the present specification is opinionated again in not
specifying a sloppy variant of base32 or base32hex, as no legacy use of sloppy base32(hex) was
known at the time of writing. Base45 is known to be suboptimal for use in
environments with limited data transparency (such as URLs) but is included because of its close
relationship to QR codes and its wide use in health informatics (note that base45 is strongly
specified not to allow sloppy forms of encoding).

Section 4 of [RFC4648]

[RFC9285]

2.2. Numerals

The control operator .base10 allows the modeling of text strings that carry an integer number in
decimal form (as a text string with digits in the usual base-ten positional numeral system), such
as in the uint64/int64 formats of YANG-JSON .

Again, the specification is opinionated by only providing for integer numbers represented
without leading zeros, i.e., the decimal integer numerals match the regular expression 0|-?[1-9]
[0-9]* (of course, this is further restricted by the control type). See Section 2.3 for more
flexibility and for other numeric bases such as octal, hexadecimal, or binary conversions.

Note that this control operator governs text representations of integers and should not be
confused with the control operators governing text representations of byte strings (such as
.b64u). This contrast is somewhat reinforced by spelling out "base" in the name .base10 as
opposed to those of the byte string operators.

Name Meaning Reference

.base10 Base-ten (decimal) integer ---

Table 3: Control Operator for Text Conversion of
Integers

[RFC7951]

yang-json-sid = text .base10 (0..9223372036854775807)

2.3. Printf-Style Formatting

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc4648#section-4

The control operator .printf allows the modeling of text strings that carry various formatted
information, as long as the format can be represented in printf-style formatting strings as they
are used in the C language (see Section 7.23.6.1 of ; note that the "C23" standard includes %b
and %B for formatting into binary digits).

The controller (right-hand side) of the .printf control is an array of one printf-style format
string and zero or more data items that fit the individual conversion specifications in the format
string. The construct matches a text string representing the textual output of an equivalent C-
language printf function call that receives as arguments the format string and the data items
following it in the array.

Out of the functionality described for printf formatting in Section 7.23.6.1 of the C language
specification , length modifiers (paragraph 7) are not used and be included in the
format string. The "s" conversion specifier (paragraph 8) is used to interpolate a text string in
UTF-8 form. The "c" conversion specifier (paragraph 8) represents a single Unicode scalar value
as a UTF-8 character. The "p" and "n" conversion specifiers (paragraph 8) are not used and

 be included in the format string.

In the following example, my_alg_19 matches the text string "0x0013":

The data items in the controller array do not need to be literals, as in the following example:

Here, any_alg matches the text strings "0x0013" or "0x0001" but not "0x1234".

Name Meaning Reference

.printf Printf-style formatting of data item(s) ---

Table 4: Control Operator for Printf-Style Formatting of Data
Item(s)

[C]

[C] MUST NOT

MUST
NOT

my_alg_19 = hexlabel<19>
hexlabel<K> = text .printf (["0x%04x", K])

any_alg = hexlabel<1..20>
hexlabel<K> = text .printf (["0x%04x", K])

2.4. JSON Values
Some applications store complete JSON texts into text strings. The JSON value of these
can easily be defined in CDDL by using the default JSON-to-CBOR conversion rules provided in
Section 6.2 of RFC 8949 . This is supported by a control operator similar to .cbor as
defined in .

[STD90]

[STD94]
Section 3.8.4 of [RFC8610]

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8949#section-6.2
https://www.rfc-editor.org/rfc/rfc8610#section-3.8.4

Notes:

JSON has known interoperability problems . While probably
is not relevant to this specification, provides requirements that need
to be followed to make use of the generic data model underlying CDDL. Note that the
intention of is directly supported by Section 6.2 of RFC 8949 .
The recommendation to use text strings for representing numbers outside JSON's
interoperable range is a requirement on the application data model and therefore needs to
be reflected on the right-hand side of the .json control operator.
This control operator provides no way to constrain the use of blank space or other
serialization variants in the JSON representation of the data items; restrictions on the
serialization to specific variants (e.g., not providing for the addition of any insignificant
blank space and prescribing an order in which map entries are serialized) could be defined
in future control operators.
A .jsonseq is not provided in this document for JSON text sequences , as no use
case for inclusion in CDDL is known at the time of writing; again, future control operators
could address this use case.

Name Meaning Reference

.json JSON

Table 5: Control Operator for Text
Conversion of JSON Values

[STD90]

embedded-claims = text .json claims
claims = {iss: text, exp: text}

• [RFC7493] Section 4 of [RFC7493]
Section 2 of [RFC7493]

Section 2.2 of [RFC7493] [STD94]

•

• [RFC7464]

3. Text Processing

3.1. Join
Often, text strings need to be constructed out of parts that can best be modeled as an array.

For example, an IPv4 address in dotted-decimal might be modeled as in Figure 1.

Name Meaning Reference

.join Concatenate elements of an array ---

Table 6: Control Operator for Text Generation from Arrays

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc7493#section-4
https://www.rfc-editor.org/rfc/rfc7493#section-2
https://www.rfc-editor.org/rfc/rfc7493#section-2.2
https://www.rfc-editor.org/rfc/rfc8949#section-6.2

The elements of the controller array need to be strings (text or byte strings). The control operator
matches a data item if that data item is also a string, built by concatenating the strings in the
array. The result of this concatenation is of the same kind of string (text or bytes) as the first
element of the array. (If there is no element in the array, the .join construct matches either kind
of empty string, obviously further constrained by the control operator target.) The concatenation
is performed on the sequences of bytes in the strings. If the result of the concatenation is a text
string, the resulting sequence of bytes only matches the target data item if that result is a valid
text string (i.e., valid UTF-8). Note that in contrast to the algorithm used in Section 3.2.3 of RFC
8949 , there is no need for all individual byte sequences going into the concatenation to
constitute valid text strings.

Note that this control operator is hard to validate in the most general case, as this would require
full parser functionality. Simple implementation strategies will use array elements with constant
values as guideposts ("markers", such as the "." in Figure 1) for isolating the variable elements
that need further validation at the CDDL data model level. Therefore, it is recommended to limit
the use of .join to simple arrangements where the array elements are laid out explicitly and
there are no adjacent variable elements without intervening constant values, and where these
constant values do not occur within the text described by the variable elements. If more complex
parsing functionality is required, the ABNF control operators (see) may be
useful; however, these cannot reach back into CDDL-specified elements like .join can.

Implementation note: A validator implementation can use the marker elements to
scan the text and isolate the variable elements. It also can build a parsing regexp
from the elements of the controller array, with capture groups for each element, and
validate the captures against the elements of the array. (For more about parsing
regexps, see ; see also for security
considerations related to regexps.) In the most general case, these implementation
strategies can exhibit false negatives, where the implementation cannot find the
structure that would be successfully validated using the controller; it is

 that implementations provide full coverage at least for the marker-
based subset outlined in the previous paragraph.

Figure 1: Using the .join Operator to Build Dotted-Decimal IPv4 Addresses

legacy-ip-address = text .join legacy-ip-address-elements
legacy-ip-address-elements = [bytetext, ".", bytetext, ".",
 bytetext, ".", bytetext]
bytetext = text .base10 byte
byte = 0..255

[STD94]

Section 3 of [RFC9165]

Section 6 of [RFC9485] Section 8 of [RFC9485]

RECOMMENDED

4. IANA Considerations
IANA has registered the contents of Table 7 into the "CDDL Control Operators" registry of

:[IANA.cddl]

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8949#section-3.2.3
https://www.rfc-editor.org/rfc/rfc9165#section-3
https://www.rfc-editor.org/rfc/rfc9485#section-6
https://www.rfc-editor.org/rfc/rfc9485#section-8

Name Reference

.b64u RFC 9741

.b64u-sloppy RFC 9741

.b64c RFC 9741

.b64c-sloppy RFC 9741

.b45 RFC 9741

.b32 RFC 9741

.h32 RFC 9741

.hex RFC 9741

.hexlc RFC 9741

.hexuc RFC 9741

.base10 RFC 9741

.printf RFC 9741

.json RFC 9741

.join RFC 9741

Table 7: New Control Operators

5. Security Considerations
The security considerations in apply. In addition, for the control operators
defined in Section 2.1, the security considerations in apply.

Section 5 of [RFC8610]
Section 12 of [RFC4648]

6. References

[C]

6.1. Normative References

,
, , , October 2024,

.

International Organization for Standardization "Information technology -
Programming languages - C" Fourth Edition ISO/IEC 9899:2024
<https://www.iso.org/standard/82075.html> Technically equivalent specification
text is available at <https://www.open-std.org/jtc1/sc22/wg14/www/docs/

.n3220.pdf>

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8610#section-5
https://www.rfc-editor.org/rfc/rfc4648#section-12
https://www.iso.org/standard/82075.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf

[IANA.cddl]

[RFC2119]

[RFC4648]

[RFC8174]

[RFC8610]

[RFC9165]

[RFC9285]

[RFC9485]

[STD90]

[STD94]

, ,
.

, , ,
, , March 1997,
.

, , ,
, October 2006, .

, ,
, , , May 2017,

.

, , and ,

, ,
, June 2019, .

,
, , , December 2021,

.

, , and , ,
, , August 2022,

.

 and ,
, , , October 2023,

.

IANA "Concise Data Definition Language (CDDL)" <https://www.iana.org/
assignments/cddl>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Bormann, C. "Additional Control Operators for the Concise Data Definition
Language (CDDL)" RFC 9165 DOI 10.17487/RFC9165 <https://
www.rfc-editor.org/info/rfc9165>

Fältström, P. Ljunggren, F. D.W. van Gulik "The Base45 Data Encoding" RFC
9285 DOI 10.17487/RFC9285 <https://www.rfc-editor.org/info/
rfc9285>

Bormann, C. T. Bray "I-Regexp: An Interoperable Regular Expression
Format" RFC 9485 DOI 10.17487/RFC9485 <https://www.rfc-
editor.org/info/rfc9485>

Internet Standard 90, .<https://www.rfc-editor.org/info/std90>
At the time of writing, this STD comprises the following:

, ,
, , , December 2017,

.

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Internet Standard 94, .<https://www.rfc-editor.org/info/std94>
At the time of writing, this STD comprises the following:

 and , ,
, , , December 2020,

.

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

[RFC7464]

6.2. Informative References

, , ,
, February 2015, .

Williams, N. "JavaScript Object Notation (JSON) Text Sequences" RFC 7464 DOI
10.17487/RFC7464 <https://www.rfc-editor.org/info/rfc7464>

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 10

https://www.iana.org/assignments/cddl
https://www.iana.org/assignments/cddl
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9285
https://www.rfc-editor.org/info/rfc9285
https://www.rfc-editor.org/info/rfc9485
https://www.rfc-editor.org/info/rfc9485
https://www.rfc-editor.org/info/std90
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc7464

[RFC7493]

[RFC7951]

[RFC9090]

, , , ,
March 2015, .

, , ,
, August 2016, .

,
, , , July 2021,

.

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493
<https://www.rfc-editor.org/info/rfc7493>

Lhotka, L. "JSON Encoding of Data Modeled with YANG" RFC 7951 DOI
10.17487/RFC7951 <https://www.rfc-editor.org/info/rfc7951>

Bormann, C. "Concise Binary Object Representation (CBOR) Tags for Object
Identifiers" RFC 9090 DOI 10.17487/RFC9090 <https://www.rfc-
editor.org/info/rfc9090>

List of Figures
Figure 1: Using the .join Operator to Build Dotted-Decimal IPv4 Addresses

List of Tables
Table 1: Summary of New Control Operators in This Document

Table 2: Control Operators for Text Conversion of Byte Strings

Table 3: Control Operator for Text Conversion of Integers

Table 4: Control Operator for Printf-Style Formatting of Data Item(s)

Table 5: Control Operator for Text Conversion of JSON Values

Table 6: Control Operator for Text Generation from Arrays

Table 7: New Control Operators

Acknowledgements
 suggested the need for many of the control operators defined here. The author

would like to thank and for sharpening some of the
mandates, for improvements to some examples, for serving as
shepherd for this document and for his shepherd review, the IESG and Directorate reviewers
(notably , , and), and for serving as responsible
AD and for providing a detailed AD review.

Henk Birkholz
Laurence Lundblade Jeremy O'Donoghue

Mikolai Gütschow A.J. Stein

Ari Keränen Darrel Miller Éric Vyncke Orie Steele

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 11

https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc9090
https://www.rfc-editor.org/info/rfc9090

Author's Address
Carsten Bormann
Universität Bremen TZI
Postfach 330440
D-28359 Bremen
Germany

+49-421-218-63921Phone:
cabo@tzi.orgEmail:

RFC 9741 CDDL: More Control Operators for Text February 2025

Bormann Standards Track Page 12

tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 9741
	Concise Data Definition Language (CDDL): Additional Control Operators for the Conversion and Processing of Text
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Text Conversion
	2.1. Byte Strings: Base 16 (Hex), Base 32, Base 45, and Base 64
	2.2. Numerals
	2.3. Printf-Style Formatting
	2.4. JSON Values

	3. Text Processing
	3.1. Join

	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	List of Figures
	List of Tables
	Acknowledgements
	Author's Address

