Network Working Group D. Eastlake 3rd

Request for Comments: 4634 Motorola Labs
Updates: 3174 T. Hansen
Category: Informational AT&T Labs

July 2006

US Secure Hash Algorithms (SHA and HMAC-SHA)
Status of This Memo

This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract

The United States of America has adopted a suite of Secure Hash
Algorithms (SHAs), including four beyond SHA-1, as part of a Federal
Information Processing Standard (FIPS), specifically SHA-224 (RFC
3874), SHA-256, SHA-384, and SHA-512. The purpose of this document
is to make source code performing these hash functions conveniently
available to the Internet community. The sample code supports input
strings of arbitrary bit length. SHA-1"s sample code from RFC 3174
has also been updated to handle input strings of arbitrary bit
length. Most of the text herein was adapted by the authors from FIPS
180-2.

Code to perform SHA-based HMACs, with arbitrary bit length text, is
also included.

Eastlake 3rd & Hansen Informational [Page 1]

RFC 4634 SHAs and HMAC-SHAs July 2006

Table of Contents

1. Overview of Contents e e e e e e e e e eaemaeaaaan 3
0T A I o1 1 4

2. Notation for Bit Strings and Integers i iooiooooa- 4
3. Operations on Wordso ii ot e e e e e aacaaaaa e 5
4. Message Padding and ParsSingo in oo e e e e ceeaaaaaaaan 6
4.1. SHA-224 and SHA-256 . . . e e e e e e e e e e e e e e e a e em—aaa—a 7
4.2. SHA-384 and SHA-512 . . . o e e e e e e e 8

5. Functions and Constants Usedo e e e eeeeemeaaaens 9
5.1. SHA-224 and SHA-256 e e e e e e e e e e eeaemaemaaaaa 9
5.2. SHA-384 and SHA-512 e e e e e e e ceeceaceaeaaaaann 10

6. Computing the Message Digesto eo e a e ccaaaaaaaaan 11
6.1. SHA-224 and SHA-256 Initialization e eeeen-- 11
6.2. SHA-224 and SHA-256 Processingo in o e aa e e 11
6.3. SHA-384 and SHA-512 Initialization e aa-. 13
6.4. SHA-384 and SHA-512 ProCesSiNg - - a i e e e aaaaaa e 14

7. SHA-Based HMACS . .. i i e e e e e e e e e e e accaccaccaccaaaaaaaann 15
8. C Code TOr SHAS . o e e e e e e e e e e e e aceccaacaacaaeaaaaaaaann 15
8.1. The .h FIle .. e e e e e e e e e e e e e e e e e e 18
8.2. The SHA Code . . . e e e e e e e e e e e e e e e 24
8.2.1. Shal.C . e e e e e e e e e e mma e 24

8.2.2. Sha224-256.C .. e e e e e e e e e 33

8.2.3. Sha384-512.C et e e e e e e e e e e 45

I S U 1= o - o 67

8.2.5. sha-private.h e 72

8.3. The HMAC COOE . o i e e e e e e e e e e meeceececeeaeeaaaaaaann 73
8.4. The TesSt DIIVer ... e e e e e e e e e e e e e emm e eeeaaaeeannn 78

9. Security Considerationst a e 106
10. Normative References e e e e e e eececcaacaaaaann 106
11. Informative ReferenCeso e e e e ece e aacaaaaaann 106

Eastlake 3rd & Hansen Informational [Page 2]

RFC 4634 SHAs and HMAC-SHAs July 2006

1.

Overview of Contents

NOTE: Much of the text below is taken from [FIPS180-2] and assertions
therein of the security of the algorithms described are made by the
US Government, the author of [FIPS180-2], and not by the authors of
this document.

The text below specifies Secure Hash Algorithms, SHA-224 [RFC3874],
SHA-256, SHA-384, and SHA-512, for computing a condensed
representation of a message or a data file. (SHA-1 is specified in
[RFC3174].) When a message of any length < 2764 bits (for SHA-224
and SHA-256) or < 27128 bits (for SHA-384 and SHA-512) is input to
one of these algorithms, the result is an output called a message
digest. The message digests range in length from 224 to 512 bits,
depending on the algorithm. Secure hash algorithms are typically
used with other cryptographic algorithms, such as digital signature
algorithms and keyed hash authentication codes, or in the generation
of random numbers [RFC4086].

The four algorithms specified in this document are called secure
because it is computationally infeasible to (1) find a message that
corresponds to a given message digest, or (2) find two different
messages that produce the same message digest. Any change to a
message in transit will, with very high probability, result in a
different message digest. This will result in a verification failure
when the secure hash algorithm is used with a digital signature
algorithm or a keyed-hash message authentication algorithm.

The code provided herein supports input strings of arbitrary bit
length. SHA-1’s sample code from [RFC3174] has also been updated to
handle input strings of arbitrary bit length. See Section 1.1 for
license information for this code.

Section 2 below defines the terminology and functions used as
building blocks to form these algorithms. Section 3 describes the
fundamental operations on words from which these algorithms are
built. Section 4 describes how messages are padded up to an integral
multiple of the required block size and then parsed into blocks.
Section 5 defines the constants and the composite functions used to
specify these algorithms. Section 6 gives the actual specification
for the SHA-224, SHA-256, SHA-384, and SHA-512 functions. Section 7
provides pointers to the specification of HMAC keyed message
authentication codes based on the SHA algorithms. Section 8 gives
sample code for the SHA algorithms and Section 9 code for SHA-based
HMACs. The SHA-based HMACs will accept arbitrary bit length text.

Eastlake 3rd & Hansen Informational [Page 3]

RFC 4634 SHAs and HMAC-SHAs July 2006

1.1. License

Permission is granted for all uses, commercial and non-commercial, of
the sample code found in Section 8. Royalty free license to use,
copy, modify and distribute the software found in Section 8 is
granted, provided that this document is identified in all material
mentioning or referencing this software, and provided that
redistributed derivative works do not contain misleading author or
version information.

The authors make no representations concerning either the
merchantability of this software or the suitability of this software
for any particular purpose. It is provided "as is" without express
or implied warranty of any kind.

2. Notation for Bit Strings and Integers

The following terminology related to bit strings and integers will be
used:

a. A hex digit is an element of the set {O, 1, ... , 9, A, ... ,
F}- A hex digit is the representation of a 4-bit string.
Examples: 7 = 0111, A = 1010.

b. A word equals a 32-bit or 64-bit string, which may be
represented as a sequence of 8 or 16 hex digits, respectively.
To convert a word to hex digits, each 4-bit string is converted
to 1ts hex equivalent as described in (a) above. Example:

1010 0001 0000 0011 1111 1110 0010 0011 = A103FEZ23.

Throughout this document, the "big-endian™ convention is used
when expressing both 32-bit and 64-bit words, so that within
each word the most significant bit is shown in the left-most bit
position.

c. An integer may be represented as a word or pair of words.

An integer between 0 and 2732 - 1 inclusive may be represented
as a 32-bit word. The least significant four bits of the
integer are represented by the right-most hex digit of the word
representation. Example: the integer 291 = 27"8+2/5+27M+270 =
256+32+2+1 is represented by the hex word 00000123.

The same holds true for an integer between 0 and 2764-1
inclusive, which may be represented as a 64-bit word.

Eastlake 3rd & Hansen Informational [Page 4]

RFC 4634 SHAs and HMAC-SHAs July 2006

IT Z is an integer, 0 <= z < 2764, then z = (2"32)X + y where 0
<= X <2732 and 0 <=y < 2732. Since x and y can be represented
as words X and Y, respectively, z can be represented as the pair
of words (X,Y).

d. block = 512-bit or 1024-bit string. A block (e.g., B) may be
represented as a sequence of 32-bit or 64-bit words.

3. Operations on Words
The following logical operators will be applied to words in all four
hash operations specified herein. SHA-224 and SHA-256 operate on
32-bit words, while SHA-384 and SHA-512 operate on 64-bit words.
In the operations below, x<<n is obtained as follows: discard the
left-most n bits of x and then pad the result with n zeroed bits on
the right (the result will still be the same number of bits).

a. Bitwise logical word operations

X AND Y = bitwise logical "and" of X and Y.

X ORY = bitwise logical "inclusive-or™ of X and Y.
X XOR' Y = bitwise logical "exclusive-or" of X and Y.
NOT X = bitwise logical "complement™ of X.
Example:

01101100101110011101001001111011
XOR 01100101110000010110100110110111

= 00001001011110001011101111001100
b. The operation X + Y is defined as follows: words X and Y
represent w-bit integers x and y, where 0 <= x < 2w and
0 <=y < 2™. For positive integers n and m, let
n mod m
be the remainder upon dividing n by m. Compute
z = (X +y) mod 2™w.

Then 0 <= z < 2”w. Convert z to a word, Z, and define Z = X +
Y.

Eastlake 3rd & Hansen Informational [Page 5]

RFC 4634 SHAs and HMAC-SHAs July 2006

4.

c. The right shift operation SHR™n(x), where x is a w-bit word and
n Is an integer with O <= n < w, is defined by

SHRM(X) = x>>n

d. The rotate right (circular right shift) operation ROTR™n(x),
where x is a w-bit word and n is an integer with O <= n < w, is
defined by

ROTR™M(X) = (x>>n) OR (x<<(w-n))

e. The rotate left (circular left shift) operation ROTL™(x), where
X is a w-bit word and n is an integer with O <= n < w, 1is
defined by

ROTLM(X) = (x<<n) OR (x>>w-n)

Note the following equivalence relationships, where w is fixed
in each relationship:

ROTL™M(X)

ROTRMN(w=-x) (X)
ROTR™(x) = ROTLM(w-n)(X)
Message Padding and Parsing

The hash functions specified herein are used to compute a message
digest for a message or data file that is provided as input. The
message or data file should be considered to be a bit string. The
length of the message is the number of bits in the message (the empty
message has length 0). |If the number of bits in a message is a
multiple of 8, for compactness we can represent the message in hex.
The purpose of message padding is to make the total length of a
padded message a multiple of 512 for SHA-224 and SHA-256 or a
multiple of 1024 for SHA-384 and SHA-512.

The following specifies how this padding shall be performed. As a
summary, a ""1" followed by a number of "0"s followed by a 64-bit or
128-bit integer are appended to the end of the message to produce a
padded message of length 512*n or 1024*n. The minimum number of "0"s
necessary to meet this criterion is used. The appended integer is
the length of the original message. The padded message is then
processed by the hash function as n 512-bit or 1024-bit blocks.

Eastlake 3rd & Hansen Informational [Page 6]

RFC 4634

4.1.

SHAs and HMAC-SHAs July 2006

SHA-224 and SHA-256

Suppose a message has length L < 2764. Before it is input to the
hash function, the message is padded on the right as follows:

a.

"1" is appended. Example: if the original message is
'*01010000", this is padded to "010100001".

K "0"s are appended where K is the smallest, non-negative
solution to the equation

L+ 1+ K =448 (mod 512)

Then append the 64-bit block that is L in binary representation.
After appending this block, the length of the message will be a
multiple of 512 bits.

Example: Suppose the original message is the bit string
01100001 01100010 01100011 01100100 01100101

After step (a), this gives
01100001 01100010 01100011 01100100 01100101 1

Since L = 40, the number of bits in the above is 41 and K = 407
"0"s are appended, making the total now 448. This gives the
following in hex:

61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000

The 64-bit representation of L = 40 is hex 00000000 00000028.
Hence the final padded message is the following hex:

61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028

Eastlake 3rd & Hansen Informational [Page 7]

RFC 4634 SHAs and HMAC-SHAs July 2006

4.2. SHA-384 and SHA-512

Suppose a message has length L < 27128. Before it is input to the
hash function, the message is padded on the right as follows:

a. "1" is appended. Example: if the original message is
'*01010000", this is padded to "010100001".

b. K "0"s are appended where K is the smallest, non-negative
solution to the equation

L+ 1+K=896 (mod 1024)

c. Then append the 128-bit block that is L in binary
representation. After appending this block, the length of the
message will be a multiple of 1024 bits.

Example: Suppose the original message is the bit string
01100001 01100010 01100011 01100100 01100101

After step (a) this gives
01100001 01100010 01100011 01100100 01100101 1

Since L = 40, the number of bits in the above is 41 and K = 855
"0"s are appended, making the total now 896. This gives the
following in hex:

61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

The 128-bit representation of L = 40 is hex 00000000 00000000
00000000 00000028. Hence the final padded message is the
following hex:

61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

Eastlake 3rd & Hansen Informational [Page 8]

RFC 4634

SHAs and HMAC-SHAs

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028

5. Functions and Constants Used

July 2006

The following subsections give the six logical functions and the
table of constants used in each of the hash functions.

5.1. SHA-224 and SHA-256

SHA-224 and SHA-256 use six logical functions, where each function
operates on 32-bit words, which are represented as x, y, and z. The
result of each function is a new 32-bit word.

CH(X, y, z) = (x AND y) XOR ((NOT x) AND 2z)

MAJ(X, Y, z) = (X AND y) XOR (x AND z) XOR (y AND 2)

BS1GO(X)
BSI1GL(X)
SSI1GO(X)

SSI1G1(X)

ROTRA2(X) XOR ROTRA13(X) XOR ROTRA22(X)

ROTRM6(x) XOR ROTRA11(X) XOR ROTRA25(X)

ROTRA7(X) XOR ROTRAL8(X) XOR SHRA3(X)

ROTRA17(X) XOR ROTRA19(X) XOR SHRAL0(X)

SHA-224 and SHA-256 use the same sequence of sixty-four constant

32-bit words, KO, K1, ..., K63.

These words represent the first

thirty-two bits of the fractional parts of the cube roots of the

first sixty-four prime numbers.

follo

ws (From

428a2198
3956¢25b
d807aa98
72be5d74
e49b69cl
2de92c6f
983e5152
c6e00bf3
27b70a85
650a7354
a2bfe8al
d192e819
19a4c116

left to right):

71374491 b5cO0fbct e9b5dbab

59f111f1
12835b01
80deblfe
efbed786
4a7484aa
a831c66d
d5a79147
2e1b2138
766a0abb
a8la664b
d6990624
1e376c08

Eastlake 3rd & Hansen

9231f82a4
243185be
9bdcO6a7
0fc19dc6
5cb0a9dc
b00327c8
06ca6351
4d2c6dfc
81c2c92e
c24b8b70
f40e3585
2748774c

ablc5ed5
550c7dc3
c19bf174
240calcc
761988da
bf597fc7
14292967
53380d13
92722c85
c76c5l1a3
106aa070
34b0bcb5

Informational

In hex, these constant words are as

[Page 9]

RFC 4634

SHAs and HMAC-SHAs

391c0cb3 4ed8aada 5b9ccadf 682e6FfF3
7481F82ee 78a5636F 84c87814 8cc70208
90befffa a4506ceb bef9a3f7 c67178f2

.2. SHA-384 and S

SHA-384 and SHA-512 each use six logical
function operates on 64-bit words, which
The result of each function is a new

Z.

CH(X, y, z) = (x AND y) XOR ((NOT

MAJ(X, VY,

BSI1GO(X)

BSI1G1(X)

SS1G0(X)

SSI1G1(X)

HA-512

X) AND z)

functions,
are represented as x, y, and
64-bit word.

July 2006

where each

z) = (X AND y) XOR (x AND z) XOR (y AND 2z2)

ROTRM28(x) XOR ROTR™M34(x) XOR ROTR™M39(x)

ROTRM14(x) XOR ROTRM8(X) XOR ROTR™M1(x)

ROTRAML(X) XOR ROTRA8(X) XOR SHRA7(X)

ROTRAM9(X) XOR ROTRM61(X) XOR SHRA6(X)

SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit

words, KO, K1,

. K79.

These words represent the first sixty-four

bits of the fractional parts of the cube roots of the first eighty
In hex, these constant words are as follows (from

prime numbers.
left to right):

428a2198d728ae22
3956¢25b1348b538
d807aa98a3030242
72be5d74f27b896F
e49b69c19ef14ad2
2de92c61592b0275
983e5152ee66dfab
c6e00bf33da88fc?2
27b70a8546d22ffc
650a73548baf63de
a2bfe8al4cf10364
d192e819d6ef5218
19a4c116b8d2d0c8
391c0cb3c5c95a63
748182eebdefb2fc
90befffa23631e28
ca273eceea26619c
06f067aa72176fba
28db77¥523047d84
4ccb5d4becb3e42b6

Eastlake 3rd & Hansen

7137449123ef65cd
59f111f1b605d019
12835b0145706Fbe
80debl1fe3b1696b1l
efbed4786384fF25e3
4a7484aa6ea6e483
a831c66d2db43210
d5a79147930aa725
2e1b21385c26c926
766a0abb3c77b2a8
a8la664bbc423001
d69906245565a910
1e376c085141ab53
4ed8aad4ae3418ach
78a5636143172F60
a4506cebde82bde9
d186b8c721c0c207
0a637dc5a2c898a6
32caab7b40c72493
597¥299cfc657e2a

b5c0fbcfec4d3b2f
923182a4af19419b
243185bed4ee4b28c
9bdc06a725c71235
0fc19dc68b8cd5b5
5cb0a9dcbd41fbd4
b00327c898fb213f
06ca6351e003826F
4d2c6dfchac42aed
81c2c92e47edaeeb
c24b8b70d0f89791
f40e35855771202a
2748774cdf8eeb99
5b9ccadf7763e373
84c87814al1f0ab72
bef9a3f7b2c67915
eada7dd6cdeOeble
113¥9804bef90dae
3c9ebelal5c9bebe
5fcb6fab3ad6faec

Informational

e9b5dba58189dbbc
ablc5ed5da6d8118
550c7dc3d5ffb4e2
c19bf174cf692694
240calcc77ac9c65
761988da831153b5
bf597fc7beefOeed
142929670a0e6e70
53380d139d95b3df
92722c851482353b
c76¢c51a30654be30
106aa07032bbd1b8
34b0bcb5e19b48a8
682e6ff3d6b2b8a3
8cc702081a6439ec
c67178F2e372532b
57d4f7fee6edl78
1b710b35131c471b
431d67c49c100d4c
6c44198c4a475817

[Page 10]

RFC

6.

6.1.

6.2.

4634 SHAs and HMAC-SHAs July 2006

Computing the Message Digest

The output of each of the secure hash functions, after being applied
to a message of N blocks, is the hash quantity H(N). For SHA-224 and
SHA-256, H(1) can be considered to be eight 32-bit words, H(i)O,
H(i)1, ... H(i)7. For SHA-384 and SHA-512, it can be considered to
be eight 64-bit words, H(i)0, H(i)1, ..., H(I)7.

As described below, the hash words are initialized, modified as each
message block is processed, and finally concatenated after processing
the last block to yield the output. For SHA-256 and SHA-512, all of
the H(N) variables are concatenated while the SHA-224 and SHA-384
hashes are produced by omitting some from the final concatenation.

SHA-224 and SHA-256 Initialization

For SHA-224, the initial hash value, H(0), consists of the following
32-bit words in hex:

H(0)0 = c1059ed8
H(0)1 = 367cd507
H(0)2 = 3070dd17
H(0)3 = 70e5939
H(0)4 = ffc00b31l
H(0)5 = 68581511
H(0)6 = 64f98fa7
H(0)7 = befad4fad

For SHA-256, the initial hash value, H(0), consists of the following
eight 32-bit words, in hex. These words were obtained by taking the
first thirty-two bits of the fractional parts of the square roots of
the first eight prime numbers.

H(0)0 = 6a09e667
H(0)1 = bb67ae85
H(0)2 = 3c6ef372
H(0)3 = a54ff53a
H(0)4 = 510e527f
H(0)5 = 9b05688c
H(0)6 = 1f83d9ab
H(0)7 = 5be0cdl19

SHA-224 and SHA-256 Processing

SHA-224 and SHA-256 perform identical processing on messages blocks
and differ only in how H(O) is initialized and how they produce their
final output. They may be used to hash a message, M, having a length
of L bits, where 0 <= L < 2764. The algorithm uses (1) a message

Eastlake 3rd & Hansen Informational [Page 11]

RFC 4634 SHAs and HMAC-SHAs July 2006

schedule of sixty-four 32-bit words, (2) eight working variables of
32 bits each, and (3) a hash value of eight 32-bit words.

The words of the message schedule are labeled WO, W1, ..., W63. The
eight working variables are labeled a, b, ¢, d, e, f, g, and h. The
words of the hash value are labeled H(1)0, H(i)1l, ..., H(i)7, which

will hold the initial hash value, H(0), replaced by each successive
intermediate hash value (after each message block is processed),
H(1), and ending with the final hash value, H(N), after all N blocks
are processed. They also use two temporary words, T1 and T2.

The input message is padded as described in Section 4.1 above then
parsed into 512-bit blocks, which are considered to be composed of 16
32-bit words M(i)0, M(i)1, ..., M(i)15. The following computations
are then performed for each of the N message blocks. All addition is
performed modulo 2732.

For i =1 to N

1. Prepare the message schedule W:
For t 0 to 15
Mt
16 to 63
SSIGI(W(t-2)) + W(t-7) + SSIGO(t-15) + W(t-16)

nitialize the working variables:

SQ =HDOQOAOT QD =
I I T I I I I T T T
T
~
1 1 1 1 - 1

l
=
o/
w

3. Perform the main hash computation:

For t = 0 to 63
Tl = h + BSIG1(e) + CH(e,f,g) + Kt + Wt
T2 = BSIGO(a) + MAJ(a,b,c)
h=g
g="*
f=c¢e
e=d+ T1
d =c
c=b
b=a
a=T1+ T2

Eastlake 3rd & Hansen Informational [Page 12]

RFC 4634 SHAs and HMAC-SHAs July 2006

4. Compute the intermediate hash value H(i):
H(i)0 = a + H(i-1)0
H(i)1 = b + H@(i-11
H(i)2 = ¢ + H(i-1)2
H(i)3 = d + H(i-1)3
H(i)4 = e + H(i-1)4
H(i)5 = F + H(i-1)5
H(i)6 = g + H(i-1)6
H(i)7 = h + H(i-1)7

After the above computations have been sequentially performed for all
of the blocks in the message, the final output is calculated. For
SHA-256, this is the concatenation of all of H(N)O, H(N)1, through
H(N)7. For SHA-224, this is the concatenation of H(N)O, H(N)1,
through H(N)6.

6.3. SHA-384 and SHA-512 Initialization

For SHA-384, the initial hash value, H(0), consists of the following
eight 64-bit words, in hex. These words were obtained by taking the
first sixty-four bits of the fractional parts of the square roots of
the ninth through sixteenth prime numbers.

H(0)0 = cbbb9d5dc1059ed8
H(0)1 = 629a292a367cd507
H(0)2 = 9159015a3070dd17
H(0)3 = 152fecd8f70e5939
H(0)4 = 67332667FFc00b31
H(0)5 = 8eb44a8768581511
H(0)6 = dbOc2e0d64F98Fa7
H(0)7 = 47b5481dbefadfas

For SHA-512, the initial hash value, H(0), consists of the following
eight 64-bit words, in hex. These words were obtained by taking the
first sixty-four bits of the fractional parts of the square roots of
the first eight prime numbers.

H(0)0 = 6a09e667T3bcco08
H(0)1 = bb67ae8584caa73b
H(0)2 = 3c6ef372fe94f82b
H(0)3 = ab4ff53a5f1d36F1
H(0)4 = 510e527fade682d1
H(0)5 = 9b05688c2b3e6clf
H(0)6 = 1f83d9abfh41bd6b
H(0)7 = 5be0cd19137e2179

Eastlake 3rd & Hansen Informational [Page 13]

RFC 4634 SHAs and HMAC-SHAs July 2006

6.4. SHA-384 and SHA-512 Processing

SHA-384 and SHA-512 perform identical processing on message blocks
and differ only in how H(O) is initialized and how they produce their
final output. They may be used to hash a message, M, having a length
of L bits, where 0 <= L < 272128. The algorithm uses (1) a message
schedule of eighty 64-bit words, (2) eight working variables of 64
bits each, and (3) a hash value of eight 64-bit words.

The words of the message schedule are labeled WO, W1, ..., W79. The
eight working variables are labeled a, b, ¢, d, e, f, g, and h. The
words of the hash value are labeled H(1)0, H(i)1l, ..., H(i)7, which

will hold the initial hash value, H(0), replaced by each successive
intermediate hash value (after each message block is processed),
H(1), and ending with the final hash value, H(N) after all N blocks
are processed.

The input message is padded as described in Section 4.2 above, then
parsed into 1024-bit blocks, which are considered to be composed of
16 64-bit words M(i)0, M(i)1l, ..., M(i)15. The following
computations are then performed for each of the N message blocks.
All addition is performed modulo 2764.

For i =1 to N

1. Prepare the message schedule W:

0 to 15

M(i)t

16 to 79

SSIGI(W(t-2)) + W(t-7) + SSIGO(t-15) + W(t-16)

nitialize the working variables:
H(i-1)0
H(i-1)1
H(1-1)2
H(1-1)3
H(i-1)4
H(i-1)5
H(i-1)6
H(1-1)7

SQ =-HDQOOT QD =

3. Perform the main hash computation:
For t = 0 to 79

Tl = h + BSIG1(e) + CH(e,f,g) + Kt + Wt
T2 = BSIGO(a) + MAJ(a,b,c)

h=g

g="f

f=c¢e

Eastlake 3rd & Hansen Informational [Page 14]

RFC 4634 SHAs and HMAC-SHAs July 2006

e=d+T1

d=c

c=0Db

b =a

a="T1+ T2

4. Compute the intermediate hash value H(i):

H(i)0 = a + H(i-1)0
H(i)1 = b + H@(i-11
H(i)2 = ¢ + H(i-1)2
H(i)3 = d + H(i-1)3
H(i)4 = e + H(i-1)4
H(i)5 = F + H(i-1)5
H(i)6 = g + H(i-1)6
H(i)7 = h + H(i-1)7

After the above computations have been sequentially performed for all
of the blocks in the message, the final output is calculated. For
SHA-512, this is the concatenation of all of H(N)O, H(N)1, through
H(N)7. For SHA-384, this is the concatenation of H(N)O, H(N)1,
through H(N)5.

7. SHA-Based HMACs

HMAC is a method for computing a keyed MAC (message authentication
code) using a hash function as described in [RFC2104]. It uses a key
to mix in with the input text to produce the final hash.

Sample code is also provided, in Section 8.3 below, to perform HMAC
based on any of the SHA algorithms described herein. The sample code
found in [RFC2104] was written in terms of a specified text size.
Since SHA is defined in terms of an arbitrary number of bits, the
sample HMAC code has been written to allow the text input to HMAC to
have an arbitrary number of octets and bits. A fixed-length
interface is also provided.

8. C Code for SHAs

Below is a demonstration implementation of these secure hash
functions in C. Section 8.1 contains the header file sha.h, which
declares all constants, structures, and functions used by the sha and
hmac functions. Section 8.2 contains the C code for shal.c,
sha224-256.c, sha384-512.c, and usha.c along with sha-private.h,
which provides some declarations common to all the sha functions.
Section 8.3 contains the C code for the hmac functions. Section 8.4
contains a test driver to exercise the code.

Eastlake 3rd & Hansen Informational [Page 15]

RFC 4634 SHAs and HMAC-SHAs July 2006

For each of the digest length $$$, there is the following set of
constants, a structure, and functions:

Constants:

SHA$$$HashSize number of octets in the hash

SHA$$$HashSizeBits number of bits in the hash

SHA$$$ Message_Block_Size
number of octets used in the intermediate
message blocks

shaSuccess = 0 constant returned by each function on success

shaNull =1 constant returned by each function when
presented with a null pointer parameter

shalnputTooLong = 2 constant returned by each function when the
input data is too long

shaStateError constant returned by each function when
SHA$$SInput is called after SHA$$SFinalBits or
SHA$$$Resul t.
Structure:

typedef SHA$$SContext
an opaque structure holding the complete state

for producing the hash

Functions:
int SHA$$$Reset(SHASSContext *);
Reset the hash context state
int SHA$$SInput(SHA$$$SContext *, const uint8_t *octets,
unsigned int bytecount);
Incorporate bytecount octets into the hash.
int SHA$$$FinalBits(SHA$$$Context *, const uint8_t octet,
unsigned int bitcount);
Incorporate bitcount bits into the hash. The bits are in
the upper portion of the octet. SHA$$$Input() cannot be
called after this.
int SHA$$$SResult(SHA$$SContext *,
uint8_t Message Digest[SHA$$SHashSize]);
Do the final calculations on the hash and copy the value
into Message Digest.

In addition, functions with the prefix USHA are provided that take a
SHAversion value (SHA$$$) to select the SHA function suite. They add
the following constants, structure, and functions:

Constants:
shaBadParam constant returned by USHA functions when
presented with a bad SHAversion (SHA$$S)
parameter

Eastlake 3rd & Hansen Informational [Page 16]

RFC 4634 SHAs and HMAC-SHAs July 2006

SHA$$$S SHAversion enumeration values, used by usha
and hmac functions to select the SHA function
suite

Structure:

typedef USHAContext
an opaque structure holding the complete state
for producing the hash

Functions:
int USHAReset(USHAContext *, SHAversion whichSha);
Reset the hash context state.
int USHAInput(USHAContext *,
const uint8 _t *bytes, unsighed int bytecount);
Incorporate bytecount octets into the hash.
int USHAFinalBits(USHAContext *,
const uint8_t bits, unsigned iInt bitcount);
Incorporate bitcount bits into the hash.
int USHAResult(USHAContext *,
uint8_t Message Digest[USHAMaxHashSize]);
Do the final calculations on the hash and copy the value
into Message Digest. Octets in Message Digest beyond
USHAHashSize(whichSha) are left untouched.
int USHAHashSize(enum SHAversion whichSha);
The number of octets in the given hash.
int USHAHashSizeBits(enum SHAversion whichSha);
The number of bits in the given hash.
int USHABlockSize(enum SHAversion whichSha);
The internal block size for the given hash.

The hmac functions follow the same pattern to allow any length of
text input to be used.

Structure:
typedef HMACContext an opaque structure holding the complete state
for producing the hash

Functions:
int hmacReset(HMACContext *ctx, enum SHAversion whichSha,
const unsigned char *key, int key len);
Reset the hash context state.
int hmaclnput(HMACContext *ctx, const unsigned char *text,
int text_len);
Incorporate text len octets into the hash.
int hmacFinalBits(HMACContext *ctx, const uint8_t bits,
unsigned iInt bitcount);
Incorporate bitcount bits into the hash.

Eastlake 3rd & Hansen Informational [Page 17]

RFC 4634 SHAs and HMAC-SHAs July 2006

int hmacResult(HMACContext *ctx,
uint8_t Message Digest[USHAMaxHashSize]);
Do the final calculations on the hash and copy the value
into Message Digest. Octets in Message Digest beyond
USHAHashSize(whichSha) are left untouched.

In addition, a combined interface is provided, similar to that shown
in RFC 2104, that allows a fixed-length text input to be used.

8.1.

int hmac(SHAversion whichSha,
const unsigned char *text, int text len,
const unsigned char *key, int key len,
uint8_t Message_ Digest[USHAMaxHashSize]);
Calculate the given digest for the given text and key, and
return the resulting hash. Octets in Message_Digest beyond
USHAHashSize(whichSha) are left untouched.

The .h File

/******************* See RFC 4634 for details ******************/
#ifndef SHA H
#define _SHA H_

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

Description:

This file implements the Secure Hash Signature Standard
algorithms as defined in the National Institute of Standards
and Technology Federal Information Processing Standards
Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2
published on August 1, 2002, and the FIPS PUB 180-2 Change
Notice published on February 28, 2004.

A combined document showing all algorithms is available at
http://csrc.nist.gov/publications/fips/
fips180-2/fipsl1l80-2withchangenotice.pdf

The five hashes are defined in these sizes:
SHA-1 20 byte / 160 bit
SHA-224 28 byte / 224 bit
SHA-256 32 byte / 256 bit
SHA-384 48 byte / 384 bit
SHA-512 64 byte / 512 bit

#include <stdint.h>

/*

* 1f you do not have the 1SO standard stdint.h header file, then you

Eastlake 3rd & Hansen Informational [Page 18]

RFC 4634 SHAs and HMAC-SHAs July 2006

* must typedef the following:

* name meaning

* uint64_t unsigned 64 bit integer

* uint32_t unsigned 32 bit integer

* uint8_t unsigned 8 bit integer (i.e., unsigned char)
* iInt_leastl6_t integer of >= 16 bits

*

#ifndef _SHA enum_
#define _SHA enum_

/*
* All SHA functions return one of these values.
*/
enum {
shaSuccess = 0,
shaNull, /* Null pointer parameter */
shalnputToolLong, /* input data too long */
shaStateError, /* called Input after FinalBits or Result */
shaBadParam /* passed a bad parameter */

}:
#endif /* _SHA enum_ */

/*
* These constants hold size information for each of the SHA
* hashing operations
*/
enum {
SHA1 Message_Block Size = 64, SHA224 Message Block Size = 64,
SHA256 Message Block Size = 64, SHA384 Message Block Size = 128,
SHA512 Message Block Size = 128,
USHA Max_ Message Block Size = SHA512 Message Block Size,

SHA1lHashSize = 20, SHA224HashSize = 28, SHA256HashSize = 32,
SHA384HashSize = 48, SHA512HashSize = 64,
USHAMaxHashSize = SHA512HashSize,

SHAl1HashSizeBits = 160, SHA224HashSizeBits = 224,
SHA256HashSizeBits 256, SHA384HashSizeBits = 384,
SHA512HashSi1zeBits 512, USHAMaxHashSizeBits = SHA512HashSizeBits

};

/*
* These constants are used in the USHA (unified sha) functions.
*/
typedef enum SHAversion {
SHA1, SHA224, SHA256, SHA384, SHA512
} SHAversion;

Eastlake 3rd & Hansen Informational [Page 19]

RFC 4634 SHAs and HMAC-SHAs July 2006

/*
* This structure will hold context information for the SHA-1
* hashing operation.
*/
typedef struct SHA1Context {
uint32_t Intermediate Hash[SHAlHashSize/4]; /* Message Digest */

uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */

int_leastl6_t Message Block Index; /* Message Block array index */
/* 512-bit message blocks */
uint8_t Message Block[SHA1l Message Block Size];

int Computed; /* Is the digest computed? */
int Corrupted; /* Is the digest corrupted? */
} SHA1Context;

/*
* This structure will hold context information for the SHA-256
* hashing operation.
*/
typedef struct SHA256Context {
uint32_t Intermediate Hash[SHA256HashSize/4]; /* Message Digest */

uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */

int_leastl6_t Message Block Index; /* Message Block array index */
/* 512-bit message blocks */
uint8_t Message Block[SHA256 Message Block Size];

int Computed; /* Is the digest computed? */
int Corrupted; /* Is the digest corrupted? */
} SHA256Context;

/*
* This structure will hold context information for the SHA-512
* hashing operation.
*/
typedef struct SHA512Context {
#ifdef USE_32BIT_ONLY
uint32_t Intermediate Hash[SHA512HashSize/4]; /* Message Digest */
uint32_t Length[4]; /* Message length in bits */
#else /* TUSE_32BIT_ONLY */
uint64_t Intermediate_Hash[SHA512HashSize/8]; /* Message Digest */
uint64_t Length_Low, Length_High; /* Message length in bits */
#endif /* USE_32BIT_ONLY */

Eastlake 3rd & Hansen Informational [Page 20]

RFC 4634 SHAs and HMAC-SHAs July 2006

int_leastl6_t Message Block Index; /* Message Block array index */
/* 1024-bit message blocks */
uint8_t Message Block[SHA512 Message_Block Size];

int Computed; /* 1Is the digest computed?*/
int Corrupted; /* lIs the digest corrupted? */
} SHA512Context;

/*

* This structure will hold context information for the SHA-224

* hashing operation. It uses the SHA-256 structure for computation.
*/

typedef struct SHA256Context SHA224Context;

/*

* This structure will hold context information for the SHA-384

* hashing operation. It uses the SHA-512 structure for computation.
*/

typedef struct SHA512Context SHA384Context;

/*
* This structure holds context information for all SHA
* hashing operations.
*/
typedef struct USHAContext {
int whichSha; /* which SHA is being used */
union {
SHA1Context shalContext;
SHA224Context sha224Context; SHA256Context sha256Context;
SHA384Context sha384Context; SHA512Context sha5l2Context;
} ctx;
} USHAContext;

/*
* This structure will hold context information for the HMAC
* keyed hashing operation.

*/

typedef struct HMACContext {
int whichSha; /* which SHA is being used */
int hashSize; /* hash size of SHA being used */
int blockSize; /* block size of SHA being used */
USHAContext shaContext; /* SHA context */

unsigned char k_opad[USHA Max_ Message Block Size];
/* outer padding - key XORd with opad */
} HMACContext;

Eastlake 3rd & Hansen Informational [Page 21]

RFC 4634

/*
* Functio
*/

/* SHA-1 */

extern int
extern int

extern int
extern int
/* SHA-224
extern int
extern int
extern int
extern int
/* SHA-256
extern int
extern int
extern int
extern int
/* SHA-384
extern int
extern int
extern int
extern int
/* SHA-512
extern int
extern int

extern int

extern int

Eastlake 3r

SHAs and HMAC-SHAs

n Prototypes

SHA1Reset(SHAL1Context *);
SHALlInput(SHA1Context *, const uint8_t *bytes,
unsigned int bytecount);
SHA1FinalBits(SHA1Context *, const uint8_t bits,
unsigned iInt bitcount);
SHA1Result(SHA1Context *,
uint8_t Message Digest[SHAlHashSize]);

*/
SHA224Reset(SHA224Context *);
SHA224 Input(SHA224Context *, const uint8_t *bytes,
unsigned iInt bytecount);
SHA224FinalBits(SHA224Context *, const uint8_t bits,
unsigned int bitcount);
SHA224Resul t(SHA224Context *,
uint8_t Message_ Digest[SHA224HashSize]);

*/
SHA256Reset(SHA256Context *);
SHA256 Input(SHA256Context *, const uint8_t *bytes,
unsigned int bytecount);
SHA256FinalBits(SHA256Context *, const uint8_t bits,
unsigned iInt bitcount);
SHA256Resull t(SHA256Context *,
uint8_t Message Digest[SHA256HashSize]);

*/
SHA384Reset(SHA384Context *);
SHA384 Input(SHA384Context *, const uint8_t *bytes,
unsigned iInt bytecount);
SHA384FinalBits(SHA384Context *, const uint8_t bits,
unsigned int bitcount);
SHA384Resul t(SHA384Context *,
uint8_t Message Digest[SHA384HashSize]);

*/
SHA512Reset(SHA512Context *);
SHA512 Input(SHA512Context *, const uint8_t *bytes,
unsigned int bytecount);
SHA512FinalBits(SHA512Context *, const uint8_t bits,
unsigned iInt bitcount);
SHA512Result(SHA512Context *,
uint8_t Message Digest[SHA512HashSize]);

d & Hansen Informational

July 2006

[Page 22]

RFC 4634

/* Unified
extern int
extern int

extern int
extern int
extern 1

extern 1
extern int

SHAs and HMAC-SHAs July 2006

SHA functions, chosen by whichSha */
USHAReset(USHAContext *, SHAversion whichSha);
USHAInput(USHAContext *,

const uint8_t *bytes, unsignhed int bytecount);
USHAFinalBits(USHAContext *,

const uint8_t bits, unsigned int bitcount);

USHAResul t(USHAContext *,

uint8_t Message Digest[USHAMaxHashSize]);

t USHABlockSize(enum SHAversion whichSha);

USHAHashSize(enum SHAversion whichSha);
USHAHashSi1zeBits(enum SHAversion whichSha);

/*
* HMAC Keyed-Hashing for Message Authentication, RFC2104,
* for all SHAs.
* This interface allows a fixed-length text input to be used.
*/
extern int hmac(SHAversion whichSha, /* which SHA algorithm to use */
const unsigned char *text, /* pointer to data stream */
int text_len, /* length of data stream */
const unsigned char *key, /* pointer to authentication key */
int key len, /* length of authentication key */

uint8_t digest[USHAMaxHashSize]); /* caller digest to fill in */

/*

* HMAC Keyed-Hashing for Message Authentication, RFC2104,
* for all SHAs.
* This interface allows any length of text input to be used.

*/
extern int

extern int

extern int

hmacReset(HMACContext *ctx, enum SHAversion whichSha,
const unsigned char *key, int key len);

hmaclnput(HMACContext *ctx, const unsigned char *text,
int text_len);

hmacFinalBits(HMACContext *ctx, const uint8_t bits,
unsigned iInt bitcount);

extern int hmacResult(HMACContext *ctx,

uint8_t digest[USHAMaxHashSize]);

#endif /* SHA H_ */

Eastlake 3rd & Hansen Informational [Page 23]

RFC 4634 SHAs and HMAC-SHAs July 2006

8.2. The SHA Code

This code is primarily intended as expository and could be optimized
further. For example, the assignment rotations through the variables
a, b, ..., h could be treated as a cycle and the loop unrolled,
rather than doing the explicit copying.

Note that there are alternative representations of the Ch() and MajQ
functions controlled by an ifdef.

8.2.1. shal.c

/*

Description:
This file implements the Secure Hash Signature Standard
algorithms as defined in the National Institute of Standards
and Technology Federal Information Processing Standards
Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2
published on August 1, 2002, and the FIPS PUB 180-2 Change
Notice published on February 28, 2004.

A combined document showing all algorithms is available at
http://csrc.nist.gov/publications/fips/
Fips180-2/Fipsl180-2withchangenotice.pdf

The SHA-1 algorithm produces a 160-bit message digest for a
given data stream. It should take about 2**n steps to find a
message with the same digest as a given message and

2**(n/2) to find any two messages with the same digest,

when n is the digest size in bits. Therefore, this

algorithm can serve as a means of providing a

"fingerprint” for a message.

Portability Issues:
SHA-1 is defined in terms of 32-bit "words"™. This code
uses <stdint.h> (included via "sha.h') to define 32 and 8

bit unsigned integer types. |If your C compiler does not
support 32 bit unsigned integers, this code is not
appropriate.

Caveats:

SHA-1 is designed to work with messages less than 2764 bits
long. This implementation uses SHAllnput() to hash the bits
that are a multiple of the size of an 8-bit character, and then
uses SHAlFinalBits() to hash the final few bits of the input.

ok R 3k b X b X b X oF X o X 3k X 3k X 3k o % b X b X o X ok X ok X %

*
N

Eastlake 3rd & Hansen Informational [Page 24]

RFC 4634 SHAs and HMAC-SHAs July 2006

#include "'sha.h"
#include "sha-private.h"

/*
* Define the SHA1l circular left shift macro
*/
#define SHA1 ROTL(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))

/*
* add ""length”™ to the length
*/
static uint32_t addTemp;
#define SHAlAddLength(context, length) \
(addTemp = (context)->Length_Low, \
(context)->Corrupted = \
(((context)->Length_Low += (Iength)) < addTemp) && \
(++(context)->Length _High == 0) ? 0

/* Local Function Prototypes */

static void SHAlFinalize(SHA1Context *context, uint8_t Pad Byte);
static void SHAlPadMessage(SHAlContext *, uint8_t Pad Byte);
static void SHA1ProcessMessageBlock(SHA1Context *);

/*
SHA1Reset

Description:
This function will initialize the SHAlContext in preparation
for computing a new SHA1l message digest.

Parameters:
context: [in/out]
The context to reset.

Returns:
sha Error Code.

O R X b X o X 3k X % % %

=
N

SHA1Reset(SHA1Context *context)

if (Icontext)
return shaNull;

context->Length_Low
context->Length_High
context->Message Block_Index

I
[ejeoNe]

Eastlake 3rd & Hansen Informational [Page 25]

RFC 4634 SHAs and HMAC-SHAs July 2006

/* Initial Hash Values: FIPS-180-2 section 5.3.1 */

context->Intermediate Hash[O0] = 0x67452301;
context->Intermediate Hash[1] = OXEFCDAB89;
context->Intermediate_ Hash[2] = Ox98BADCFE;
context->Intermediate Hash[3] = 0x10325476;
context->Intermediate Hash[4] = OxC3D2E1FO;
context->Computed = 0;

context->Corrupted = 0O;

return shaSuccess;

}
/*

* SHAllnput

*

* Description:

* This function accepts an array of octets as the next portion
* of the message.

*

* Parameters:

* context: [in/out]

* The SHA context to update

* message_array: [in]

* An array of characters representing the next portion of
* the message.

* length: [in]

* The length of the message iIn message array
*

* Returns:

* sha Error Code.

*

*/

int SHAllnput(SHA1Context *context,
const uint8_t *message_array, unsigned length)
{

if (Mlength)
return shaSuccess;

if (Jcontext || !message_array)
return shaNull;

if (context->Computed) {

context->Corrupted = shaStateError;
return shaStateError;

}

if (context->Corrupted)

Eastlake 3rd & Hansen Informational [Page 26]

RFC 4634 SHAs and HMAC-SHAs July 2006

return context->Corrupted;

while (length-- && !context->Corrupted) {
context->Message Block[context->Message Block Index++] =
(*message_array & OxFF);

if (ISHAlAddLength(context, 8) &&
(context->Message Block Index == SHAl1 Message Block Size))
SHA1ProcessMessageBlock(context);

message_array++;

}

return shaSuccess;

}

N
*

SHA1FinalBits

Description:
This function will add in any final bits of the message.

Parameters:

context: [in/out]
The SHA context to update

message bits: [in]
The final bits of the message, in the upper portion of the
byte. (Use Ob###00000 instead of ObOOO0O### to input the
three bits ###.)

length: [in]
The number of bits in message bits, between 1 and 7.

Returns:
sha Error Code.

ok R 3 R X b X o X 3k X % X X % X

*/

int SHA1lFinalBits(SHAlContext *context, const uint8 t message bits,
unsigned int length)

{

uint8_t masks[8] = {
/* 0 0b00000000 */ 0x00, /*
/* 2 0b11000000 */ 0OxCO, /*
/* 4 0b11110000 */ OxFO, /*
/* 6 0b11111100 */ OxFC, /*

Ob10000000 */ 0x80,
Ob11100000 */ OXEO,
0Ob11111000 */ OxF8,
Ob11111110 */ OXFE

~NOow

}:

uint8_t markbit[8] = {
/* 0 0b10000000 */ 0x80, /*
/* 2 0b00100000 */ 0x20, /*
/* 4 0b00001000 */ 0x08, /*

0Ob01000000 */ 0x40,
Ob00010000 */ 0x10,
0b00000100 */ 0x04,

awr

Eastlake 3rd & Hansen Informational [Page 27]

RFC 4634 SHAs and HMAC-SHAs July 2006

/* 6 0b00000010 */ 0x02, /* 7 0bO0000001 */ Ox01
}:

if (Mlength)
return shaSuccess;

if (Icontext)
return shaNull;

if (context->Computed || (length >= 8) || (length == 0)) {
context->Corrupted = shaStateError;
return shaStateError;

}

if (context->Corrupted)
return context->Corrupted;

SHA1AddLength(context, length);
SHAlFinalize(context,
(uint8_t) ((message_bits & masks[length]) | markbit[length]));

return shaSuccess;

hs

/*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message Digest array provided by the caller.
* NOTE: The Ffirst octet of hash is stored in the Oth element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/

int SHA1Result(SHA1Context *context,
uint8_t Message_Digest[SHAlHashSize])
{

int i;

Eastlake 3rd & Hansen Informational [Page 28]

RFC 4634 SHAs and HMAC-SHAs July 2006
if (Jcontext || "Message Digest)
return shaNull;

if (context->Corrupted)
return context->Corrupted;

it (Jcontext->Computed)
SHAl1Finalize(context, 0x80);

for (i = 0; 1 < SHAlHashSize; ++i)
Message_Digest[i] = (uint8_t) (context->Intermediate_ Hash[i1>>2]
> 8 * (3 - (1 &0x03)));

return shaSuccess;

}
/*
* SHAlFinalize
*
* Description:
* This helper function finishes off the digest calculations.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* Pad_Byte: [in]
* The last byte to add to the digest before the 0O-padding
* and length. This will contain the last bits of the message
* followed by another single bit. IT the message was an
* exact multiple of 8-bits long, Pad Byte will be 0x80.
*
* Returns:
* sha Error Code.
*
*/
static void SHAlFinalize(SHA1Context *context, uint8_t Pad Byte)
{
int i;

SHA1PadMessage(context, Pad_Byte);

/* message may be sensitive, clear it out */

for (i = 0; 1 < SHA1l Message_ Block Size; ++i)
context->Message Block[i] = O;

context->Length Low = 0; /* and clear length */

context->Length_High = O;

context->Computed = 1;

/*

Eastlake 3rd & Hansen Informational [Page 29]

RFC 4634 SHAs and HMAC-SHAs July 2006

SHA1PadMessage

Description:
According to the standard, the message must be padded to an
even 512 bits. The Ffirst padding bit must be a *1”. The last
64 bits represent the length of the original message. All bits
in between should be 0. This helper function will pad the
message according to those rules by filling the Message_Block
array accordingly. When it returns, it can be assumed that the
message digest has been computed.

Parameters:

context: [in/out]
The context to pad

Pad_Byte: [in]
The last byte to add to the digest before the 0O-padding
and length. This will contain the last bits of the message
followed by another single bit. IT the message was an
exact multiple of 8-bits long, Pad Byte will be 0x80.

Returns:
Nothing.

ok R % R X b X oF X o X 3 X % % X ok X ok X %

*/
static void SHAlPadMessage(SHAlContext *context, uint8_t Pad Byte)
{/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
block.

*

*/
if (context->Message Block Index >= (SHA1l Message Block Size - 8)) {
context->Message Block[context->Message Block Index++] = Pad_Byte;
while (context->Message Block_ Index < SHA1 Message_Block Size)
context->Message Block[context->Message Block Index++] = O;

SHA1ProcessMessageBlock(context);
} else
context->Message Block[context->Message Block Index++] = Pad_Byte;

while (context->Message Block_ Index < (SHA1l_Message Block Size - 8))
context->Message Block[context->Message Block Index++] = O;

/*
* Store the message length as the last 8 octets
*/

context->Message Block[56]

context->Message Block[57]

(uint8_t) (context->Length_High >> 24);
(uint8_t) (context->Length_High >> 16);

Eastlake 3rd & Hansen Informational [Page 30]

RFC 4634 SHAs and HMAC-SHAs July 2006

context->Message Block[58]
context->Message Block[59]
context->Message Block[60]
context->Message Block[61]
context->Message Block[62]
context->Message Block[63]

(uint8_t) (context->Length_High >> 8);
(uint8_t) (context->Length_High);
(uint8_t) (context->Length_Low >> 24);
(uint8_t) (context->Length_Low >> 16);
(uint8_t) (context->Length_Low >> 8);
(uint8_t) (context->Length_Low);

SHA1ProcessMessageBlock(context);

}
/*
* SHA1ProcessMessageBlock
*
* Description:
* This helper function will process the next 512 bits of the
* message stored in the Message_ Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*/
static void SHA1ProcessMessageBlock(SHA1Context *context)
{

/* Constants defined in FIPS-180-2, section 4.2.1 */
const uint32_t K[4] = {
0x5A827999, Ox6ED9EBA1, O0x8F1BBCDC, OxCA62C1D6

}:

int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_.t A, B, C, D, E; /* Word buffers */
/*

* Initialize the first 16 words iIn the array W

*/

for (t = 0; t < 16; t++) {

W[t] = (uint32_t)context->Message Block[t * 4]) << 24;
W[t] I= (Quint32_t)context->Message_Block[t * 4 + 1]) << 16;
W[t] |I= (Quint32_t)context->Message_Block[t * 4 + 2]) << 8;
WEt] I= (uint32_t)context->Message_Block[t * 4 + 3]);

¥

Eastlake 3rd & Hansen Informational [Page 31]

RFC 4634 SHAs and HMAC-SHAs July 2006

for (t
WLt]

context->Intermediate Hash[O];
context->Intermediate Hash[1];
context->Intermediate Hash[2];
context->Intermediate Hash[3];
context->Intermediate_Hash[4];

16; t < 80; t++)
SHA1_ROTL(1, W[t-3] ™~ W[t-8] ™ W[t-14] ™ W[t-16]);

mooOw>
I n

-—h

o

=
~

0; t < 20; t++) {
SHA1_ROTL(5,A) + SHA _Ch(B, C, D) + E + W[t] + K[O];

-
@
3

T~

D;

C;
SHA1_ROTL(30,B);
A;

temp;

>wWOom
o nu

20; t < 40; t++) {
SHA1_ROTL(5,A) + SHA Parity(B, C, D) + E + W[t] + K[1];

-
o
=

~
~+
non

= C;

= SHA1_ROTL(30,B);
= A;

= temp;

0; t < 60; t++) {
HA1_ROTL(5,A) + SHA_Maj(B, C, D) + E + W[t] + K[2];

(P

= D;

= C;

= SHA1_ROTL(30,B);
= A;

= temp;

60; t < 80; t++) {
SHA1 ROTL(5,A) + SHA Parity(B, C, D) + E + W[t] + K[3];

-
o
=

~
~+
non

C;

SHA1 ROTL(30,B);
A;

temp;

}

context->Intermediate Hash[0] +=
context->Intermediate Hash[1l] +=
context->Intermediate Hash[2] +=

O w>

Eastlake 3rd & Hansen Informational [Page 32]

RFC 4634 SHAs and HMAC-SHAs July 2006

context->Intermediate Hash[3] += D;
context->Intermediate_Hash[4] += E

context->Message Block Index = 0;

¥
8.2.2. sha224-256.c

/*************************** Sha224_256 .C ***************************/
/********************* See RFC 4634 for details *********************/
/*
Description:

This file implements the Secure Hash Signature Standard

algorithms as defined in the National Institute of Standards

and Technology Federal Information Processing Standards

Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2

published on August 1, 2002, and the FIPS PUB 180-2 Change

Notice published on February 28, 2004.

A combined document showing all algorithms is available at
http://csrc.nist_gov/publications/fips/
Fips180-2/fipsl80-2withchangenotice.pdf

*

*

*

*

*

*

*

*

*

*

*

*

* The SHA-224 and SHA-256 algorithms produce 224-bit and 256-bit
* message digests for a given data stream. It should take about
* 2**n steps to find a message with the same digest as a given
* message and 2**(n/2) to find any two messages with the same
* digest, when n is the digest size in bits. Therefore, this
* algorithm can serve as a means of providing a
* "fingerprint” for a message.
*

*

*

*

*

*

*

*

*

*

*

*

*

*

Portability Issues:
SHA-224 and SHA-256 are defined in terms of 32-bit "words™.
This code uses <stdint.h> (included via "sha.h'™) to define 32
and 8 bit unsigned integer types. If your C compiler does not
support 32 bit unsigned integers, this code is not
appropriate.

Caveats:
SHA-224 and SHA-256 are designed to work with messages less
than 2764 bits long. This implementation uses SHA224/256Input()
to hash the bits that are a multiple of the size of an 8-bit
character, and then uses SHA224/256FinalBits() to hash the
final few bits of the input.
*/

#include "sha.h"
#include "sha-private.h"

Eastlake 3rd & Hansen Informational [Page 33]

RFC 4634 SHAs and HMAC-SHAs July 2006

/* Define the SHA shift, rotate left and rotate right macro */
#define SHA256 SHR(bits,word) ((word) >> (bits))
#define SHA256 ROTL(bits,word)

(((word) << (bits)) | ((word) >> (32-(bits))))
#define SHA256 ROTR(bits,word) \

(((word) >> (bits)) | ((word) << (32-(bits))))

/* Define the SHA SIGMA and sigma macros */
#define SHA256_SIGMAO(word) \

(SHA256_ROTR(2,word) ~ SHA256 ROTR(13,word) ~ SHA256_ROTR(22,word))
#define SHA256_SIGMA1(word) \

(SHA256_ROTR(6,word) ~ SHA256_ROTR(11,word) ~ SHA256_ROTR(25,word))
#define SHA256 sigmaO(word) \

(SHA256_ROTR(7,word) ~ SHA256_ROTR(18,word) ~ SHA256 SHR(3,word))
#define SHA256_sigmal(word) \

(SHA256_ROTR(17,word) ~ SHA256 ROTR(19,word) ~ SHA256_SHR(10,word))

/*
* add "length" to the length
*/
static uint32_t addTemp;
#define SHA224 256AddLength(context, length) \
(addTemp = (context)->Length_Low, (context)->Corrupted = \
(((context)->Length _Low += (length)) < addTemp) && \
(++(context)->Length High == 0) ? 1 : 0)

/* Local Function Prototypes */
static void SHA224 256Finalize(SHA256Context *context,

uint8_t Pad_Byte);
static void SHA224 256PadMessage(SHA256Context *context,

uint8_t Pad Byte);
static void SHA224 256ProcessMessageBlock(SHA256Context *context);
static int SHA224 256Reset(SHA256Context *context, uint32_t *HO);
static int SHA224 256ResultN(SHA256Context *context,

uint8_t Message_Digest[], int HashSize);

/* Initial Hash Values: FIPS-180-2 Change Notice 1 */

static uint32_t SHA224 HO[SHA256HashSize/4] = {
OxC1059ED8, 0x367CD507, 0x3070DD17, OxF70E5939,
OxFFC00B31, 0x68581511, Ox64F98FA7, OxXBEFA4FA4

};

/* Initial Hash Values: FIPS-180-2 section 5.3.2 */
static uint32_t SHA256 HO[SHA256HashSize/4] = {
Ox6A09E667, OxBB67AE85, Ox3C6EF372, OXA54FF53A,
Ox510E527F, 0x9B05688C, Ox1F83D9AB, Ox5BEOCD19

};

Eastlake 3rd & Hansen Informational [Page 34]

RFC 4634 SHAs and HMAC-SHAs July 2006

N
*

SHA224Reset

Description:
This function will initialize the SHA384Context in preparation
for computing a new SHA224 message digest.

Parameters:
context: [in/out]
The context to reset.

Returns:
sha Error Code.

% ok X ok X 3 % % % X %

*/
int SHA224Reset(SHA224Context *context)

{
return SHA224 256Reset(context, SHA224 HO);

}

N
*

SHA2241nput

Description:
This function accepts an array of octets as the next portion
of the message.

Parameters:

context: [in/out]
The SHA context to update

message_array: [in]
An array of characters representing the next portion of
the message.

length: [in]
The length of the message iIn message array

Returns:
sha Error Code.

% R X b X oF X 3k X 3k X % % % % X %

*/

int SHA224Input(SHA224Context *context, const uint8_t *message array,
unsigned int length)

{

return SHA256Input(context, message _array, length);
by

/*
* SHA224FinalBits

*

Eastlake 3rd & Hansen Informational [Page 35]

RFC 4634 SHAs and HMAC-SHAs July 2006

Description:
This function will add in any final bits of the message.

Parameters:

context: [in/out]
The SHA context to update

message_bits: [in]
The final bits of the message, in the upper portion of the
byte. (Use Ob###00000 instead of ObOO00O### to input the
three bits ###.)

length: [in]
The number of bits in message bits, between 1 and 7.

Returns:
sha Error Code.

o R X b X b X o X % X % % ¥

*/
int SHA224FinalBits(SHA224Context *context,

const uint8_t message bits, unsigned int length)
{

return SHA256FinalBits(context, message bits, length);
}

/*
* SHA224Result
*
* Description:
* This function will return the 224-bit message
* digest into the Message Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 28th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA hash.
* Message Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*/

int SHA224Result(SHA224Context *context,
uint8_t Message Digest[SHA224HashSize])

return SHA224 256ResultN(context, Message Digest, SHA224HashSize);
}

/*
* SHA256Reset

Eastlake 3rd & Hansen Informational [Page 36]

RFC 4634 SHAs and HMAC-SHAs July 2006

Description:
This function will initialize the SHA256Context in preparation
for computing a new SHA256 message digest.

Parameters:
context: [in/out]
The context to reset.

Returns:
sha Error Code.

ok o % o X b X ok X %

*/
int SHA256Reset(SHA256Context *context)

return SHA224 256Reset(context, SHA256 HO);

}
/*
* SHA2561nput
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message array: [in]
* An array of characters representing the