
Internet Engineering Task Force P. Hallam-Baker
Internet-Draft Comodo Group Inc.
Intended status: Standards Track June 11, 2013
Expires: December 13, 2013

Binary Encodings for JavaScript Object
Notation: JSON-B, JSON-C, JSON-D

draft-hallambaker-jsonbcd-00

Abstract

Three binary encodings for JavaScript Object Notation (JSON) are presented. JSON-B (Binary) is a
strict superset of the JSON encoding that permits efficient binary encoding of intrinsic JavaScript
data types. JSON-C (Compact) is a strict superset of JSON-B that supports compact representation
of repeated data strings with short numeric codes. JSON-D (Data) supports additional binary data
types for integer and floating point representations for use in scientific applications where
conversion between binary and decimal representations would cause a loss of precision.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 13, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Definitions

1.1. Requirements Language

2. Introduction

2.1. Objectives

3. Extended JSON Grammar

4. JSON-B

4.1. JSON-B Examples

5. JSON-C

5.1. JSON-C Examples

6. JSON-D (Data)

7. Acknowledgements

8. Security Considerations

9. IANA Considerations

10. Normative References

Author's Address

1. Definitions

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119].

2. Introduction

JavaScript Object Notation (JSON) is a simple text encoding for the JavaScript Data model that has
found wide application beyond its original field of use. In particular JSON has rapidly become a
preferred encoding for Web Services.

JSON encoding supports just four fundamental data types (integer, floating point, string and
boolean), arrays and objects which consist of a list of tag-value pairs.

Although the JSON encoding is sufficient for many purposes it is not always efficient. In particular
there is no efficient representation for blocks of binary data. Use of base64 encoding increases
data volume by 33%. This overhead increases exponentially in applications where nested binary
encodings are required making use of JSON encoding unsatisfactory in cryptographic applications
where nested binary structures are frequently required.

Another source of inefficiency in JSON encoding is the repeated occurrence of object tags. A JSON
encoding containing an array of a hundred objects such as {"first":1,"second":2} will contain a
hundred occurrences of the string "first" (seven bytes) and a hundred occurrences of the string
"second" (eight bytes). Using two byte code sequences in place of strings allows a saving of 11
bytes per object without loss of information, a saving of 50%.

A third objection to the use of JSON encoding is that floating point numbers can only be
represented in decimal form and this necessarily involves a loss of precision when converting
between binary and decimal representations. While such issues are rarely important in network
applications they can be critical in scientific applications. It is not acceptable for saving and
restoring a data set to change the result of a calculation.

2.1. Objectives

The following were identified as core objectives for a binary JSON encoding:

Low overhead encoding and decoding

Easy to convert existing encoders and decoders to add binary support

Efficient encoding of binary data

Ability to convert from JSON to binary encoding in a streaming mode (i.e. without reading the
entire binary data block before beginning encoding.

Lossless encoding of JavaScript data types

The ability to support JSON tag compression and extended data types are considered
desirable but not essential for typical network applications.

Three binary encodings are defined:

JSON-B (Binary)
Simply encodes JSON data in binary. Only the JavaScript data model is supported (i.e. atomic
types are integers, double or string). Integers may be 8, 16, 32 or 64 bits either signed or
unsigned. Floating points are IEEE 754 binary64 format [IEEE-754]. Supports chunked
encoding for binary and UTF-8 string types.

JSON-C (Compact)
As JSON-B but with support for representing JSON tags in numeric code form (16 bit code
space). This is done for both compact encoding and to allow simplification of
encoders/decoders in constrained environments. Codes may be defined inline or by
reference to a known dictionary of codes referenced via a digest value.

JSON-D (Data)
As JSON-C but with support for representing additional data types without loss of precision. In
particular other IEEE 754 floating point formats, both binary and decimal and Intel's 80 bit
floating point, plus 128 bit integers and bignum integers.

3. Extended JSON Grammar

The JSON-B, JSON-C and JSON-D encodings are all based on the JSON grammar [RFC4627] using
the same syntactic structure but different lexical encodings.

JSON-B0 and JSON-C0 replace the JSON lexical encodings for strings and numbers with binary
encodings. JSON-B1 and JSON-C1 allow either lexical encoding to be used. Thus any valid JSON
encoding is a valid JSON-B1 or JSON-C1 encoding.

The grammar of JSON-B, JSON-C and JSON-D is a superset of the JSON grammar. The following
productions are added to the grammar:

x-value
Binary encodings for data values. As the binary value encodings are all self delimiting

x-member
An object member where the value is specified as an X-value and thus does not require a
value-separator.

b-value
Binary data encodings defined in JSON-B.

b-string
Defined length string encoding defined in JSON-B.

c-def
Tag code definition defined in JSON-C. These may only appear before the beginning of an
Object or Array and before any preceeding white space.

c-tag
Tag code value defined in JSON-C.

d-value
Additional binary data encodings defined in JSON-D for use in scientific data applications.

The JSON grammar is modified to permit the use of x-value productions in place of (value value-
separator) :

JSON-text = (object / array)

 object = *cdef begin-object [
 *(member value-separator | x-member)
 (member | x-member)] end-object

 member = tag value
 x-member = tag x-value

 tag = string name-separator | b-string | c-tag

 array = *cdef begin-array [*(value value-separator | x-value)
 (value | x-value)] end-array

 x-value = b-value / d-value

 value = false / null / true / object / array / number / string

 name-separator = ws %x3A ws ; : colon
 value-separator = ws %x2C ws ; , comma

The following lexical values are unchanged:

 begin-array = ws %x5B ws ; [left square bracket
 begin-object = ws %x7B ws ; { left curly bracket
 end-array = ws %x5D ws ;] right square bracket
 end-object = ws %x7D ws ; } right curly bracket

 ws = *(%x20 %x09 %x0A %x0D)

 false = %x66.61.6c.73.65 ; false
 null = %x6e.75.6c.6c ; null
 true = %x74.72.75.65 ; true

The productions number and string are defined as before:

 number = [minus] int [frac] [exp]
 decimal-point = %x2E ; .
 digit1-9 = %x31-39 ; 1-9
 e = %x65 / %x45 ; e E
 exp = e [minus / plus] 1*DIGIT
 frac = decimal-point 1*DIGIT
 int = zero / (digit1-9 *DIGIT)
 minus = %x2D ; -
 plus = %x2B ; +
 zero = %x30 ; 0

 string = quotation-mark *char quotation-mark
 char = unescaped /
 escape (%x22 / %x5C / %x2F / %x62 / %x66 /
 %x6E / %x72 / %x74 / %x75 4HEXDIG)

 escape = %x5C ; \
 quotation-mark = %x22 ; "
 unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

4. JSON-B

The JSON-B encoding defines the b-value and b-string productions:

 b-value = b-atom | b-string | b-data | b-integer |
 b-float

 b-string = *(string-chunk) string-term
 b-data = *(data-chunk) data-last

 b-integer = p-int8 | p-int16 | p-int32 | p-int64 | p-bignum16 |
 n-int8 | n-int16 | n-int32 | n-int64 | n-bignum16

 b-float = binary64

The lexical encodings of the productions are defined in the following table where the column 'tag'
specifies the byte code that begins the production, 'Fixed' specifies the number of data bytes that
follow and 'Length' specifies the number of bytes used to define the length of a variable length field

following the data bytes:

JSON-B Lexical Encodings

Production Tag Fixed Length Data Description

string-term x80 - 1 Terminal String 8 bit length

string-term x81 - 2 Terminal String 16 bit length

string-term x82 - 4 Terminal String 32 bit length

string-term x83 - 8 Terminal String 64 bit length

string-chunk x84 - 1 Non-Terminal String 8 bit length

string-chunk x85 - 2 Non-Terminal String 16 bit length

string-chunk x86 - 4 Non-Terminal String 32 bit length

string-chunk x87 - 8 Non-Terminal String 64 bit length

data-term x88 - 1 Terminal Data 8 bit length

data-term x89 - 2 Terminal Data 16 bit length

data-term x8A - 4 Terminal Data 32 bit length

data-term x8B - 8 Terminal Data 64 bit length

data-chunk x8C - 1 Non-Terminal Data 8 bit length

data-chunk x8D - 2 Non-Terminal Data 16 bit length

data-chunk x8E - 4 Non-Terminal Data 32 bit length

data-chunk x8F - 8 Non-Terminal String 64 bit length

p-int8 xA0 1 - Positive 8 bit Integer

p-int16 xA1 2 - Positive 16 bit Integer

p-int32 xA2 4 - Positive 32 bit Integer

p-int64 xA3 8 - Positive 64 bit Integer

p-bignum16 xA5 - 2 Positive Bignum 16 bit length

n-int8 xA8 1 - Negative 8 bit Integer

n-int16 xA9 2 - Negative 16 bit Integer

n-int32 xAA 4 - Negative 32 bit Integer

n-int64 xAB 8 - Negative 64 bit Integer

n-bignum16 xAD - 2 Negative Bignum 16 bit length

binary64 x92 8 - IEEE 754 Floating Point binary64

b-value xB0 - - True

b-value xB1 - - False

b-value xB2 - - Null

A data type commonly used in networking that is not defined in this scheme is a datetime
representation.

4.1. JSON-B Examples

The following examples show examples of using JSON-B encoding:

 Binary Encoding JSON Equivalent

A0 2A 42 (as 8 bit integer)
A1 00 2A 42 (as 16 bit integer)
A2 00 00 00 2A 42 (as 32 bit integer)
A3 00 00 00 00 00 00 00 2A 42 (as 64 bit integer)
A5 00 01 42 42 (as Bignum)

80 05 48 65 6c 6c 6f "Hello" (single chunk)
81 00 05 48 65 6c 6c 6f "Hello" (single chunk)
84 05 48 65 6c 6c 6f 80 00 "Hello" (as two chunks)

92 3f f0 00 00 00 00 00 00 1.0
92 40 24 00 00 00 00 00 00 10.0
92 40 09 21 fb 54 44 2e ea 3.14159265359
92 bf f0 00 00 00 00 00 00 -1.0

B0 true
B1 false
B2 null

5. JSON-C

JSON-C (Compressed) permits numeric code values to be substituted for strings and binary data.
Tag codes MAY be 8, 16 or 32 bits long encoded in network byte order.

Tag codes MUST be defined before they are referenced. A Tag code MAY be defined before the
corresponding data or string value is used or at the same time that it is used.

A dictionary is a list of tag code definitions. An encoding MAY incorporate definitions from a
dictionary using the dict-hash production. The dict hash production specifies a (positive) offset
value to be added to the entries in the dictionary and a hash code identifier consisting of the
ASN.1 OID value sequence for the cryptographic digest used to compute the hash value followed
by the hash value in network byte order.

JSON-C Lexical Encodings

Production Tag Fixed Length Data Description

c-tag xC0 1 - 8 bit tag code

c-tag xC1 2 - 16 bit tag code

c-tag xC2 4 - 32 bit tag code

c-def xC4 1 - 8 bit tag definition

c-def xC5 2 - 16 bit tag definition

c-def xC6 4 - 32 bit tag definition

c-tag xC8 1 - 8 bit tag code & definition

c-tag xC9 2 - 16 bit tag code & definition

c-tag xCA 4 - 32 bit tag code & definition

c-def xCC 1 - 8 bit tag dictionary definition

c-tag xCD 2 - 16 bit tag dictionary definition

c-tag xCE 4 - 32 bit tag dictionary definition

dict-hash xD0 4 1 Hash of dictionary

All integer values are encoded in Network Byte Order (most significant byte first).

5.1. JSON-C Examples

The following examples show examples of using JSON-C encoding:

JSON-C Value Define

C8 20 80 05 48 65 6c 6c 6f "Hello" 20 = "Hello"
C4 21 80 05 48 65 6c 6c 6f 21 = "Hello"
C0 20 "Hello"
C1 00 20 "Hello"

D0 00 00 01 00 1B 277 = "Hello"

 06 09 60 86 48 01 65 03
 04 02 01 OID for SHA-2-256
 e3 b0 c4 42 98 fc 1c 14
 9a fb f4 c8 99 6f b9 24
 27 ae 41 e4 64 9b 93 4c
 a4 95 99 1b 78 52 b8 55 SHA-256(C4 21 80 05 48 65 6c 6c 6f)

2.16.840.1.101.3.4.2.1

6. JSON-D (Data)

JSON-B and JSON-C only support the two numeric types defined in the JavaScript data model:
Integers and 64 bit floating point values. JSON-D (Data) defines binary encodings for additional
data types that are commonly used in scientific applications. These comprise positive and negative
128 bit integers, six additional floating point representations defined by IEEE 754 [RFC2119] and
the Intel extended precision 80 bit floating point representation.

Should the need arise, even bigger bignums could be defined with the length specified as a 32 bit
value permitting bignums of up to 2^35 bits to be represented.

 d-value = d-integer | d-float

 d-float = binary16 | binary32 | binary128 | binary80 |
 decimal32 | decimal64 | decimal 128

JSON-D Lexical Encodings

Production Tag Fixed Length Data Description

p-int128 xA4 16 - Positive 128 bit Integer

n-in7128 xAC 16 - Negative 128 bit Integer

binary16 x90 2 - IEEE 754 Floating Point binary16

binary32 x91 4 - IEEE 754 Floating Point binary32

binary128 x94 16 - IEEE 754 Floating Point binary128

intel80 x95 10 - Intel 80 bit extended binary Floating Point

decimal32 x96 4 - IEEE 754 Floating Point decimal32

decimal64 x97 8 - IEEE 754 Floating Point decimal64

decimal128 x98 18 - IEEE 754 Floating Point decimal128

7. Acknowledgements

Nico Williams, etc

8. Security Considerations

9. IANA Considerations

[TBS list out all the code points that require an IANA registration]

10. Normative References

, "
[IEEE-754] Information technology -- Microprocessor Systems -- Floating-Point arithmetic",

ISO/IEC/IEEE 60559:2011, July 2011.

file:///var/tmp/CGItemp61050.dir/IEEE-754

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997.

[RFC4627] Crockford, D., "The application/json Media Type for JavaScript Object Notation (JSON)",
RFC 4627, July 2006.

Author's Address

Phillip Hallam-Baker
Comodo Group Inc.
EMail: philliph@comodo.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4627
mailto:philliph@comodo.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Definitions
	1.1. Requirements Language
	2. Introduction
	2.1. Objectives
	3. Extended JSON Grammar
	4. JSON-B
	4.1. JSON-B Examples
	5. JSON-C
	5.1. JSON-C Examples
	6. JSON-D (Data)
	7. Acknowledgements
	8. Security Considerations
	9. IANA Considerations
	10. Normative References
	Author's Address

