
Internet Engineering Task Force T. Stach
Internet-Draft A. Hutton
Intended status: Informational Unify
Expires: July 24, 2014 J. Uberti
 Google
 January 20, 2014

 RTCWEB Considerations for NATs, Firewalls and HTTP proxies
 draft-hutton-rtcweb-nat-firewall-considerations-03

Abstract

 This document describes mechanism to enable media stream
 establishment for Real-Time Communication in WEB-browsers (WebRTC) in
 the presence of network address translators, firewalls and HTTP
 proxies. HTTP proxy and firewall deployed in many private network
 domains introduce obstacles to the successful establishment of media
 stream via WebRTC. This document examines some of these deployment
 scenarios and specifies requirements on WebRTC enabled web browsers
 designed to provide the best possible chance of media connectivity
 between WebRTC peers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 24, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Stach, et al. Expires July 24, 2014 [Page 1]

Internet-Draft RTCWEB NAT-FW January 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 4
 2. Considerations for NATs/Firewalls independent of HTTP proxies 4
 2.1. NAT/Firewall open for outgoing UDP and TCP traffic . . . 4
 2.2. NAT/Firewall open only for TCP traffic 4
 2.3. NAT/Firewall open only for TCP on restricted ports . . . 5
 3. Considerations for NATs/Firewalls in presence of HTTP proxies 6
 3.1. HTTP proxy with NAT/Firewall open for
 outgoing UDP and TCP traffic 6
 3.2. HTTP proxy with NAT/Firewall open only for TCP traffic . 6
 3.3. HTTP proxy with NAT/Firewall open only to proxy routed
 traffic . 6
 4. Solutions for Further Study 7
 4.1. HTTP CONNECT based mechanism 7
 4.2. ALPN - Use of Application Layer Protocol Negotiation . . 8
 4.3. TURN server connection via WebSocket 9
 4.4. HTTP Fallback for RTP Media Streams 9
 4.5. Port Control Protocol 9
 4.6. Network Specific TURN Server 9
 5. Requirements for RTCWEB-enabled browsers 10
 6. Acknowledgements . 11
 7. IANA Considerations . 11
 8. Security Considerations 11
 9. References . 11
 9.1. Normative References 11
 9.2. Informative References 12
 Authors’ Addresses . 13

1. Introduction

 WebRTC is a web-based technique for direct interactive rich
 communication using audio, video, and data between two peer browsers.

 Many organizations, e.g. an enterprise, a public service agency or a
 university, deploy Network Address Translators (NAT) and firewalls
 (FW) at the border to the public internet. WebRTC relies on ICE
 [RFC5245] in order to establish a media path between two WebRTC peers
 in the presence of such NATs/FWs.

Stach, et al. Expires July 24, 2014 [Page 2]

Internet-Draft RTCWEB NAT-FW January 2014

 When WebRTC is deployed by the corporate IT department one can assume
 that the corporate IT configures the corporate NATs, Firewalls, DPI
 units, TURN servers accordingly. If so desired by the organization
 WebRTC media streams can then be established to WebRTC peers outside
 of the organization subject to the applied policies. In order to
 cater for NAT/FWs with address and port dependent mapping
 characteristics [RFC4787], the peers will introduce a TURN server
 [RFC5766] in the public internet as a media relay. Such a TURN
 server could be deployed by the organization wanting to assert policy
 on WebRTC traffic.

 However, there are also environments that are not prepared for WebRTC
 and have NAT/FW deployed that prevent media stream establishment
 although such blocking is not intentional. These environments
 include e.g. internet cafes or hotels offering their customers access
 to the web and have opened the well-known HTTP(S) ports but nothing
 else. In such an environment ICE will fail to establish
 connectivity. Re-configuration of the NAT/FW is also often
 impracticable or not possible.

 In such an environment a WebRTC user may easily reach its WebRTC
 server possibly via an HTTP proxy and start establishing a WebRTC
 session, but will become frustrated when a media connection cannot be
 established. A corresponding use case and its requirements relating
 to WebRTC NAT/FW traversal can be found in
 [draft-ietf-rtcweb-use-cases-and-requirements].

 The TURN server in the public internet is not sufficient to establish
 connectivity for RTP-based media [RFC3550] and the WebRTC data
 channel [draft-ietf-rtcweb-data-channel] towards external WebRTC
 peers since the FW policies include blocking of all UDP based traffic
 and allowing only traffic to the TCP ports 80/443 with the intent to
 support HTTP(S) [RFC2616].

 We explicitly don’t address even more restricted environments, that
 deploy HTTP traffic validation. This could e.g. be done by means of
 DPI validation or traffic pattern analysis to determine the contents
 of the packets that the traffic is, in fact, HTTP or HTTPS-looking or
 by an HTTP proxy that breaks into the TLS exchange and looks for HTTP
 in the traffic. However we want to address the case when access to
 the World Wide Web from inside an organization is only possible via a
 transparent HTTP Proxy that just tunnels traffic after e.g. enforcing
 an acceptable use policy.

 This document examines impact of NAT/FW policies in Section 2.
 Additional impacts due to the presence of a HTTP proxy are examined
 in Section 3.

Stach, et al. Expires July 24, 2014 [Page 3]

Internet-Draft RTCWEB NAT-FW January 2014

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Considerations for NATs/Firewalls independent of HTTP proxies

 This section covers aspects of how NAT/FW characteristic influence
 the establishment of a media stream. Additional aspects introduced
 by the presence of a HTTP proxy are covered in Section 3.

 If the NATs serving caller and callee both show port and address
 dependent mapping behavior the need for a TURN server arises in order
 to establish connectivity for media streams. The TURN server will
 relay the RTP packet to the WebRTC peer using UDP. How the RTP
 packets can be transported from the WebRTC client within the private
 network to the TURN server depends on what the firewall will let pass
 through.

 Other types of NATs do not require using the TURN relay.
 Nevertheless, the FW rules and policies still affect how media
 streams can be established.

2.1. NAT/Firewall open for outgoing UDP and TCP traffic

 This scenario assumes that the NAT/FW is transparent for all outgoing
 traffic independent of using UDP or TCP as the transport protocol.
 This case is used as starting point for introduction of more
 restrictive firewall policies. It presents the least critical
 example with respect to the establishment of the media streams.

 The TURN server can be reached directly from within the private
 network via the NAT/FW and the ICE procedures will reveal that media
 can be sent via the TURN server. The TURN client will send its media
 to the allocated resources at the TURN server via UDP.

 Dependent on the port range that is used for WebRTC media streams,
 the same statement would be true if the NAT/Firewall would allow UDP
 traffic for a restricted UDP port range only.

2.2. NAT/Firewall open only for TCP traffic

 This scenario assumes that the NAT/FW is transparent for outgoing
 traffic only using TCP as transport protocol. Theoretically, this
 gives two options for media stream establishment dependent on the
 NAT’s mapping characteristics. Either transporting RTP over TCP

Stach, et al. Expires July 24, 2014 [Page 4]

Internet-Draft RTCWEB NAT-FW January 2014

 directly to the peer or contacting a TURN server via TCP that then
 relays RTP.

 In the first case the browser does not use any TURN server to get
 through its NAT/FW. However, the browser needs to use ICE-TCP
 [RFC6544] and provide active, passive and/or simultaneous-open TCP
 candidates. Assuming the peer also provides TCP candidates, a
 connectivity check for a TCP connection between the two peers should
 be successful.

 In the second case the browser contacts the TURN server via TCP for
 allocation of an UDP-based relay address at the TURN server. The ICE
 procedures will reveal that RTP media can be sent via the TURN relay
 using the TCP connection between TURN client and TURN server. The
 TURN server would then relay the RTP packets using UDP, as well as
 other UDP-based protocols. ICE-TCP is not needed in this context.

 Note that the second case is not to be confused with using TURN to
 request a "TCP Allocation" as described in [RFC6062], which deals
 with how to establish a TCP connection from a TURN server to the
 peer. For this document we assume that the TURN server can reach the
 peer always via UDP, possibly via a second TURN server, in case the
 WebRTC peer is located in a similar environment as described in this
 section.

 We don’t see a need to request TCP allocations at the TURN server
 since it is preferable that WebRTC media is transported over UDP as
 far as possible. For the same reason we also prefer using TCP just
 as transport to the TURN server over using the ICE-TCP with an end-
 to-end TCP connection

2.3. NAT/Firewall open only for TCP on restricted ports

 In this case the firewall blocks all outgoing traffic except for TCP
 traffic to specific ports, for example port 80 (HTTP) for HTTP or 443
 for HTTPS(HTTPS). A TURN server listening to its default ports (3478
 for TCP/UDP, 5349 for TLS) would not be reachable in this case.
 However, the TURN server can still be reached when it is configured
 to listen to e.g. the HTTP(S) ports.

 In addition the browser needs to be configured to contact the TURN
 server over the HTTP(S) ports and/or the WebRTC client has to provide
 this information to browser.

Stach, et al. Expires July 24, 2014 [Page 5]

Internet-Draft RTCWEB NAT-FW January 2014

3. Considerations for NATs/Firewalls in presence of HTTP proxies

 This section considers a scenario where all HTTP(S) traffic is routed
 via an HTTP proxy. We assume that the HTTP proxy is tranparent and
 just tunnels traffic after e.g. enforcing an acceptable use policy
 with respect to domains that are allowed to be reached. We don’t
 consider cases where the HTTP proxy is used to deploy HTTP traffic
 validation. This includes DPI validation that the traffic is, in
 fact, HTTP or HTTPS-looking or a HTTP proxy that breaks into the TLS
 exchange and looks for HTTP in the traffic.

 Note: If both WebRTC clients are located behind the same HTTP proxy,
 we, of course, assume that ICE would give us a direct media
 connection within the private network. We don’t consider this case
 in detail within this document.

3.1. HTTP proxy with NAT/Firewall open for outgoing UDP and TCP traffic

 As in Section 2.1 we assume that the NAT/FW is transparent for all
 outgoing traffic independent of using UDP or TCP as transport
 protocol. The HTTP proxy has no impact on the transport of media
 streams in this case. Consequently, the same considerations as in
 Section 2.1 apply with respect to the traversal of the NAT/FW.

3.2. HTTP proxy with NAT/Firewall open only for TCP traffic

 As in Section 2.2 we assume that the NAT/FW is transparent only for
 outgoing TCP traffic. The HTTP proxy has no impact on the transport
 of media streams in this case. Consequently, the same considerations
 as in Section 2.2 apply with respect to the traversal of the NAT/FW.

3.3. HTTP proxy with NAT/Firewall open only to proxy routed traffic

 Different from the previous scenarios, we assume that the NAT/FW
 accepts outgoing traffic only via a TCP connection that is initiated
 from the HTTP proxy. Currently only the case of an explicit proxy is
 considered here.

 This scenario is the most complex and controversial as it requires
 the WebRTC media to be tunneled through the proxy. However such
 techniques are already specified in RFC’s and deployed an example of
 this is websockets [RFC6455] which uses the HTTP CONNECT mechanism in
 the presense of HTTP Proxies.

 This document discusses some alternative approaches to achieving
 connectivity for WebRTC media in this environment but does not
 currently make any firm recommendations as the alternatives are

Stach, et al. Expires July 24, 2014 [Page 6]

Internet-Draft RTCWEB NAT-FW January 2014

 mostly work in progress in other areas of the IETF. Therefore it is
 not possible to make such a recommendation at this time.

4. Solutions for Further Study

 The following sections outline and provide some analysis of various
 solutions to the issues raised regarding WebRTC media traversing
 firewalls and proxies. All of these potential solutions require
 further analysis by the IETF RTCWEB working group and in some cases
 may require work in other IETF working groups.

 It is possible that due to different network environments that WebRTC
 browsers may need to implement more than one solution.

 NOTE - THIS ANALYSIS IS NOT COMPLETE.

4.1. HTTP CONNECT based mechanism

 A WebRTC browser could make use of the HTTP CONNECT method [RFC2817]
 and request that the HTTP proxy establishes a tunnel connection on
 its behalf in order to get access to the TURN server. The HTTP
 CONNECT request needs to convey the TURN Server URI or transport
 address. As a result the HTTP Proxy will establish a TCP connection
 to the TURN server and when successful the HTTP Proxy will answer the
 HTTP CONNECT request with a 200OK response. In case of a transparent
 proxy, the HTTP proxy will now switch into tunneling mode and will
 transparently relay the traffic to the TURN server.

 By using the HTTP CONNECT method, the TURN server only has to handle
 a standard TCP connection. An update to the TURN protocol or the
 TURN software is not needed.

 Afterwards, the browser could upgrade the connection to use TLS,
 forward STUN/TURN traffic via the HTTP proxy and use the TURN server
 as media relay. Note that upgrading in this case is not to be
 misunderstood as usage of the HTTP UPGRADE method as specified in
 [RFC2817] as this would require the TURN server to support HTTP. The
 following is a possible sequence of events:

 o the browser opens a TCP connection to the HTTP proxy,

 o the browser issues a HTTP CONNECT request to the HTTP proxy with
 the TURN server address in the Request URI, for example

 * CONNECT turn_server.example.com:5349 HTTP/1.1 Host:
 turn_server.example.com:5349

Stach, et al. Expires July 24, 2014 [Page 7]

Internet-Draft RTCWEB NAT-FW January 2014

 o the HTTP proxy opens a TCP connection to the TURN server and
 "bridges" the incoming and outgoing TCP connections together,
 forming a virtual end-to-end TCP connection,

 o the browser can do a TLS handshake over the virtual end-to-end TCP
 connection with the TURN server.

 Strictly speaking the TLS upgrade is not necessary, but using TLS
 would also prevent the HTTP proxy from sniffing into the data stream
 and provides the same flow as HTTPS and might improve
 interoperability with proxy servers. The WebRTC application has the
 ability to control whether TLS is used by the parameters it supplies
 to the TURN URI (e.g. turns: vs. turn:), so the decision to access
 the TURN server via TCP versus TLS could be left up to the
 application or possibly the browser configuration script.

 In contrast to using UDP or TCP for transporting the STUN messages,
 the browser would now need to first establish a HTTP over TCP
 connection to the HTTP proxy, upgrade to using TLS and then switch to
 using this TLS connection for transport of STUN messages.

 Further considerations apply to the default connection timeout of the
 HTTP proxy connection to the TURN server and the timeout of the TURN
 server allocation. Whereas [RFC5766] specifies a 10 minutes default
 lifetime of the TURN allocation, typical proxy connection lifetimes
 are in the range of 60 seconds if no activity is detected. Thus, if
 the WebRTC client wants to pre-allocate TURN ressources it needs to
 refresh TURN allocations more frequently in order to keep the TCP
 connection to its TURN server alive.

4.2. ALPN - Use of Application Layer Protocol Negotiation

 The application layer protocol negotiation (ALPN)
 [draft-ietf-tls-applayerprotoneg] specifies a TLS extension which
 permits the application layer to negotiate protocol selection within
 the TLS handshake. This provides an explicit and visable indication
 of the application layer protocol associated with the TLS connection
 allowing the application protocol to be visable without relying on
 the port number to identify the protocol.

 [draft-ietf-tls-applayerprotoneg] could therefore be used to identify
 that it is WebRTC media that is contained within the TLS connection.

 ALPN is effectively an extension to the HTTP CONNECT mechanism
 decribed in Section 4.1 since the establishment of the TLS connection
 would require the use of this mechanism in the presence of a proxy as
 described in [draft-ietf-httpbis-http2].

Stach, et al. Expires July 24, 2014 [Page 8]

Internet-Draft RTCWEB NAT-FW January 2014

4.3. TURN server connection via WebSocket

 The WebRTC client could connect to a TURN server via WebSocket
 [RFC6455] as described in [draft-chenxin-behave-turn-WebSocket].
 This might have benefits in very restrictive environments where HTTPS
 is not permitted through the proxy. However, such environments are
 also likely to deploy DPI boxes which would eventually complain
 against usage of WebSocket or block WebRTC traffic based on other
 heuristic means. It is also to be expected that an environment that
 does not allow HTTPS will also forbid usage of WebSocket over TLS.

 In addition, usage of TURN over WebSocket puts an additional burden
 on existing TURN server implementation to support HTTP and WebSocket.

 This is again effectively an extension to the HTTP CONNECT mechanism
 decribed in Section 4.1 since the establishment of the webcoskets
 connection would require the use of this mechanism in the presence of
 a proxy as described in [draft-ietf-httpbis-http2]. Like the ALPN
 approach the websockets approach also includes that the purpose of
 the websockets connection is to transport WebRTC media.

4.4. HTTP Fallback for RTP Media Streams

 As an alternative to using a TURN server
 [draft-miniero-rtcweb-http-fallback] proposed to send RTP directly
 over HTTP. This approach bears some similarities with TURN as it
 also uses a RTP relay. However, it uses HTTP GET and POST requests
 to receive and send RTP packets.

 Despite a number of open issues, the proposal addreses some corner
 cases. However, the expected benefit in form of an increased success
 rate for establishment of a media stream seems rather small.

4.5. Port Control Protocol

 As a further alternative, the Port Control Protocol (PCP) [RFC6887]
 allows the client to communicate with the NAT/FW and negotiate how
 incoming IPv6 or IPv4 packets are translated and forwarded. However,
 to be successful such a solution would require the widespread
 deployment and use of PCP enabled firewalls so this does not appear
 to be a workable solution at least for early deployments of WebRTC.

4.6. Network Specific TURN Server

 If a network specific TURN server under administrative control of the
 organization is deployed it is desirable to reach this TURN server
 via UDP. The TURN server could be specified in the proxy
 configuration script, giving the browser the possibility to learn how

Stach, et al. Expires July 24, 2014 [Page 9]

Internet-Draft RTCWEB NAT-FW January 2014

 to access it. Then, when gathering candidates, this TURN server
 would always be used such that the WebRTC client application could
 get UDP traffic out to the internet.

 Since the TURN server is under the same administrative control as the
 NAT/FW then it can be assumed that the NAT/FW allows WebRTC media
 that traverses the TURN server to traverse the NAT/FW.

 The implementation of this solution in WebRTC is actually a
 requirement specified in
 [draft-ietf-rtcweb-use-cases-and-requirements].

 The implementation of this solution in WebRTC does not remove the
 need for other solutions for the case when there is no such network
 specific TURN server.

5. Requirements for RTCWEB-enabled browsers

 THIS SECTION IS EVEN MORE WORK IN PROGRESS THAN PREVIOUS SECTIONS.

 For the purpose of relaying WebRTC media streams or data channels a
 browser needs to be able to

 o connect to a TURN server via UDP, TCP and TLS,

 o support a mechanism for connecting to a TURN server in the
 presence of a firewall that only permits connections that orginate
 from a HTTP Proxy. The mechanism is for further study.

 o connect to the TURN server via application specified ports other
 than the default STUN ports including the HTTP(s) ports,

 o use the same proxy selection procedure for TURN as currently done
 for HTTP (e.g. Web Proxy Autodiscovery Protocol (WPAD) and .pac-
 files for Proxy-Auto-Config),

 o use a preconfigured or standardized port range for UDP-based media
 streams or data channels,

 o learn from the proxy configuration script about the presence of a
 local TURN server and use it for sending UDP traffic to the
 internet,

 o as an option and if needed, support ICE-TCP for TCP-based direct
 media connection to the WebRTC peer.

Stach, et al. Expires July 24, 2014 [Page 10]

Internet-Draft RTCWEB NAT-FW January 2014

6. Acknowledgements

 The authors want to thank Heinrich Haager for all his input during
 many valuable discussions.

 Furthermore, the authors want to thank for comments and suggestions
 received from Bernard Aboba, Xavier Marjou, Dan Wing, ...

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 In case of using HTTP CONNECT to a TURN server the security
 consideration of [[draft-ietf-httpbis-p2-semantics], Section-4.3.6]
 apply. It states that there "are significant risks in establishing a
 tunnel to arbitrary servers, particularly when the destination is a
 well-known or reserved TCP port that is not intended for Web traffic.
 ... Proxies that support CONNECT SHOULD restrict its use to a limited
 set of known ports or a configurable whitelist of safe request
 targets."

 Consequently when HTTP CONNECT is used to reach a TURN server, the
 proxy administrator SHOULD configure a whitelist of trusted TURN
 servers and/or a blacklist of TURN server known to be subject to
 fraud or other undesired behavior.

 With respect to the other discussed alternatives the security
 considerations of the corresponding RFCs and Internet Drafts apply.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/
 1.1", RFC 2817, May 2000.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

Stach, et al. Expires July 24, 2014 [Page 11]

Internet-Draft RTCWEB NAT-FW January 2014

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,
 RFC 4787, January 2007.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

9.2. Informative References

 [RFC6062] Perreault, S. and J. Rosenberg, "Traversal Using Relays
 around NAT (TURN) Extensions for TCP Allocations", RFC
 6062, November 2010.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
 6455, December 2011.

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, March 2012.

 [RFC6887] Wing, D., Cheshire, S., Boucadair, M., Penno, R., and P.
 Selkirk, "Port Control Protocol (PCP)", RFC 6887, April
 2013.

 [draft-chenxin-behave-turn-WebSocket]
 Xin. Chen, "Traversal Using Relays around NAT (TURN)
 Extensions for WebSocket Allocations", 2013,
 <http://tools.ietf.org/html/
 draft-chenxin-behave-turn-WebSocket>.

 [draft-ietf-httpbis-http2]
 M. Belshe, R. Peon, M. Thomson, A. Melnikov, "Hypertext
 Transfer Protocol version 2.0", 2013,
 <http://tools.ietf.org/html/
 draft-ietf-httpbis-http2-09#section-8.3>.

 [draft-ietf-httpbis-p2-semantics]
 R. Fielding, J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", 2013,
 <http://tools.ietf.org/html/
 draft-ietf-httpbis-p2-semantics-25#section-4.3.6>.

Stach, et al. Expires July 24, 2014 [Page 12]

Internet-Draft RTCWEB NAT-FW January 2014

 [draft-ietf-rtcweb-data-channel]
 R. Jesup, S. Loreto, M. Tuexen, "RTCWeb Data Channels",
 2013, <http://tools.ietf.org/html/
 draft-ietf-rtcweb-data-channel>.

 [draft-ietf-rtcweb-use-cases-and-requirements]
 C. Holmberg, S. Hakansson, G. Eriksson, "Web Real-Time
 Communication Use-cases and Requirements", 2013,
 <http://tools.ietf.org/html/
 draft-ietf-WebRTC-use-cases-and-requirements>.

 [draft-ietf-tls-applayerprotoneg]
 S. Friedl, A. Popov, A. Langley, E. Stephan, "Transport
 Layer Security (TLS) Application Layer Protocol
 Negotiation Extension", 2013, <http://tools.ietf.org/html/
 draft-ietf-tls-applayerprotoneg>.

 [draft-miniero-rtcweb-http-fallback]
 L. Miniero, "HTTP Fallback for RTP Media Streams", 2012,
 <http://tools.ietf.org/html/
 draft-miniero-rtcweb-http-fallback>.

Authors’ Addresses

 Thomas Stach
 Unify
 Dietrichgasse 27-29
 Vienna 1030
 AT

 Email: thomas.stach@unify.com

 Andrew Hutton
 Unify
 Technology Drive
 Nottingham NG9 1LA
 UK

 Email: andrew.hutton@unify.com

Stach, et al. Expires July 24, 2014 [Page 13]

Internet-Draft RTCWEB NAT-FW January 2014

 Justin Uberti
 Google
 747 6th Ave S
 Kirkland, WA 98033
 US

 Email: justin@uberti.name

Stach, et al. Expires July 24, 2014 [Page 14]

