
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track E. Rescorla

Expires: March 19, 2014 RTFM

 J. Hildebrand

 Cisco

 September 15, 2013

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-16

Abstract

JSON Web Encryption (JWE) represents encrypted content using JavaScript Object Notation
(JSON) based data structures. Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA) specification and IANA
registries defined by that specification. Related digital signature and MAC capabilities are
described in the separate JSON Web Signature (JWS) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on March 19, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
2. Terminology
3. JSON Web Encryption (JWE) Overview
 3.1. Example JWE
4. JWE Header
 4.1. Registered Header Parameter Names
 4.1.1. "alg" (Algorithm) Header Parameter
 4.1.2. "enc" (Encryption Method) Header Parameter
 4.1.3. "zip" (Compression Algorithm) Header Parameter

 4.1.4. "jku" (JWK Set URL) Header Parameter
 4.1.5. "jwk" (JSON Web Key) Header Parameter
 4.1.6. "x5u" (X.509 URL) Header Parameter
 4.1.7. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter
 4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter
 4.1.9. "kid" (Key ID) Header Parameter
 4.1.10. "typ" (Type) Header Parameter
 4.1.11. "cty" (Content Type) Header Parameter
 4.1.12. "crit" (Critical) Header Parameter
 4.2. Public Header Parameter Names
 4.3. Private Header Parameter Names
5. Producing and Consuming JWEs
 5.1. Message Encryption
 5.2. Message Decryption
 5.3. String Comparison Rules
6. Key Identification
7. Serializations
 7.1. JWE Compact Serialization
 7.2. JWE JSON Serialization
8. Distinguishing Between JWS and JWE Objects
9. IANA Considerations
 9.1. JWE Header Parameter Names Registration
 9.1.1. Registry Contents
10. Security Considerations
11. References
 11.1. Normative References
 11.2. Informative References
Appendix A. JWE Examples
 A.1. Example JWE using RSAES OAEP and AES GCM
 A.1.1. JWE Header
 A.1.2. Encoded JWE Header
 A.1.3. Content Encryption Key (CEK)
 A.1.4. Key Encryption
 A.1.5. Encoded JWE Encrypted Key
 A.1.6. Initialization Vector
 A.1.7. Additional Authenticated Data
 A.1.8. Content Encryption
 A.1.9. Encoded JWE Ciphertext
 A.1.10. Encoded JWE Authentication Tag
 A.1.11. Complete Representation
 A.1.12. Validation
 A.2. Example JWE using RSAES-PKCS1-V1_5 and
AES_128_CBC_HMAC_SHA_256
 A.2.1. JWE Header
 A.2.2. Encoded JWE Header
 A.2.3. Content Encryption Key (CEK)
 A.2.4. Key Encryption
 A.2.5. Encoded JWE Encrypted Key
 A.2.6. Initialization Vector
 A.2.7. Additional Authenticated Data
 A.2.8. Content Encryption
 A.2.9. Encoded JWE Ciphertext
 A.2.10. Encoded JWE Authentication Tag
 A.2.11. Complete Representation
 A.2.12. Validation
 A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256
 A.3.1. JWE Header
 A.3.2. Encoded JWE Header
 A.3.3. Content Encryption Key (CEK)
 A.3.4. Key Encryption
 A.3.5. Encoded JWE Encrypted Key
 A.3.6. Initialization Vector
 A.3.7. Additional Authenticated Data
 A.3.8. Content Encryption
 A.3.9. Encoded JWE Ciphertext
 A.3.10. Encoded JWE Authentication Tag
 A.3.11. Complete Representation
 A.3.12. Validation

 TOC

 TOC

 TOC

 A.4. Example JWE Using JWE JSON Serialization
 A.4.1. JWE Per-Recipient Unprotected Headers
 A.4.2. JWE Protected Header
 A.4.3. JWE Unprotected Header
 A.4.4. Complete JWE Header Values
 A.4.5. Additional Authenticated Data
 A.4.6. Content Encryption
 A.4.7. Encoded JWE Ciphertext
 A.4.8. Encoded JWE Authentication Tag
 A.4.9. Complete JWE JSON Serialization Representation
Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation
 B.1. Extract MAC_KEY and ENC_KEY from Key
 B.2. Encrypt Plaintext to Create Ciphertext
 B.3. 64 Bit Big Endian Representation of AAD Length
 B.4. Initialization Vector Value
 B.5. Create Input to HMAC Computation
 B.6. Compute HMAC Value
 B.7. Truncate HMAC Value to Create Authentication Tag
Appendix C. Acknowledgements
Appendix D. Document History
§ Authors' Addresses

1. Introduction

JSON Web Encryption (JWE) represents encrypted content using JavaScript Object Notation
(JSON) based data structures. The JWE cryptographic mechanisms encrypt and
provide integrity protection for an arbitrary sequence of octets.

Two closely related serializations for JWE objects are defined. The JWE Compact Serialization is
a compact, URL-safe representation intended for space constrained environments such as
HTTP Authorization headers and URI query parameters. The JWE JSON Serialization
represents JWE objects as JSON objects and enables the same content to be encrypted to
multiple parties. Both share the same cryptographic underpinnings.

Cryptographic algorithms and identifiers for use with this specification are described in the
separate JSON Web Algorithms (JWA) specification and IANA registries defined by that
specification. Related digital signature and MAC capabilities are described in the separate
JSON Web Signature (JWS) specification.

Names defined by this specification are short because a core goal is for the resulting
representations to be compact.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels

. If these words are used without being spelled in uppercase then they are to be
interpreted with their normal natural language meanings.

2. Terminology

JSON Web Encryption (JWE)
A data structure representing an encrypted message. The structure represents
five values: the JWE Header, the JWE Encrypted Key, the JWE Initialization Vector,
the JWE Ciphertext, and the JWE Authentication Tag.

Authenticated Encryption with Associated Data (AEAD)
An AEAD algorithm is one that encrypts the Plaintext, allows Additional
Authenticated Data to be specified, and provides an integrated content integrity

[RFC4627]

[JWA]

[JWS]

[RFC2119]

check over the Ciphertext and Additional Authenticated Data. AEAD algorithms
accept two inputs, the Plaintext and the Additional Authenticated Data value, and
produce two outputs, the Ciphertext and the Authentication Tag value. AES
Galois/Counter Mode (GCM) is one such algorithm.

Plaintext
The sequence of octets to be encrypted -- a.k.a., the message. The plaintext can
contain an arbitrary sequence of octets.

Ciphertext
An encrypted representation of the Plaintext.

Additional Authenticated Data (AAD)
An input to an AEAD operation that is integrity protected but not encrypted.

Authentication Tag
An output of an AEAD operation that ensures the integrity of the Ciphertext and
the Additional Authenticated Data. Note that some algorithms may not use an
Authentication Tag, in which case this value is the empty octet sequence.

Content Encryption Key (CEK)
A symmetric key for the AEAD algorithm used to encrypt the Plaintext for the
recipient to produce the Ciphertext and the Authentication Tag.

JSON Text Object
A UTF-8 encoded text string representing a JSON object; the syntax of
JSON objects is defined in Section 2.2 of .

JWE Header
A JSON Text Object (or JSON Text Objects, when using the JWE JSON Serialization)
that describes the encryption operations applied to create the JWE Encrypted Key,
the JWE Ciphertext, and the JWE Authentication Tag. The members of the JWE
Header object(s) are Header Parameters.

JWE Encrypted Key
The result of encrypting the Content Encryption Key (CEK) with the intended
recipient's key using the specified algorithm. Note that for some algorithms, the
JWE Encrypted Key value is specified as being the empty octet sequence.

JWE Initialization Vector
A sequence of octets containing the Initialization Vector used when encrypting the
Plaintext. Note that some algorithms may not use an Initialization Vector, in which
case this value is the empty octet sequence.

JWE Ciphertext
A sequence of octets containing the Ciphertext for a JWE.

JWE Authentication Tag
A sequence of octets containing the Authentication Tag for a JWE.

JWE Protected Header
A JSON Text Object that contains the portion of the JWE Header that is integrity
protected. For the JWE Compact Serialization, this comprises the entire JWE
Header. For the JWE JSON Serialization, this is one component of the JWE Header.

Header Parameter
A name/value pair that is member of the JWE Header.

Header Parameter Name
The name of a member of the JWE Header.

Header Parameter Value
The value of a member of the JWE Header.

Base64url Encoding
Base64 encoding using the URL- and filename-safe character set defined in
Section 5 of [RFC4648], with all trailing '=' characters omitted (as
permitted by Section 3.2). (See Appendix C of for notes on implementing
base64url encoding without padding.)

Encoded JWE Header
Base64url encoding of the JWE Protected Header.

Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.

Encoded JWE Initialization Vector
Base64url encoding of the JWE Initialization Vector.

Encoded JWE Ciphertext
Base64url encoding of the JWE Ciphertext.

Encoded JWE Authentication Tag
Base64url encoding of the JWE Authentication Tag.

JWE Compact Serialization
A representation of the JWE as the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded
JWE Ciphertext, and the Encoded JWE Authentication Tag in that order, with the five
strings being separated by four period ('.') characters. This representation is

[RFC3629]
[RFC4627]

RFC 4648
[JWS]

 TOC

 TOC

compact and URL-safe.
JWE JSON Serialization

A representation of the JWE as a JSON structure containing JWE Header, Encoded
JWE Encrypted Key, Encoded JWE Initialization Vector, Encoded JWE Ciphertext, and
Encoded JWE Authentication Tag values. Unlike the JWE Compact Serialization, the
JWE JSON Serialization enables the same content to be encrypted to multiple
parties. This representation is neither compact nor URL-safe.

Collision Resistant Name
A name in a namespace that enables names to be allocated in a manner such
that they are highly unlikely to collide with other names. Examples of collision
resistant namespaces include: Domain Names, Object Identifiers (OIDs) as defined
in the ITU-T X.660 and X.670 Recommendation series, and Universally Unique
IDentifiers (UUIDs) . When using an administratively delegated
namespace, the definer of a name needs to take reasonable precautions to
ensure they are in control of the portion of the namespace they use to define the
name.

StringOrURI
A JSON string value, with the additional requirement that while arbitrary string
values MAY be used, any value containing a ":" character MUST be a URI

. StringOrURI values are compared as case-sensitive strings with no
transformations or canonicalizations applied.

Key Management Mode
A method of determining the Content Encryption Key (CEK) value to use. Each
algorithm used for determining the CEK value uses a specific Key Management
Mode. Key Management Modes employed by this specification are Key Encryption,
Key Wrapping, Direct Key Agreement, Key Agreement with Key Wrapping, and
Direct Encryption.

Key Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using an asymmetric encryption algorithm.

Key Wrapping
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using a symmetric key wrapping algorithm.

Direct Key Agreement
A Key Management Mode in which a key agreement algorithm is used to agree
upon the Content Encryption Key (CEK) value.

Key Agreement with Key Wrapping
A Key Management Mode in which a key agreement algorithm is used to agree
upon a symmetric key used to encrypt the Content Encryption Key (CEK) value to
the intended recipient using a symmetric key wrapping algorithm.

Direct Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value used is
the secret symmetric key value shared between the parties.

3. JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. Five
values are represented in a JWE: the JWE Header, the JWE Encrypted Key, the JWE Initialization
Vector, the JWE Ciphertext, and the JWE Authentication Tag. In the Compact Serialization, the
five values are base64url-encoded for transmission, and represented as the concatenation of
the encoded strings in that order, with the five strings being separated by four period ('.')
characters. A JSON Serialization for this information is also defined in .

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the
Plaintext and the integrity of the JWE Protected Header.

3.1. Example JWE

This example encrypts the plaintext "The true sign of intelligence is not knowledge but
imagination." to the recipient using RSAES OAEP for key encryption and AES GCM for content
encryption.

The following example JWE Header declares that:

[RFC4122]

[RFC3986]

Section 7.2

 TOC

the Content Encryption Key is encrypted to the recipient using the RSAES OAEP
algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES GCM algorithm with a 256 bit key to
produce the Ciphertext.

 {"alg":"RSA-OAEP","enc":"A256GCM"}

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ

The remaining steps to finish creating this JWE are:

Generate a random Content Encryption Key (CEK).
Encrypt the CEK with the recipient's public key using the RSAES OAEP algorithm
to produce the JWE Encrypted Key.
Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted
Key.
Generate a random JWE Initialization Vector.
Base64url encode the JWE Initialization Vector to produce the Encoded JWE
Initialization Vector.
Let the Additional Authenticated Data encryption parameter be the octets of the
ASCII representation of the Encoded JWE Header value.
Encrypt the Plaintext with AES GCM using the CEK as the encryption key, the JWE
Initialization Vector, and the Additional Authenticated Data value, requesting a
128 bit Authentication Tag output.
Base64url encode the Ciphertext to create the Encoded JWE Ciphertext.
Base64url encode the Authentication Tag to create the Encoded JWE
Authentication Tag.
Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the
Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded
JWE Authentication Tag in that order, with the five strings being separated by four
period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
 OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
 ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
 Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
 mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
 1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
 6UklfCpIMfIjf7iGdXKHzg.
 48V1_ALb6US04U3b.
 5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
 SdiwkIr3ajwQzaBtQD_A.
 XFBoMYUZodetZdvTiFvSkQ

See for the complete details of computing this JWE. See for
additional examples.

4. JWE Header

The members of the JSON object(s) representing the JWE Header describe the encryption
applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter
Names within the JWE Header MUST be unique; recipients MUST either reject JWEs with

Appendix A.1 Appendix A

 TOC

 TOC

 TOC

 TOC

duplicate Header Parameter Names or use a JSON parser that returns only the lexically last
duplicate member name, as specified in Section 15.12 (The JSON Object) of ECMAScript 5.1

.

Implementations are required to understand the specific header parameters defined by this
specification that are designated as "MUST be understood" and process them in the manner
defined in this specification. All other header parameters defined by this specification that are
not so designated MUST be ignored when not understood. Unless listed as a critical header
parameter, per , all header parameters not defined by this specification
MUST be ignored when not understood.

There are three classes of Header Parameter Names: Registered Header Parameter Names,
Public Header Parameter Names, and Private Header Parameter Names.

4.1. Registered Header Parameter Names

The following Header Parameter Names are registered in the IANA JSON Web Signature and
Encryption Header Parameters registry defined in , with meanings as defined below.

As indicated by the common registry, JWSs and JWEs share a common header parameter
space; when a parameter is used by both specifications, its usage must be compatible
between the specifications.

4.1.1. "alg" (Algorithm) Header Parameter

The alg (algorithm) header parameter identifies the cryptographic algorithm used to encrypt
or determine the value of the Content Encryption Key (CEK). The encrypted content is not
usable if the alg value does not represent a supported algorithm, or if the recipient does not
have a key that can be used with that algorithm. alg values SHOULD either be registered in
the IANA JSON Web Signature and Encryption Algorithms registry defined in or be a
value that contains a Collision Resistant Name. The alg value is a case sensitive string
containing a StringOrURI value. Use of this header parameter is REQUIRED. This header
parameter MUST be understood and processed by implementations.

A list of defined alg values can be found in the IANA JSON Web Signature and Encryption
Algorithms registry defined in ; the initial contents of this registry are the values
defined in Section 4.1 of the JSON Web Algorithms (JWA) specification.

4.1.2. "enc" (Encryption Method) Header Parameter

The enc (encryption method) header parameter identifies the content encryption algorithm
used to encrypt the Plaintext to produce the Ciphertext. This algorithm MUST be an AEAD
algorithm with a specified key length. The recipient MUST reject the JWE if the enc value does
not represent a supported algorithm. enc values SHOULD either be registered in the IANA
JSON Web Signature and Encryption Algorithms registry defined in or be a value that
contains a Collision Resistant Name. The enc value is a case sensitive string containing a
StringOrURI value. Use of this header parameter is REQUIRED. This header parameter MUST
be understood and processed by implementations.

A list of defined enc values can be found in the IANA JSON Web Signature and Encryption
Algorithms registry defined in ; the initial contents of this registry are the values
defined in Section 4.2 of the JSON Web Algorithms (JWA) specification.

4.1.3. "zip" (Compression Algorithm) Header Parameter

The zip (compression algorithm) applied to the Plaintext before encryption, if any. The zip
value defined by this specification is:

[ECMAScript]

Section 4.1.12

[JWS]

[JWA]

[JWA]
[JWA]

[JWA]

[JWA]
[JWA]

 TOC

 TOC

 TOC

 TOC

 TOC

DEF - Compression with the DEFLATE algorithm

Other values MAY be used. Compression algorithm values can be registered in the IANA JSON
Web Encryption Compression Algorithm registry defined in . The zip value is a case
sensitive string. If no zip parameter is present, no compression is applied to the Plaintext
before encryption. This header parameter MUST be integrity protected, and therefore MUST
occur only within the JWE Protected Header, when used. Use of this header parameter is
OPTIONAL. This header parameter MUST be understood and processed by implementations.

4.1.4. "jku" (JWK Set URL) Header Parameter

The jku (JWK Set URL) header parameter is a URI that refers to a resource for a
set of JSON-encoded public keys, one of which is the key to which the JWE was encrypted; this
can be used to determine the private key needed to decrypt the JWE. The keys MUST be
encoded as a JSON Web Key Set (JWK Set) . The protocol used to acquire the resource
MUST provide integrity protection; an HTTP GET request to retrieve the JWK Set MUST use
TLS ; the identity of the server MUST be validated, as per Section
3.1 of HTTP Over TLS . Use of this header parameter is OPTIONAL.

4.1.5. "jwk" (JSON Web Key) Header Parameter

The jwk (JSON Web Key) header parameter is the public key to which the JWE was encrypted;
this can be used to determine the private key needed to decrypt the JWE. This key is
represented as a JSON Web Key . Use of this header parameter is OPTIONAL.

4.1.6. "x5u" (X.509 URL) Header Parameter

The x5u (X.509 URL) header parameter is a URI that refers to a resource for the
X.509 public key certificate or certificate chain containing the key to which the
JWE was encrypted; this can be used to determine the private key needed to decrypt the JWE.
The identified resource MUST provide a representation of the certificate or certificate chain
that conforms to [RFC5280] in PEM encoded form . The certificate
containing the public key to which the JWE was encrypted MUST be the first certificate. This
MAY be followed by additional certificates, with each subsequent certificate being the one
used to certify the previous one. The protocol used to acquire the resource MUST provide
integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS

 ; the identity of the server MUST be validated, as per Section 3.1 of
HTTP Over TLS . Use of this header parameter is OPTIONAL.

4.1.7. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter

The x5t (X.509 Certificate SHA-1 Thumbprint) header parameter is a base64url encoded
SHA-1 thumbprint (a.k.a. digest) of the DER encoding of the X.509 certificate
containing the key to which the JWE was encrypted; this can be used to determine the private
key needed to decrypt the JWE. Use of this header parameter is OPTIONAL.

If, in the future, certificate thumbprints need to be computed using hash functions other than
SHA-1, it is suggested that additional related header parameters be defined for that
purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint
using SHA-256) header parameter could be defined by registering it in the IANA JSON Web
Signature and Encryption Header Parameters registry defined in .

4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter

[RFC1951]

[JWA]

[RFC3986]

[JWK]

[RFC2818] [RFC5246]
[RFC2818]

[JWK]

[RFC3986]
[RFC5280]

RFC 5280 [RFC1421]

[RFC2818] [RFC5246]
[RFC2818]

[RFC5280]

[JWS]

 TOC

 TOC

 TOC

 TOC

The x5c (X.509 Certificate Chain) header parameter contains the X.509 public key certificate
or certificate chain containing the key to which the JWE was encrypted; this can
be used to determine the private key needed to decrypt the JWE. The certificate or certificate
chain is represented as a JSON array of certificate value strings. Each string in the array is a
base64 encoded (Section 4 -- not base64url encoded) DER
PKIX certificate value. The certificate containing the public key to which the JWE was
encrypted MUST be the first certificate. This MAY be followed by additional certificates, with
each subsequent certificate being the one used to certify the previous one. Use of this
header parameter is OPTIONAL.

See Appendix B of for an example x5c value.

4.1.9. "kid" (Key ID) Header Parameter

The kid (key ID) header parameter is a hint indicating which key to which the JWE was
encrypted; this can be used to determine the private key needed to decrypt the JWE. This
parameter allows originators to explicitly signal a change of key to recipients. Should the
recipient be unable to locate a key corresponding to the kid value, they SHOULD treat that
condition as an error. The interpretation of the kid value is unspecified. Its value MUST be a
string. Use of this header parameter is OPTIONAL.

When used with a JWK, the kid value can be used to match a JWK kid parameter value.

4.1.10. "typ" (Type) Header Parameter

The typ (type) header parameter is used to declare the type of this complete JWE object in
an application-specific manner in contexts where this is useful to the application. This
parameter has no effect upon the JWE processing. The type value JOSE can be used by
applications to indicate that this object is a JWS or JWE using the JWS Compact Serialization or
the JWE Compact Serialization. The type value JOSE+JSON can be used by applications to
indicate that this object is a JWS or JWE using the JWS JSON Serialization or the JWE JSON
Serialization. Other type values can also be used by applications. The typ value is a case
sensitive string. Use of this header parameter is OPTIONAL.

MIME Media Type values MAY be used as typ values. When MIME Media Type
values are used, it is RECOMMENDED that they be spelled using the exact character case
used in the MIME Media Types registry , since this field is case
sensitive, whereas MIME Media Type values are case insensitive.

typ values SHOULD either be registered in the IANA JSON Web Signature and Encryption
Type Values registry defined in or be a value that contains a Collision Resistant Name.

4.1.11. "cty" (Content Type) Header Parameter

The cty (content type) header parameter is used to declare the type of the encrypted
content (the Plaintext) in an application-specific manner in contexts where this is useful to
the application. This parameter has no effect upon the JWE processing. The cty value is a
case sensitive string. Use of this header parameter is OPTIONAL.

The values used for the cty header parameter come from the same value space as the typ
header parameter, with the same rules applying.

4.1.12. "crit" (Critical) Header Parameter

The crit (critical) header parameter indicates that extensions to [[this specification]] are
being used that MUST be understood and processed. Its value is an array listing the header

[RFC5280]

[RFC4648] [ITU.X690.1994]

[JWS]

[RFC2046]

[IANA.MediaTypes]

[JWS]

 TOC

 TOC

 TOC

 TOC

parameter names defined by those extensions that are used in the JWE Header. If any of the
listed extension header parameters are not understood and supported by the receiver, it
MUST reject the JWE. Senders MUST NOT include header parameter names defined by [[this
specification]] or by for use with JWE, duplicate names, or names that do not occur as
header parameter names within the JWE Header in the crit list. Senders MUST not use the
empty list [] as the crit value. Recipients MAY reject the JWE if the critical list contains any
header parameter names defined by [[this specification]] or by for use with JWE, or
any other constraints on its use are violated. This header parameter MUST be integrity
protected, and therefore MUST occur only with the JWE Protected Header, when used. Use of
this header parameter is OPTIONAL. This header parameter MUST be understood and
processed by implementations.

An example use, along with a hypothetical exp (expiration-time) field is:

 {"alg":"RSA-OAEP",
 "enc":"A256GCM",
 "crit":["exp"],
 "exp":1363284000
 }

4.2. Public Header Parameter Names

Additional Header Parameter Names can be defined by those using JWEs. However, in order
to prevent collisions, any new Header Parameter Name SHOULD either be registered in the
IANA JSON Web Signature and Encryption Header Parameters registry defined in or be
a Public Name: a value that contains a Collision Resistant Name. In each case, the definer of
the name or value needs to take reasonable precautions to make sure they are in control of
the part of the namespace they use to define the Header Parameter Name.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

4.3. Private Header Parameter Names

A producer and consumer of a JWE may agree to use Header Parameter Names that are
Private Names: names that are not Registered Header Parameter Names or
Public Header Parameter Names . Unlike Public Header Parameter Names,
Private Header Parameter Names are subject to collision and should be used with caution.

5. Producing and Consuming JWEs

5.1. Message Encryption

The message encryption process is as follows. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Determine the Key Management Mode employed by the algorithm used to
determine the Content Encryption Key (CEK) value. (This is the algorithm
recorded in the alg (algorithm) header parameter of the resulting JWE.)

2. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, generate a random Content Encryption Key (CEK) value. See

 [RFC4086] for considerations on generating random values. The CEK MUST
have a length equal to that required for the content encryption algorithm.

3. When Direct Key Agreement or Key Agreement with Key Wrapping are employed,
use the key agreement algorithm to compute the value of the agreed upon key.
When Direct Key Agreement is employed, let the Content Encryption Key (CEK)

[JWA]

[JWA]

[JWS]

Section 4.1
Section 4.2

RFC
4086

 TOC

be the agreed upon key. When Key Agreement with Key Wrapping is employed,
the agreed upon key will be used to wrap the CEK.

4. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, encrypt the CEK to the recipient and let the result be the JWE
Encrypted Key.

5. Otherwise, when Direct Key Agreement or Direct Encryption are employed, let
the JWE Encrypted Key be the empty octet sequence.

6. When Direct Encryption is employed, let the Content Encryption Key (CEK) be the
shared symmetric key.

7. Base64url encode the JWE Encrypted Key to create the Encoded JWE Encrypted
Key.

8. If the JWE JSON Serialization is being used, repeat this process for each recipient.
9. Generate a random JWE Initialization Vector of the correct size for the content

encryption algorithm (if required for the algorithm); otherwise, let the JWE
Initialization Vector be the empty octet sequence.

10. Base64url encode the JWE Initialization Vector to create the Encoded JWE
Initialization Vector.

11. Compress the Plaintext if a zip parameter was included.
12. Serialize the (compressed) Plaintext into an octet sequence M.
13. Create a JWE Header containing the encryption parameters used. Note that

white space is explicitly allowed in the representation and no canonicalization
need be performed before encoding.

14. Base64url encode the octets of the UTF-8 representation of the JWE Protected
Header to create the Encoded JWE Header. If the JWE Protected Header is not
present (which can only happen when using the JWE JSON Serialization and no
protected member is present), let the Encoded JWE Header be the empty
string.

15. Let the Additional Authenticated Data encryption parameter be the octets of the
ASCII representation of the Encoded JWE Header value. However if a top-level
aad member is present when using the JWE JSON Serialization, instead let the
Additional Authenticated Data encryption parameter be the octets of the ASCII
representation of the concatenation of the Encoded JWE Header value, a period
('.') character, and the aad field value.

16. Encrypt M using the CEK, the JWE Initialization Vector, and the Additional
Authenticated Data value using the specified content encryption algorithm to
create the JWE Ciphertext value and the JWE Authentication Tag (which is the
Authentication Tag output from the encryption operation).

17. Base64url encode the JWE Ciphertext to create the Encoded JWE Ciphertext.
18. Base64url encode the JWE Authentication Tag to create the Encoded JWE

Authentication Tag.
19. The five encoded parts are result values used in both the JWE Compact

Serialization and the JWE JSON Serialization representations.
20. Create the desired serialized output. The JWE Compact Serialization of this result

is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted
Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the
Encoded JWE Authentication Tag in that order, with the five strings being
separated by four period ('.') characters. The JWE JSON Serialization is described
in .

5.2. Message Decryption

The message decryption process is the reverse of the encryption process. The order of the
steps is not significant in cases where there are no dependencies between the inputs and
outputs of the steps. If any of these steps fails, the encrypted content cannot be validated.

It is an application decision which recipients' encrypted content must successfully validate for
the JWE to be accepted. In some cases, encrypted content for all recipients must successfully
validate or the JWE will be rejected. In other cases, only the encrypted content for a single
recipient needs to be successfully validated. However, in all cases, the encrypted content for
at least one recipient MUST successfully validate or the JWE MUST be rejected.

1. Parse the serialized input to determine the values of the JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded
JWE Ciphertext, and the Encoded JWE Authentication Tag. When using the JWE
Compact Serialization, the Encoded JWE Header, the Encoded JWE Encrypted

Section 7.2

 TOC

Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the
Encoded JWE Authentication Tag are represented as text strings in that order,
separated by four period ('.') characters. The JWE JSON Serialization is described
in .

2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE
Authentication Tag MUST be successfully base64url decoded following the
restriction that no padding characters have been used.

3. The resulting JWE Protected Header MUST be a completely valid JSON object
conforming to [RFC4627].

4. If using the JWE Compact Serialization, let the JWE Header be the JWE Protected
Header; otherwise, when using the JWE JSON Serialization, let the JWE Header be
the union of the members of the JWE Protected Header, the members of the
unprotected value, and the members of the corresponding header value, all of
which must be completely valid JSON objects.

5. The resulting JWE Header MUST NOT contain duplicate Header Parameter
Names. When using the JWE JSON Serialization, this restriction includes that the
same Header Parameter Name also MUST NOT occur in distinct JSON Text
Object values that together comprise the JWE Header.

6. The resulting JWE Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported or that
are specified as being ignored when not understood.

7. Determine the Key Management Mode employed by the algorithm specified by
the alg (algorithm) header parameter.

8. Verify that the JWE uses a key known to the recipient.
9. When Direct Key Agreement or Key Agreement with Key Wrapping are employed,

use the key agreement algorithm to compute the value of the agreed upon key.
When Direct Key Agreement is employed, let the Content Encryption Key (CEK)
be the agreed upon key. When Key Agreement with Key Wrapping is employed,
the agreed upon key will be used to decrypt the JWE Encrypted Key.

10. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, decrypt the JWE Encrypted Key to produce the Content Encryption Key
(CEK). The CEK MUST have a length equal to that required for the content
encryption algorithm. Note that when there are multiple recipients, each
recipient will only be able decrypt any JWE Encrypted Key values that were
encrypted to a key in that recipient's possession. It is therefore normal to only be
able to decrypt one of the per-recipient JWE Encrypted Key values to obtain the
CEK value. To mitigate the attacks described in [RFC3218], the
recipient MUST NOT distinguish between format, padding, and length errors of
encrypted keys. It is strongly recommended, in the event of receiving an
improperly formatted key, that the receiver substitute a randomly generated
CEK and proceed to the next step, to mitigate timing attacks.

11. Otherwise, when Direct Key Agreement or Direct Encryption are employed, verify
that the JWE Encrypted Key value is empty octet sequence.

12. When Direct Encryption is employed, let the Content Encryption Key (CEK) be the
shared symmetric key.

13. If the JWE JSON Serialization is being used, repeat this process for each recipient
contained in the representation until the CEK value has been determined.

14. Let the Additional Authenticated Data encryption parameter be the octets of the
ASCII representation of the Encoded JWE Header value. However if a top-level
aad member is present when using the JWE JSON Serialization, instead let the
Additional Authenticated Data encryption parameter be the octets of the ASCII
representation of the concatenation of the Encoded JWE Header value, a period
('.') character, and the aad field value.

15. Decrypt the JWE Ciphertext using the CEK, the JWE Initialization Vector, the
Additional Authenticated Data value, and the JWE Authentication Tag (which is
the Authentication Tag input to the calculation) using the specified content
encryption algorithm, returning the decrypted plaintext and verifying the JWE
Authentication Tag in the manner specified for the algorithm, rejecting the input
without emitting any decrypted output if the JWE Authentication Tag is incorrect.

16. Uncompress the decrypted plaintext if a zip parameter was included.
17. Output the resulting Plaintext.

5.3. String Comparison Rules

Section 7.2

RFC 4627

RFC 3218

 TOC

 TOC

 TOC

 TOC

Processing a JWE inevitably requires comparing known strings to values in JSON objects. For
example, in checking what the encryption method is, the Unicode string encoding enc will be
checked against the member names in the JWE Header to see if there is a matching Header
Parameter Name.

Comparisons between JSON strings and other Unicode strings MUST be performed by
comparing Unicode code points without normalization as specified in the String Comparison
Rules in Section 5.3 of .

6. Key Identification

It is necessary for the recipient of a JWE to be able to determine the key that was employed
for the encryption operation. The key employed can be identified using the Header
Parameter methods described in or can be identified using methods that are
outside the scope of this specification. Specifically, the Header Parameters jku, jwk, x5u,
x5t, x5c, and kid can be used to identify the key used. These header parameters MUST be
integrity protected if the information that they convey is to be utilized in a trust decision.

The sender SHOULD include sufficient information in the Header Parameters to identify the
key used, unless the application uses another means or convention to determine the key
used. Validation of the encrypted content fails when the key used cannot be determined.

The means of exchanging any shared symmetric keys used is outside the scope of this
specification.

7. Serializations

JWE objects use one of two serializations, the JWE Compact Serialization or the JWE JSON
Serialization. The JWE Compact Serialization is mandatory to implement. Implementation of
the JWE JSON Serialization is OPTIONAL.

7.1. JWE Compact Serialization

The JWE Compact Serialization represents encrypted content as a compact URL-safe string.
This string is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key,
the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE
Authentication Tag in that order, with the five strings being separated by four period ('.')
characters. Only one recipient is supported by the JWE Compact Serialization.

7.2. JWE JSON Serialization

The JWE JSON Serialization represents encrypted content as a JSON object. Unlike the JWE
Compact Serialization, content using the JWE JSON Serialization can be encrypted to more
than one recipient.

The representation is closely related to that used in the JWE Compact Serialization, with the
following differences for the JWE JSON Serialization:

Values in the JWE JSON Serialization are represented as members of a JSON
object, rather than as base64url encoded strings separated by period ('.')
characters. (However binary values and values that are integrity protected are
still base64url encoded.)
The Encoded JWE Header value, if non-empty, is stored in the protected
member.
The Encoded JWE Initialization Vector value, if non-empty, is stored in the iv
member.
The Encoded JWE Ciphertext value is stored in the ciphertext member.

[JWS]

Section 4.1

The Encoded JWE Authentication Tag value, if non-empty, is stored in the tag
member.
The JWE can be encrypted to multiple recipients, rather than just one. A JSON
array in the recipients member is used to hold values that are specific to a
particular recipient, with one array element per recipient represented. These
array elements are JSON objects.
Each Encoded JWE Encrypted Key value, if non-empty, is stored in the
encrypted_key member of a JSON object that is an element of the recipients
array.
Some header parameter values, such as the alg value and parameters used for
selecting keys, can also differ for different recipient computations. Per-recipient
header parameter values, if present, are stored in the header members of the
same JSON objects that are elements of the recipients array.
Some header parameters, including the alg parameter, can be shared among
all recipient computations. These header parameters are stored in either of two
top-level member(s) of the JSON object: the protected member and the
unprotected member. The values of these members, if present, are JSON Text
Objects containing Header Parameters.
Not all header parameters are integrity protected. The shared header
parameters in the protected member are integrity protected, and are
base64url encoded. The per-recipient header parameters in the header array
element members and the shared header parameters in the unprotected
member are not integrity protected. These JSON Text Objects containing header
parameters that are not integrity protected are not base64url encoded.
The header parameter values used when creating or validating per-recipient
Ciphertext and Authentication Tag values are the union of the three sets of
header parameter values that may be present: (1) the per-recipient values in
the header member of the recipient's array element, (2) the shared integrity-
protected values in the protected member, and (3) the shared non-integrity-
protected values in the unprotected member. The union of these sets of
header parameters comprises the JWE Header. The header parameter names in
the three locations MUST be disjoint.
An aad (Additional Authenticated Data) member can be included to supply a
base64url encoded value to be integrity protected but not encrypted. (Note that
this can also be achieved when using either serialization by including the AAD
value as a protected header parameter value, but at the cost of the value being
double base64url encoded.)
The recipients array MUST always be present, even if the array elements
contain only the empty JSON object {} (which can happen when all header
parameter values are shared between all recipients and when no encrypted key
is used, such as when doing Direct Encryption).

The syntax of a JWE using the JWE JSON Serialization is as follows:

 {"protected":<integrity-protected shared header contents>",
 "unprotected":<non-integrity-protected shared header contents>",
 "recipients":[
 {"header":"<per-recipient unprotected header 1 contents>",
 "encrypted_key":"<encrypted key 1 contents>"},
 ...
 {"header":"<per-recipient unprotected header N contents>",
 "encrypted_key":"<encrypted key N contents>"}],
 "aad":"<additional authenticated data contents>",
 "iv":"<initialization vector contents>",
 "ciphertext":"<ciphertext contents>",
 "tag":"<authentication tag contents>"
 }

Of these members, only the ciphertext member MUST be present. The iv, tag, and
encrypted_key members MUST be present when corresponding JWE Initialization Vector,
JWE Authentication Tag, and JWE Encrypted Key values are non-empty. The recipients
member MUST be present when any header or encrypted_key members are needed for
recipients. At least one of the header, protected, and unprotected members MUST be
present so that alg and enc header parameter values are conveyed for each recipient

 TOC

 TOC

 TOC

computation.

The contents of the Encoded JWE Encrypted Key, Encoded JWE Initialization Vector, Encoded
JWE Ciphertext, and Encoded JWE Authentication Tag values are exactly as defined in the rest
of this specification. They are interpreted and validated in the same manner, with each
corresponding Encoded JWE Encrypted Key, Encoded JWE Initialization Vector, Encoded JWE
Ciphertext, Encoded JWE Authentication Tag, and set of header parameter values being
created and validated together. The JWE Header values used are the union of the header
parameters in the protected, unprotected, and corresponding header members, as
described earlier.

Each JWE Encrypted Key value is computed using the parameters of the corresponding JWE
Header value in the same manner as for the JWE Compact Serialization. This has the
desirable property that each Encoded JWE Encrypted Key value in the recipients array is
identical to the value that would have been computed for the same parameter in the JWE
Compact Serialization. Likewise, the JWE Ciphertext and JWE Authentication Tag values match
those produced for the JWE Compact Serialization, provided that the Encoded JWE Header
value (which represents the integrity-protected header parameter values) matches that used
in the JWE Compact Serialization.

All recipients use the same JWE Protected Header, JWE Initialization Vector, JWE Ciphertext,
and JWE Authentication Tag values, resulting in potentially significant space savings if the
message is large. Therefore, all header parameters that specify the treatment of the
Plaintext value MUST be the same for all recipients. This primarily means that the enc
(encryption method) header parameter value in the JWE Header for each recipient and any
parameters of that algorithm MUST be the same.

See for an example of computing a JWE using the JWE JSON Serialization.

8. Distinguishing Between JWS and JWE Objects

There are several ways of distinguishing whether an object is a JWS or JWE object. All these
methods will yield the same result for all legal input values.

If the object is using the JWS Compact Serialization or the JWE Compact
Serialization, the number of base64url encoded segments separated by period
('.') characters differs for JWSs and JWEs. JWSs have three segments separated
by two period ('.') characters. JWEs have five segments separated by four period
('.') characters.
If the object is using the JWS JSON Serialization or the JWE JSON Serialization, the
members used will be different. JWSs have a signatures member and JWEs do
not. JWEs have a recipients member and JWSs do not.
A JWS Header can be distinguished from a JWE header by examining the alg
(algorithm) header parameter value. If the value represents a digital signature or
MAC algorithm, or is the value none, it is for a JWS; if it represents a Key
Encryption, Key Wrapping, Direct Key Agreement, Key Agreement with Key
Wrapping, or Direct Encryption algorithm, it is for a JWE.
A JWS Header can also be distinguished from a JWE header by determining
whether an enc (encryption method) member exists. If the enc member exists,
it is a JWE; otherwise, it is a JWS.

9. IANA Considerations

9.1. JWE Header Parameter Names Registration

This specification registers the Header Parameter Names defined in in the IANA
JSON Web Signature and Encryption Header Parameters registry defined in .

Appendix A.4

Section 4.1
[JWS]

 TOC

 TOC

9.1.1. Registry Contents

Header Parameter Name: alg
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: enc
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: zip
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: jku
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: jwk
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification document(s): of [[this document]]

Header Parameter Name: x5u
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: x5t
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: x5c
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: kid
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: typ
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: cty
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

Header Parameter Name: crit
Header Parameter Usage Location(s): JWE
Change Controller: IESG
Specification Document(s): of [[this document]]

10. Security Considerations

All of the security issues faced by any cryptographic application must be faced by a

Section 4.1.1

Section 4.1.2

Section 4.1.3

Section 4.1.4

Section 4.1.5

Section 4.1.6

Section 4.1.7

Section 4.1.8

Section 4.1.9

Section 4.1.10

Section 4.1.11

Section 4.1.12

 TOC

 TOC

 TOC

JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document.

All the security considerations in the JWS specification also apply to this specification.
Likewise, all the security considerations in
[W3C.CR‑xmlenc‑core1‑20120313] also apply, other than those that are XML specific.

When decrypting, particular care must be taken not to allow the JWE recipient to be used as
an oracle for decrypting messages. [RFC3218] should be consulted for specific
countermeasures to attacks on RSAES-PKCS1-V1_5. An attacker might modify the contents
of the alg parameter from RSA-OAEP to RSA1_5 in order to generate a formatting error that
can be detected and used to recover the CEK even if RSAES OAEP was used to encrypt the
CEK. It is therefore particularly important to report all formatting errors to the CEK, Additional
Authenticated Data, or ciphertext as a single error when the encrypted content is rejected.

11. References

11.1. Normative References

[ECMAScript] Ecma International, “ECMAScript Language Specification, 5.1 Edition,” ECMA 262, June 2011 (HTML,
PDF).

[IANA.MediaTypes] Internet Assigned Numbers Authority (IANA), “MIME Media Types,” 2005.

[ITU.X690.1994] International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),”
ITU-T Recommendation X.690, 1994.

[JWA] Jones, M., “JSON Web Algorithms (JWA),” draft-ietf-jose-json-web-algorithms (work in progress),
September 2013 (HTML).

[JWK] Jones, M., “JSON Web Key (JWK),” draft-ietf-jose-json-web-key (work in progress), September 2013
(HTML).

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” draft-ietf-jose-json-web-
signature (work in progress), September 2013 (HTML).

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC1951] Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” RFC 1951,
May 1996 (TXT, PS, PDF).

[RFC2046] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types,” RFC 2046, November 1996 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003
(TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106,
RFC 4086, June 2005 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),”
RFC 4627, July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008
(TXT).

[W3C.CR-xmlenc-
core1-20120313]

Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20120313, March 2012 (HTML).

11.2. Informative References

[I-D.mcgrew-aead-
aes-cbc-hmac-sha2]

McGrew, D. and K. Paterson, “Authenticated Encryption with AES-CBC and HMAC-SHA ,” draft-
mcgrew-aead-aes-cbc-hmac-sha2-01 (work in progress), October 2012 (TXT).

XML Encryption 1.1

RFC 3218

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
http://www.iana.org/assignments/media-types
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:ghost@aladdin.com
http://tools.ietf.org/html/rfc1951
http://www.rfc-editor.org/rfc/rfc1951.txt
http://www.rfc-editor.org/rfc/rfc1951.ps
http://www.rfc-editor.org/rfc/rfc1951.pdf
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-01
http://www.ietf.org/internet-drafts/draft-mcgrew-aead-aes-cbc-hmac-sha2-01.txt

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

[I-D.rescorla-jsms] Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work
in progress), March 2011 (TXT).

[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.

[RFC3218] Rescorla, E., “Preventing the Million Message Attack on Cryptographic Message Syntax,”
RFC 3218, January 2002 (TXT).

[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN
Namespace,” RFC 4122, July 2005 (TXT, HTML, XML).

[RFC5652] Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).

Appendix A. JWE Examples

This section provides examples of JWE computations.

A.1. Example JWE using RSAES OAEP and AES GCM

This example encrypts the plaintext "The true sign of intelligence is not knowledge but
imagination." to the recipient using RSAES OAEP for key encryption and AES GCM for content
encryption. The representation of this plaintext is:

[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32, 111, 102, 32, 105, 110,
116, 101, 108, 108, 105, 103, 101, 110, 99, 101, 32, 105, 115, 32, 110, 111, 116, 32, 107,
110, 111, 119, 108, 101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105, 110, 97,
116, 105, 111, 110, 46]

A.1.1. JWE Header

The following example JWE Header declares that:

the Content Encryption Key is encrypted to the recipient using the RSAES OAEP
algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES GCM algorithm with a 256 bit key to
produce the Ciphertext.

 {"alg":"RSA-OAEP","enc":"A256GCM"}

A.1.2. Encoded JWE Header

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ

A.1.3. Content Encryption Key (CEK)

Generate a 256 bit random Content Encryption Key (CEK). In this example, the value is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154, 212, 246, 138, 7, 110, 91,
112, 46, 34, 105, 47, 130, 203, 46, 122, 234, 64, 252]

A.1.4. Key Encryption

http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://jsonenc.info/enc/1.0/
http://tools.ietf.org/html/rfc3218
http://www.rfc-editor.org/rfc/rfc3218.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://tools.ietf.org/html/rfc5652
http://www.rfc-editor.org/rfc/rfc5652.txt

 TOC

 TOC

Encrypt the CEK with the recipient's public key using the RSAES OAEP algorithm to produce
the JWE Encrypted Key. This example uses the RSA key represented in JSON Web Key
format below (with line breaks for display purposes only):

 {"kty":"RSA",
 "n":"oahUIoWw0K0usKNuOR6H4wkf4oBUXHTxRvgb48E-BVvxkeDNjbC4he8rUW
 cJoZmds2h7M70imEVhRU5djINXtqllXI4DFqcI1DgjT9LewND8MW2Krf3S
 psk_ZkoFnilakGygTwpZ3uesH-PFABNIUYpOiN15dsQRkgr0vEhxN92i2a
 sbOenSZeyaxziK72UwxrrKoExv6kc5twXTq4h-QChLOln0_mtUZwfsRaMS
 tPs6mS6XrgxnxbWhojf663tuEQueGC-FCMfra36C9knDFGzKsNa7LZK2dj
 YgyD3JR_MB_4NUJW_TqOQtwHYbxevoJArm-L5StowjzGy-_bq6Gw",
 "e":"AQAB",
 "d":"kLdtIj6GbDks_ApCSTYQtelcNttlKiOyPzMrXHeI-yk1F7-kpDxY4-WY5N
 WV5KntaEeXS1j82E375xxhWMHXyvjYecPT9fpwR_M9gV8n9Hrh2anTpTD9
 3Dt62ypW3yDsJzBnTnrYu1iwWRgBKrEYY46qAZIrA2xAwnm2X7uGR1hghk
 qDp0Vqj3kbSCz1XyfCs6_LehBwtxHIyh8Ripy40p24moOAbgxVw3rxT_vl
 t3UVe4WO3JkJOzlpUf-KTVI2Ptgm-dARxTEtE-id-4OJr0h-K-VFs3VSnd
 VTIznSxfyrj8ILL6MG_Uv8YAu7VILSB3lOW085-4qE3DzgrTjgyQ"
 }

The resulting JWE Encrypted Key value is:

[56, 163, 154, 192, 58, 53, 222, 4, 105, 218, 136, 218, 29, 94, 203, 22, 150, 92, 129, 94, 211,
232, 53, 89, 41, 60, 138, 56, 196, 216, 82, 98, 168, 76, 37, 73, 70, 7, 36, 8, 191, 100, 136,
196, 244, 220, 145, 158, 138, 155, 4, 117, 141, 230, 199, 247, 173, 45, 182, 214, 74, 177,
107, 211, 153, 11, 205, 196, 171, 226, 162, 128, 171, 182, 13, 237, 239, 99, 193, 4, 91, 219,
121, 223, 107, 167, 61, 119, 228, 173, 156, 137, 134, 200, 80, 219, 74, 253, 56, 185, 91, 177,
34, 158, 89, 154, 205, 96, 55, 18, 138, 43, 96, 218, 215, 128, 124, 75, 138, 243, 85, 25, 109,
117, 140, 26, 155, 249, 67, 167, 149, 231, 100, 6, 41, 65, 214, 251, 232, 87, 72, 40, 182, 149,
154, 168, 31, 193, 126, 215, 89, 28, 111, 219, 125, 182, 139, 235, 195, 197, 23, 234, 55, 58,
63, 180, 68, 202, 206, 149, 75, 205, 248, 176, 67, 39, 178, 60, 98, 193, 32, 238, 122, 96, 158,
222, 57, 183, 111, 210, 55, 188, 215, 206, 180, 166, 150, 166, 106, 250, 55, 229, 72, 40, 69,
214, 216, 104, 23, 40, 135, 212, 28, 127, 41, 80, 175, 174, 168, 115, 171, 197, 89, 116, 92,
103, 246, 83, 216, 182, 176, 84, 37, 147, 35, 45, 219, 172, 99, 226, 233, 73, 37, 124, 42, 72,
49, 242, 35, 127, 184, 134, 117, 114, 135, 206]

A.1.5. Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This
result (with line breaks for display purposes only) is:

 OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
 ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
 Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
 mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
 1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
 6UklfCpIMfIjf7iGdXKHzg

A.1.6. Initialization Vector

Generate a random 96 bit JWE Initialization Vector. In this example, the value is:

[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]

Base64url encoding this value yields this Encoded JWE Initialization Vector value:

 48V1_ALb6US04U3b

[JWK]

 TOC

 TOC

 TOC

 TOC

 TOC

A.1.7. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be the octets of the ASCII
representation of the Encoded JWE Header value. This AAD value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 116, 84, 48, 70, 70, 85, 67,
73, 115, 73, 109, 86, 117, 89, 121, 73, 54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105,
102, 81]

A.1.8. Content Encryption

Encrypt the Plaintext with AES GCM using the CEK as the encryption key, the JWE Initialization
Vector, and the Additional Authenticated Data value above, requesting a 128 bit
Authentication Tag output. The resulting Ciphertext is:

[229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122, 233, 96, 140, 206, 120, 52,
51, 237, 48, 11, 190, 219, 186, 80, 111, 104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40,
82, 242, 32, 123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205, 160, 109, 64,
63, 192]

The resulting Authentication Tag value is:

[92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91, 210, 145]

A.1.9. Encoded JWE Ciphertext

Base64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result (with line
breaks for display purposes only) is:

 5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
 SdiwkIr3ajwQzaBtQD_A

A.1.10. Encoded JWE Authentication Tag

Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This
result is:

 XFBoMYUZodetZdvTiFvSkQ

A.1.11. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag in
that order, with the five strings being separated by four period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
 OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
 ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb

 TOC

 TOC

 TOC

 TOC

 TOC

 Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
 mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
 1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
 6UklfCpIMfIjf7iGdXKHzg.
 48V1_ALb6US04U3b.
 5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
 SdiwkIr3ajwQzaBtQD_A.
 XFBoMYUZodetZdvTiFvSkQ

A.1.12. Validation

This example illustrates the process of creating a JWE with RSAES OAEP for key encryption
and AES GCM for content encryption. These results can be used to validate JWE decryption
implementations for these algorithms. Note that since the RSAES OAEP computation
includes random values, the encryption results above will not be completely reproducible.
However, since the AES GCM computation is deterministic, the JWE Encrypted Ciphertext
values will be the same for all encryptions performed using these inputs.

A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256

This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES-
PKCS1-V1_5 for key encryption and AES_128_CBC_HMAC_SHA_256 for content encryption.
The representation of this plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

A.2.1. JWE Header

The following example JWE Header (with line breaks for display purposes only) declares that:

the Content Encryption Key is encrypted to the recipient using the RSAES-
PKCS1-V1_5 algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256 algorithm to
produce the Ciphertext.

 {"alg":"RSA1_5","enc":"A128CBC-HS256"}

A.2.2. Encoded JWE Header

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

A.2.3. Content Encryption Key (CEK)

Generate a 256 bit random Content Encryption Key (CEK). In this example, the key value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

 TOC

 TOC

 TOC

A.2.4. Key Encryption

Encrypt the CEK with the recipient's public key using the RSAES-PKCS1-V1_5 algorithm to
produce the JWE Encrypted Key. This example uses the RSA key represented in JSON Web Key

 format below (with line breaks for display purposes only):

 {"kty":"RSA",
 "n":"sXchDaQebHnPiGvyDOAT4saGEUetSyo9MKLOoWFsueri23bOdgWp4Dy1Wl
 UzewbgBHod5pcM9H95GQRV3JDXboIRROSBigeC5yjU1hGzHHyXss8UDpre
 cbAYxknTcQkhslANGRUZmdTOQ5qTRsLAt6BTYuyvVRdhS8exSZEy_c4gs_
 7svlJJQ4H9_NxsiIoLwAEk7-Q3UXERGYw_75IDrGA84-lA_-Ct4eTlXHBI
 Y2EaV7t7LjJaynVJCpkv4LKjTTAumiGUIuQhrNhZLuF_RJLqHpM2kgWFLU
 7-VTdL1VbC2tejvcI2BlMkEpk1BzBZI0KQB0GaDWFLN-aEAw3vRw",
 "e":"AQAB",
 "d":"VFCWOqXr8nvZNyaaJLXdnNPXZKRaWCjkU5Q2egQQpTBMwhprMzWzpR8Sxq
 1OPThh_J6MUD8Z35wky9b8eEO0pwNS8xlh1lOFRRBoNqDIKVOku0aZb-ry
 nq8cxjDTLZQ6Fz7jSjR1Klop-YKaUHc9GsEofQqYruPhzSA-QgajZGPbE_
 0ZaVDJHfyd7UUBUKunFMScbflYAAOYJqVIVwaYR5zWEEceUjNnTNo_CVSj
 -VvXLO5VZfCUAVLgW4dpf1SrtZjSt34YLsRarSb127reG_DUwg9Ch-Kyvj
 T1SkHgUWRVGcyly7uvVGRSDwsXypdrNinPA4jlhoNdizK2zF2CWQ"
 }

The resulting JWE Encrypted Key value is:

[80, 104, 72, 58, 11, 130, 236, 139, 132, 189, 255, 205, 61, 86, 151, 176, 99, 40, 44, 233,
176, 189, 205, 70, 202, 169, 72, 40, 226, 181, 156, 223, 120, 156, 115, 232, 150, 209, 145,
133, 104, 112, 237, 156, 116, 250, 65, 102, 212, 210, 103, 240, 177, 61, 93, 40, 71, 231, 223,
226, 240, 157, 15, 31, 150, 89, 200, 215, 198, 203, 108, 70, 117, 66, 212, 238, 193, 205, 23,
161, 169, 218, 243, 203, 128, 214, 127, 253, 215, 139, 43, 17, 135, 103, 179, 220, 28, 2, 212,
206, 131, 158, 128, 66, 62, 240, 78, 186, 141, 125, 132, 227, 60, 137, 43, 31, 152, 199, 54,
72, 34, 212, 115, 11, 152, 101, 70, 42, 219, 233, 142, 66, 151, 250, 126, 146, 141, 216, 190,
73, 50, 177, 146, 5, 52, 247, 28, 197, 21, 59, 170, 247, 181, 89, 131, 241, 169, 182, 246, 99,
15, 36, 102, 166, 182, 172, 197, 136, 230, 120, 60, 58, 219, 243, 149, 94, 222, 150, 154, 194,
110, 227, 225, 112, 39, 89, 233, 112, 207, 211, 241, 124, 174, 69, 221, 179, 107, 196, 225,
127, 167, 112, 226, 12, 242, 16, 24, 28, 120, 182, 244, 213, 244, 153, 194, 162, 69, 160, 244,
248, 63, 165, 141, 4, 207, 249, 193, 79, 131, 0, 169, 233, 127, 167, 101, 151, 125, 56, 112,
111, 248, 29, 232, 90, 29, 147, 110, 169, 146, 114, 165, 204, 71, 136, 41, 252]

A.2.5. Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This
result (with line breaks for display purposes only) is:

 UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm
 1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
 HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
 NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
 rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
 -B3oWh2TbqmScqXMR4gp_A

A.2.6. Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

Base64url encoding this value yields this Encoded JWE Initialization Vector value:

[JWK]

 TOC

 TOC

 TOC

 TOC

 TOC

 AxY8DCtDaGlsbGljb3RoZQ

A.2.7. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be the octets of the ASCII
representation of the Encoded JWE Header value. This AAD value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 120, 88, 122, 85, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48]

A.2.8. Content Encryption

Encrypt the Plaintext with AES_128_CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from are detailed in . The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[246, 17, 244, 190, 4, 95, 98, 3, 231, 0, 115, 157, 242, 203, 100, 191]

A.2.9. Encoded JWE Ciphertext

Base64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result is:

 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY

A.2.10. Encoded JWE Authentication Tag

Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This
result is:

 9hH0vgRfYgPnAHOd8stkvw

A.2.11. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag in
that order, with the five strings being separated by four period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
 UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm

Appendix A.3 Appendix B

 TOC

 TOC

 TOC

 TOC

 TOC

 1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
 HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
 NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
 rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
 -B3oWh2TbqmScqXMR4gp_A.
 AxY8DCtDaGlsbGljb3RoZQ.
 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
 9hH0vgRfYgPnAHOd8stkvw

A.2.12. Validation

This example illustrates the process of creating a JWE with RSAES-PKCS1-V1_5 for key
encryption and AES_CBC_HMAC_SHA2 for content encryption. These results can be used to
validate JWE decryption implementations for these algorithms. Note that since the RSAES-
PKCS1-V1_5 computation includes random values, the encryption results above will not be
completely reproducible. However, since the AES CBC computation is deterministic, the JWE
Encrypted Ciphertext values will be the same for all encryptions performed using these
inputs.

A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256

This example encrypts the plaintext "Live long and prosper." to the recipient using AES Key
Wrap for key encryption and AES GCM for content encryption. The representation of this
plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

A.3.1. JWE Header

The following example JWE Header declares that:

the Content Encryption Key is encrypted to the recipient using the AES Key Wrap
algorithm with a 128 bit key to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256 algorithm to
produce the Ciphertext.

 {"alg":"A128KW","enc":"A128CBC-HS256"}

A.3.2. Encoded JWE Header

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

 eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

A.3.3. Content Encryption Key (CEK)

Generate a 256 bit random Content Encryption Key (CEK). In this example, the value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

 TOC

 TOC

 TOC

 TOC

 TOC

A.3.4. Key Encryption

Encrypt the CEK with the shared symmetric key using the AES Key Wrap algorithm to produce
the JWE Encrypted Key. This example uses the symmetric key represented in JSON Web Key

 format below:

 {"kty":"oct",
 "k":"GawgguFyGrWKav7AX4VKUg"
 }

The resulting JWE Encrypted Key value is:

[232, 160, 123, 211, 183, 76, 245, 132, 200, 128, 123, 75, 190, 216, 22, 67, 201, 138, 193,
186, 9, 91, 122, 31, 246, 90, 28, 139, 57, 3, 76, 124, 193, 11, 98, 37, 173, 61, 104, 57]

A.3.5. Encoded JWE Encrypted Key

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This
result is:

 6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ

A.3.6. Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

Base64url encoding this value yields this Encoded JWE Initialization Vector value:

 AxY8DCtDaGlsbGljb3RoZQ

A.3.7. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be the octets of the ASCII
representation of the Encoded JWE Header value. This AAD value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48]

A.3.8. Content Encryption

Encrypt the Plaintext with AES_128_CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from this example are detailed in . The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,

[JWK]

Appendix B

 TOC

 TOC

 TOC

 TOC

 TOC

210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38, 194, 85]

A.3.9. Encoded JWE Ciphertext

Base64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result is:

 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY

A.3.10. Encoded JWE Authentication Tag

Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This
result is:

 U0m_YmjN04DJvceFICbCVQ

A.3.11. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag in
that order, with the five strings being separated by four period ('.') characters.

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
 6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ.
 AxY8DCtDaGlsbGljb3RoZQ.
 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
 U0m_YmjN04DJvceFICbCVQ

A.3.12. Validation

This example illustrates the process of creating a JWE with AES Key Wrap for key encryption
and AES GCM for content encryption. These results can be used to validate JWE decryption
implementations for these algorithms. Also, since both the AES Key Wrap and AES GCM
computations are deterministic, the resulting JWE value will be the same for all encryptions
performed using these inputs. Since the computation is reproducible, these results can also
be used to validate JWE encryption implementations for these algorithms.

A.4. Example JWE Using JWE JSON Serialization

This section contains an example using the JWE JSON Serialization. This example
demonstrates the capability for encrypting the same plaintext to multiple recipients.

Two recipients are present in this example. The algorithm and key used for the first recipient
are the same as that used in . The algorithm and key used for the second
recipient are the same as that used in . The resulting JWE Encrypted Key

Appendix A.2
Appendix A.3

 TOC

 TOC

 TOC

 TOC

values are therefore the same; those computations are not repeated here.

The Plaintext, the Content Encryption Key (CEK), Initialization Vector, and JWE Protected
Header are shared by all recipients (which must be the case, since the Ciphertext and
Authentication Tag are also shared).

A.4.1. JWE Per-Recipient Unprotected Headers

The first recipient uses the RSAES-PKCS1-V1_5 algorithm to encrypt the Content Encryption
Key (CEK). The second uses AES Key Wrap to encrypt the CEK. Key ID values are supplied for
both keys. The two per-recipient header values used to represent these algorithms and Key
IDs are:

 {"alg":"RSA1_5","kid":"2011-04-29"}

and

 {"alg":"A128KW","kid":"7"}

A.4.2. JWE Protected Header

The Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256 algorithm to produce
the common JWE Ciphertext and JWE Authentication Tag values. The JWE Protected Header
value representing this is:

 {"enc":"A128CBC-HS256"}

Base64url encoding the octets of the UTF-8 representation of the JWE Protected Header
yields this Encoded JWE Protected Header value:

 eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

A.4.3. JWE Unprotected Header

This JWE uses the jku header parameter to reference a JWK Set. This is represented in the
following JWE Unprotected Header value as:

 {"jku":"https://server.example.com/keys.jwks"}

A.4.4. Complete JWE Header Values

Combining the per-recipient, protected, and unprotected header values supplied, the JWE
Header values used for the first and second recipient respectively are:

 {"alg":"RSA1_5",
 "kid":"2011-04-29",
 "enc":"A128CBC-HS256",
 "jku":"https://server.example.com/keys.jwks"}

 TOC

 TOC

 TOC

 TOC

 TOC

and

 {"alg":"A128KW",
 "kid":"7",
 "enc":"A128CBC-HS256",
 "jku":"https://server.example.com/keys.jwks"}

A.4.5. Additional Authenticated Data

Let the Additional Authenticated Data encryption parameter be the octets of the ASCII
representation of the Encoded JWE Protected Header value. This AAD value is:

[101, 121, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85,
104, 84, 77, 106, 85, 50, 73, 110, 48]

A.4.6. Content Encryption

Encrypt the Plaintext with AES_128_CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from are detailed in . The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[51, 63, 149, 60, 252, 148, 225, 25, 92, 185, 139, 245, 35, 2, 47, 207]

A.4.7. Encoded JWE Ciphertext

Base64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result is:

 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY

A.4.8. Encoded JWE Authentication Tag

Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This
result is:

 Mz-VPPyU4RlcuYv1IwIvzw

A.4.9. Complete JWE JSON Serialization Representation

The complete JSON Web Encryption JSON Serialization for these values is as follows (with line
breaks for display purposes only):

 {"protected":

Appendix A.3 Appendix B

 TOC

 TOC

 TOC

 "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "unprotected":
 {"jku":"https://server.example.com/keys.jwks"},
 "recipients":[
 {"header":
 {"alg":"RSA1_5"},
 "encrypted_key":
 "UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-
 kFm1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKx
 GHZ7PcHALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3
 YvkkysZIFNPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPh
 cCdZ6XDP0_F8rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPg
 wCp6X-nZZd9OHBv-B3oWh2TbqmScqXMR4gp_A"},
 {"header":
 {"alg":"A128KW"},
 "encrypted_key":
 "6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ"}],
 "iv":
 "AxY8DCtDaGlsbGljb3RoZQ",
 "ciphertext":
 "KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
 "tag":
 "Mz-VPPyU4RlcuYv1IwIvzw"
 }

Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation

This example shows the steps in the AES_128_CBC_HMAC_SHA_256 authenticated
encryption computation using the values from the example in . As described
where this algorithm is defined in Sections 4.8 and 4.8.3 of JWA, the AES_CBC_HMAC_SHA2
family of algorithms are implemented using Advanced Encryption Standard (AES) in Cipher
Block Chaining (CBC) mode with PKCS #5 padding to perform the encryption and an HMAC
SHA-2 function to perform the integrity calculation - in this case, HMAC SHA-256.

B.1. Extract MAC_KEY and ENC_KEY from Key

The 256 bit AES_128_CBC_HMAC_SHA_256 key K used in this example is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

Use the first 128 bits of this key as the HMAC SHA-256 key MAC_KEY, which is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206]

Use the last 128 bits of this key as the AES CBC key ENC_KEY, which is:

[107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

Note that the MAC key comes before the encryption key in the input key K; this is in the
opposite order of the algorithm names in the identifiers "AES_128_CBC_HMAC_SHA_256"
and A128CBC-HS256.

B.2. Encrypt Plaintext to Create Ciphertext

Encrypt the Plaintext with AES in Cipher Block Chaining (CBC) mode using PKCS #5 padding
using the ENC_KEY above. The Plaintext in this example is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

Appendix A.3

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

The encryption result is as follows, which is the Ciphertext output:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

B.3. 64 Bit Big Endian Representation of AAD Length

The Additional Authenticated Data (AAD) in this example is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48]

This AAD is 51 bytes long, which is 408 bits long. The octet string AL, which is the number of
bits in AAD expressed as a big endian 64 bit unsigned integer is:

[0, 0, 0, 0, 0, 0, 1, 152]

B.4. Initialization Vector Value

The Initialization Vector value used in this example is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

B.5. Create Input to HMAC Computation

Concatenate the AAD, the Initialization Vector, the Ciphertext, and the AL value. The result of
this concatenation is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48, 3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101, 40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102, 0, 0, 0, 0, 0, 0, 1, 152]

B.6. Compute HMAC Value

Compute the HMAC SHA-256 of the concatenated value above. This result M is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38, 194, 85, 9, 84, 229, 201,
219, 135, 44, 252, 145, 102, 179, 140, 105, 86, 229, 116]

B.7. Truncate HMAC Value to Create Authentication Tag

Use the first half (128 bits) of the HMAC output M as the Authentication Tag output T. This
truncated value is:

[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38, 194, 85]

Appendix C. Acknowledgements

Solutions for encrypting JSON content were also explored by [JSE]JSON Simple Encryption

 TOC

and [I‑D.rescorla‑jsms], both of which significantly
influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts
from [W3C.CR‑xmlenc‑core1‑20120313] and [RFC5652] as
possible, while utilizing simple, compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped
inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing
the reuse of text from in this document.

Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund Jay for validating
the examples in this specification.

This specification is the work of the JOSE Working Group, which includes dozens of active and
dedicated participants. In particular, the following individuals contributed ideas, feedback, and
wording that influenced this specification:

Richard Barnes, John Bradley, Brian Campbell, Breno de Medeiros, Dick Hardt, Jeff Hodges,
Edmund Jay, James Manger, Matt Miller, Tony Nadalin, Axel Nennker, Emmanuel Raviart, Nat
Sakimura, Jim Schaad, Hannes Tschofenig, and Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and
Stephen Farrell served as Security area directors during the creation of this specification.

Appendix D. Document History

[[to be removed by the RFC Editor before publication as an RFC]]

-16

Changes to address editorial and minor issues #163, #168, #169, #170, #172,
and #173.

-15

Clarified that it is an application decision which recipients' encrypted content
must successfully validate for the JWE to be accepted, addressing issue #35.
Changes to address editorial issues #34, #164, and #169.

-14

Clarified that the protected, unprotected, header, iv, tag, and
encrypted_key parameters are to be omitted in the JWE JSON Serialization
when their values would be empty. Stated that the recipients array must
always be present.

-13

Added an aad (Additional Authenticated Data) member for the JWE JSON
Serialization, enabling Additional Authenticated Data to be supplied that is not
double base64url encoded, addressing issue #29.

-12

Clarified that the typ and cty header parameters are used in an application-
specific manner and have no effect upon the JWE processing.
Replaced the MIME types application/jwe+json and application/jwe with
application/jose+json and application/jose.
Stated that recipients MUST either reject JWEs with duplicate Header Parameter
Names or use a JSON parser that returns only the lexically last duplicate
member name.
Moved the epk, apu, and apv Header Parameter definitions to be with the
algorithm descriptions that use them.
Added a Serializations section with parallel treatment of the JWE Compact
Serialization and the JWE JSON Serialization and also moved the former
Implementation Considerations content there.
Restored use of the term "AEAD".
Changed terminology from "block encryption" to "content encryption".

JavaScript Message Security Format

XML Encryption 1.1 RFC 5652

[I‑D.rescorla‑jsms]

Changed terminology from "block encryption" to "content encryption".

-11

Added Key Identification section.
Removed the Encrypted Key value from the AAD computation since it is already
effectively integrity protected by the encryption process. The AAD value now only
contains the representation of the JWE Encrypted Header.
For the JWE JSON Serialization, enable header parameter values to be specified
in any of three parameters: the protected member that is integrity protected
and shared among all recipients, the unprotected member that is not integrity
protected and shared among all recipients, and the header member that is not
integrity protected and specific to a particular recipient. (This does not affect the
JWE Compact Serialization, in which all header parameter values are in a single
integrity protected JWE Header value.)
Shortened the names authentication_tag to tag and
initialization_vector to iv in the JWE JSON Serialization, addressing issue
#20.
Removed apv (agreement PartyVInfo) since it is no longer used.
Removed suggested compact serialization for multiple recipients.
Changed the MIME type name application/jwe-js to
application/jwe+json, addressing issue #22.
Tightened the description of the crit (critical) header parameter.

-10

Changed the JWE processing rules for multiple recipients so that a single AAD
value contains the header parameters and encrypted key values for all the
recipients, enabling AES GCM to be safely used for multiple recipients.
Added an appendix suggesting a possible compact serialization for JWEs with
multiple recipients.

-09

Added JWE JSON Serialization, as specified by draft-jones-jose-jwe-json-
serialization-04.
Registered application/jwe-js MIME type and JWE-JS typ header parameter
value.
Defined that the default action for header parameters that are not understood is
to ignore them unless specifically designated as "MUST be understood" or
included in the new crit (critical) header parameter list. This addressed issue
#6.
Corrected x5c description. This addressed issue #12.
Changed from using the term "byte" to "octet" when referring to 8 bit values.
Added Key Management Mode definitions to terminology section and used the
defined terms to provide clearer key management instructions. This addressed
issue #5.
Added text about preventing the recipient from behaving as an oracle during
decryption, especially when using RSAES-PKCS1-V1_5.
Changed from using the term "Integrity Value" to "Authentication Tag".
Changed member name from integrity_value to authentication_tag in
the JWE JSON Serialization.
Removed Initialization Vector from the AAD value since it is already integrity
protected by all of the authenticated encryption algorithms specified in the JWA
specification.
Replaced A128CBC+HS256 and A256CBC+HS512 with A128CBC-HS256 and
A256CBC-HS512. The new algorithms perform the same cryptographic
computations as , but with the
Initialization Vector and Authentication Tag values remaining separate from the
Ciphertext value in the output representation. Also deleted the header
parameters epu (encryption PartyUInfo) and epv (encryption PartyVInfo), since
they are no longer used.

-08

Replaced uses of the term "AEAD" with "Authenticated Encryption", since the
term AEAD in the RFC 5116 sense implied the use of a particular data
representation, rather than just referring to the class of algorithms that perform
authenticated encryption with associated data.

[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2]

Applied editorial improvements suggested by Jeff Hodges and Hannes
Tschofenig. Many of these simplified the terminology used.
Clarified statements of the form "This header parameter is OPTIONAL" to "Use of
this header parameter is OPTIONAL".
Added a Header Parameter Usage Location(s) field to the IANA JSON Web
Signature and Encryption Header Parameters registry.
Added seriesInfo information to Internet Draft references.

-07

Added a data length prefix to PartyUInfo and PartyVInfo values.
Updated values for example AES CBC calculations.
Made several local editorial changes to clean up loose ends left over from to the
decision to only support block encryption methods providing integrity. One of
these changes was to explicitly state that the enc (encryption method) algorithm
must be an Authenticated Encryption algorithm with a specified key length.

-06

Removed the int and kdf parameters and defined the new composite
Authenticated Encryption algorithms A128CBC+HS256 and A256CBC+HS512 to
replace the former uses of AES CBC, which required the use of separate integrity
and key derivation functions.
Included additional values in the Concat KDF calculation -- the desired output
size and the algorithm value, and optionally PartyUInfo and PartyVInfo values.
Added the optional header parameters apu (agreement PartyUInfo), apv
(agreement PartyVInfo), epu (encryption PartyUInfo), and epv (encryption
PartyVInfo). Updated the KDF examples accordingly.
Promoted Initialization Vector from being a header parameter to being a top-
level JWE element. This saves approximately 16 bytes in the compact
serialization, which is a significant savings for some use cases. Promoting the
Initialization Vector out of the header also avoids repeating this shared value in
the JSON serialization.
Changed x5c (X.509 Certificate Chain) representation from being a single string
to being an array of strings, each containing a single base64 encoded DER
certificate value, representing elements of the certificate chain.
Added an AES Key Wrap example.
Reordered the encryption steps so CMK creation is first, when required.
Correct statements in examples about which algorithms produce reproducible
results.

-05

Support both direct encryption using a shared or agreed upon symmetric key,
and the use of a shared or agreed upon symmetric key to key wrap the CMK.
Added statement that "StringOrURI values are compared as case-sensitive
strings with no transformations or canonicalizations applied".
Updated open issues.
Indented artwork elements to better distinguish them from the body text.

-04

Refer to the registries as the primary sources of defined values and then
secondarily reference the sections defining the initial contents of the registries.
Normatively reference [W3C.CR‑xmlenc‑core1‑20120313]
for its security considerations.
Reference draft-jones-jose-jwe-json-serialization instead of draft-jones-json-web-
encryption-json-serialization.
Described additional open issues.
Applied editorial suggestions.

-03

Added the kdf (key derivation function) header parameter to provide crypto
agility for key derivation. The default KDF remains the Concat KDF with the SHA-
256 digest function.
Reordered encryption steps so that the Encoded JWE Header is always created
before it is needed as an input to the Authenticated Encryption "additional
authenticated data" parameter.

XML Encryption 1.1

 TOC

Added the cty (content type) header parameter for declaring type information
about the secured content, as opposed to the typ (type) header parameter,
which declares type information about this object.
Moved description of how to determine whether a header is for a JWS or a JWE
from the JWT spec to the JWE spec.
Added complete encryption examples for both Authenticated Encryption and
non-Authenticated Encryption algorithms.
Added complete key derivation examples.
Added "Collision Resistant Namespace" to the terminology section.
Reference ITU.X690.1994 for DER encoding.
Added Registry Contents sections to populate registry values.
Numerous editorial improvements.

-02

When using Authenticated Encryption algorithms (such as AES GCM), use the
"additional authenticated data" parameter to provide integrity for the header,
encrypted key, and ciphertext and use the resulting "authentication tag" value as
the JWE Authentication Tag.
Defined KDF output key sizes.
Generalized text to allow key agreement to be employed as an alternative to key
wrapping or key encryption.
Changed compression algorithm from gzip to DEFLATE.
Clarified that it is an error when a kid value is included and no matching key is
found.
Clarified that JWEs with duplicate Header Parameter Names MUST be rejected.
Clarified the relationship between typ header parameter values and MIME types.
Registered application/jwe MIME type and "JWE" typ header parameter value.
Simplified JWK terminology to get replace the "JWK Key Object" and "JWK
Container Object" terms with simply "JSON Web Key (JWK)" and "JSON Web Key
Set (JWK Set)" and to eliminate potential confusion between single keys and sets
of keys. As part of this change, the Header Parameter Name for a public key
value was changed from jpk (JSON Public Key) to jwk (JSON Web Key).
Added suggestion on defining additional header parameters such as x5t#S256
in the future for certificate thumbprints using hash algorithms other than SHA-1.
Specify RFC 2818 server identity validation, rather than RFC 6125 (paralleling the
same decision in the OAuth specs).
Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs) unless in a context
specific to HMAC algorithms.
Reformatted to give each header parameter its own section heading.

-01

Added an integrity check for non-Authenticated Encryption algorithms.
Added jpk and x5c header parameters for including JWK public keys and X.509
certificate chains directly in the header.
Clarified that this specification is defining the JWE Compact Serialization.
Referenced the new JWE-JS spec, which defines the JWE JSON Serialization.
Added text "New header parameters should be introduced sparingly since an
implementation that does not understand a parameter MUST reject the JWE".
Clarified that the order of the encryption and decryption steps is not significant in
cases where there are no dependencies between the inputs and outputs of the
steps.
Made other editorial improvements suggested by JOSE working group
participants.

-00

Created the initial IETF draft based upon draft-jones-json-web-encryption-02 with
no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 Eric Rescorla
 RTFM, Inc.

Email: ekr@rtfm.com

 Joe Hildebrand
 Cisco Systems, Inc.

Email: jhildebr@cisco.com

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com

	JSON Web Encryption (JWE) draft-ietf-jose-json-web-encryption-16
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Web Encryption (JWE) Overview
	3.1. Example JWE
	4. JWE Header
	4.1. Registered Header Parameter Names
	4.1.1. "alg" (Algorithm) Header Parameter
	4.1.2. "enc" (Encryption Method) Header Parameter
	4.1.3. "zip" (Compression Algorithm) Header Parameter
	4.1.4. "jku" (JWK Set URL) Header Parameter
	4.1.5. "jwk" (JSON Web Key) Header Parameter
	4.1.6. "x5u" (X.509 URL) Header Parameter
	4.1.7. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter
	4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter
	4.1.9. "kid" (Key ID) Header Parameter
	4.1.10. "typ" (Type) Header Parameter
	4.1.11. "cty" (Content Type) Header Parameter
	4.1.12. "crit" (Critical) Header Parameter
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Producing and Consuming JWEs
	5.1. Message Encryption
	5.2. Message Decryption
	5.3. String Comparison Rules
	6. Key Identification
	7. Serializations
	7.1. JWE Compact Serialization
	7.2. JWE JSON Serialization
	8. Distinguishing Between JWS and JWE Objects
	9. IANA Considerations
	9.1. JWE Header Parameter Names Registration
	9.1.1. Registry Contents
	10. Security Considerations
	11. References
	11.1. Normative References
	11.2. Informative References
	Appendix A. JWE Examples
	A.1. Example JWE using RSAES OAEP and AES GCM
	A.1.1. JWE Header
	A.1.2. Encoded JWE Header
	A.1.3. Content Encryption Key (CEK)
	A.1.4. Key Encryption
	A.1.5. Encoded JWE Encrypted Key
	A.1.6. Initialization Vector
	A.1.7. Additional Authenticated Data
	A.1.8. Content Encryption
	A.1.9. Encoded JWE Ciphertext
	A.1.10. Encoded JWE Authentication Tag
	A.1.11. Complete Representation
	A.1.12. Validation
	A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256
	A.2.1. JWE Header
	A.2.2. Encoded JWE Header
	A.2.3. Content Encryption Key (CEK)
	A.2.4. Key Encryption
	A.2.5. Encoded JWE Encrypted Key
	A.2.6. Initialization Vector
	A.2.7. Additional Authenticated Data
	A.2.8. Content Encryption
	A.2.9. Encoded JWE Ciphertext
	A.2.10. Encoded JWE Authentication Tag
	A.2.11. Complete Representation
	A.2.12. Validation
	A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256
	A.3.1. JWE Header
	A.3.2. Encoded JWE Header
	A.3.3. Content Encryption Key (CEK)
	A.3.4. Key Encryption
	A.3.5. Encoded JWE Encrypted Key
	A.3.6. Initialization Vector
	A.3.7. Additional Authenticated Data
	A.3.8. Content Encryption
	A.3.9. Encoded JWE Ciphertext
	A.3.10. Encoded JWE Authentication Tag
	A.3.11. Complete Representation
	A.3.12. Validation
	A.4. Example JWE Using JWE JSON Serialization
	A.4.1. JWE Per-Recipient Unprotected Headers
	A.4.2. JWE Protected Header
	A.4.3. JWE Unprotected Header
	A.4.4. Complete JWE Header Values
	A.4.5. Additional Authenticated Data
	A.4.6. Content Encryption
	A.4.7. Encoded JWE Ciphertext
	A.4.8. Encoded JWE Authentication Tag
	A.4.9. Complete JWE JSON Serialization Representation
	Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation
	B.1. Extract MAC_KEY and ENC_KEY from Key
	B.2. Encrypt Plaintext to Create Ciphertext
	B.3. 64 Bit Big Endian Representation of AAD Length
	B.4. Initialization Vector Value
	B.5. Create Input to HMAC Computation
	B.6. Compute HMAC Value
	B.7. Truncate HMAC Value to Create Authentication Tag
	Appendix C. Acknowledgements
	Appendix D. Document History
	Authors' Addresses

