

Chadalapaka et al. Expires December 31, 2013 [Page 1]

Storage Maintenance (storm) WG Mallikarjun Chadalapaka

Internet Draft Microsoft

draft-ietf-storm-iscsi-cons-09.txt

Intended status: Proposed Standard Julian Satran

Expires: December 2013 Infinidat Ltd.

Obsoletes: RFC3720, RFC3980, RFC4850, RFC5048

Updates: RFC3721 Kalman Meth

 IBM

 David Black

 EMC

 iSCSI Protocol (Consolidated)

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with

the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF), its areas, and its working groups. Note that

other groups may also distribute working documents as Internet-

Drafts.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other

documents at any time. It is inappropriate to use Internet-Drafts

as reference material or to cite them other than as "work in

progress."

The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt

Chadalapaka et al. Expires December 31, 2013 [Page 2]

The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html

This Internet-Draft will expire on December 31, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Abstract

This document describes a transport protocol for SCSI that works

on top of TCP. The iSCSI protocol aims to be fully compliant with

the standardized SCSI Architecture Model (SAM-2). RFC 3720

defined the original iSCSI protocol. RFC 3721 discusses iSCSI

Naming examples and discovery techniques. Subsequently, RFC 3980

added an additional naming format to iSCSI protocol. RFC 4850

followed up by adding a new public extension key to iSCSI. RFC

5048 offered a number of clarifications and a few improvements and

corrections to the original iSCSI protocol.

This document obsoletes RFCs 3720, 3980, 4850 and 5048 by

consolidating them into a single document and making additional

updates to the consolidated specification. This document also

updates RFC 3721. The text in this document thus supersedes the

text in all the noted RFCs wherever there is a difference in

semantics.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 3]

Note: This version of the draft does not yet incorporate planned

resolutions to some Last Call comments regarding Kerberos and

IPsec-related security considerations.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 4]

1. Introduction.. 15

2. Acronyms, Definitions and Document Summary...................... 16

2.1. Acronyms .. 16

2.2. Definitions ... 18

2.3. Summary of Changes .. 25

2.4. Conventions ... 26

3. UML Conventions... 27

3.1. UML Conventions Overview 27

3.2. Multiplicity Notion ... 27

3.3. Class Diagram Conventions 28

3.4. Class Diagram Notation for Associations 29

3.5. Class Diagram Notation for Aggregations 30

3.6. Class Diagram Notation for Generalizations 30

4. Overview.. 32

4.1. SCSI Concepts ... 32

4.2. iSCSI Concepts and Functional Overview 33

4.2.1. Layers and Sessions 34

4.2.2. Ordering and iSCSI Numbering 35

4.2.2.1. Command Numbering and Acknowledging 35

4.2.2.2. Response/Status Numbering and Acknowledging 39

4.2.2.3. Response Ordering 40

4.2.2.3.1. Need for Response Ordering 40

4.2.2.3.2. Response Ordering Model Description 40

4.2.2.3.3. iSCSI Semantics with the Interface Model 41

4.2.2.3.4. Current List of Fenced Response Use Cases 42

4.2.2.4. Data Sequencing 43

4.2.3. iSCSI Task Management 44

4.2.3.1. Task Management Overview 44

4.2.3.2. Notion of Affected Tasks 44

4.2.3.3. Standard Multi-task Abort Semantics 45

4.2.3.4. FastAbort Multi-task Abort Semantics 46

4.2.3.5. Affected Tasks Shared across Standard and FastAbort

Sessions .. 48

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 5]

4.2.3.6. Rationale behind the FastAbort Semantics 49

4.2.4. iSCSI Login ... 51

4.2.5. iSCSI Full Feature Phase 52

4.2.5.1. Command Connection Allegiance 53

4.2.5.2. Data Transfer Overview 54

4.2.5.3. Tags and Integrity Checks 55

4.2.5.4. Task Management 56

4.2.6. iSCSI Connection Termination 56

4.2.7. iSCSI Names ... 57

4.2.7.1. iSCSI Name Properties 58

4.2.7.2. iSCSI Name Encoding 60

4.2.7.3. iSCSI Name Structure 61

4.2.7.4. Type "iqn." (iSCSI Qualified Name) 62

4.2.7.5. Type "eui." (IEEE EUI-64 format) 64

4.2.7.6. Type "naa." - Network Address Authority 64

4.2.8. Persistent State .. 65

4.2.9. Message Synchronization and Steering 66

4.2.9.1. Sync/Steering and iSCSI PDU Length 67

4.3. iSCSI Session Types ... 67

4.4. SCSI to iSCSI Concepts Mapping Model 68

4.4.1. iSCSI Architecture Model 69

4.4.2. SCSI Architecture Model 72

4.4.3. Consequences of the Model 74

4.4.3.1. I_T Nexus State 75

4.4.3.2. Reservations ... 75

4.5. iSCSI UML Model ... 76

4.6. Request/Response Summary 79

4.6.1. Request/Response Types Carrying SCSI Payload 79

4.6.1.1. SCSI-Command ... 79

4.6.1.2. SCSI-Response .. 80

4.6.1.3. Task Management Function Request 80

4.6.1.4. Task Management Function Response 81

4.6.1.5. SCSI Data-out and SCSI Data-in 81

4.6.1.6. Ready To Transfer (R2T) 82

4.6.2. Requests/Responses carrying SCSI and iSCSI Payload 83

4.6.2.1. Asynchronous Message 83

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 6]

4.6.3. Requests/Responses Carrying iSCSI Only Payload 83

4.6.3.1. Text Request and Text Response 83

4.6.3.2. Login Request and Login Response 84

4.6.3.3. Logout Request and Response 85

4.6.3.4. SNACK Request .. 85

4.6.3.5. Reject ... 85

4.6.3.6. NOP-Out Request and NOP-In Response 86

5. SCSI Mode Parameters for iSCSI.................................. 87

6. Login and Full Feature Phase Negotiation........................ 88

6.1. Text Format ... 89

6.2. Text Mode Negotiation 93

6.2.1. List negotiations 97

6.2.2. Simple-value Negotiations 98

6.3. Login Phase ... 98

6.3.1. Login Phase Start 102

6.3.2. iSCSI Security Negotiation 105

6.3.3. Operational Parameter Negotiation During the Login Phase 106

6.3.4. Connection Reinstatement 107

6.3.5. Session Reinstatement, Closure, and Timeout 107

6.3.5.1. Loss of Nexus Notification 108

6.3.6. Session Continuation and Failure 108

6.4. Operational Parameter Negotiation Outside the Login Phase .. 109

7. iSCSI Error Handling and Recovery.............................. 111

7.1. Overview ... 111

7.1.1. Background ... 111

7.1.2. Goals .. 111

7.1.3. Protocol Features and State Expectations 112

7.1.4. Recovery Classes 113

7.1.4.1. Recovery Within-command 114

7.1.4.2. Recovery Within-connection 115

7.1.4.3. Connection Recovery 116

7.1.4.4. Session Recovery 117

7.1.5. Error Recovery Hierarchy 117

7.2. Retry and Reassign in Recovery 119

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 7]

7.2.1. Usage of Retry ... 119

7.2.2. Allegiance Reassignment 120

7.3. Usage Of Reject PDU in Recovery 121

7.4. Error Recovery Considerations for Discovery Sessions 122

7.4.1. ErrorRecoveryLevel for Discovery Sessions 122

7.4.2. Reinstatement Semantics for Discovery Sessions 122

7.4.2.1. Unnamed Discovery Sessions 123

7.4.2.2. Named Discovery Session 124

7.4.3. Target PDUs During Discovery 124

7.5. Connection Timeout Management 124

7.5.1. Timeouts on Transport Exception Events 125

7.5.2. Timeouts on Planned Decommissioning 125

7.6. Implicit Termination of Tasks 125

7.7. Format Errors .. 126

7.8. Digest Errors .. 127

7.9. Sequence Errors .. 129

7.10. Message Error Checking 129

7.11. SCSI Timeouts ... 130

7.12. Negotiation Failures 131

7.13. Protocol Errors ... 131

7.14. Connection Failures 132

7.15. Session Errors .. 133

8. State Transitions.. 134

8.1. Standard Connection State Diagrams 134

8.1.1. State Descriptions for Initiators and Targets 134

8.1.2. State Transition Descriptions for Initiators and Targets 135

8.1.3. Standard Connection State Diagram for an Initiator 139

8.1.4. Standard Connection State Diagram for a Target 141

8.2. Connection Cleanup State Diagram for Initiators and Targets 143

8.2.1. State Descriptions for Initiators and Targets 145

8.2.2. State Transition Descriptions for Initiators and Targets 146

8.3. Session State Diagrams 148

8.3.1. Session State Diagram for an Initiator 148

8.3.2. Session State Diagram for a Target 149

8.3.3. State Descriptions for Initiators and Targets 150

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 8]

8.3.4. State Transition Descriptions for Initiators and Targets 151

9. Security Considerations.. 153

9.1. iSCSI Security Mechanisms 153

9.2. In-band Initiator-Target Authentication 154

9.2.1. CHAP Considerations 156

9.2.2. SRP Considerations 159

 Kerberos Considerations 159

9.2.3. .. 159

9.3. IPsec .. 160

9.3.1. Data Integrity and Authentication 160

9.3.2. Confidentiality .. 161

9.3.3. Policy, Security Associations, and Cryptographic Key

Management .. 162

9.4. Security Considerations for the X#NodeArchitecture Key 164

9.5. SCSI Access Control Considerations 166

10. Notes to Implementers... 167

10.1. Multiple Network Adapters 167

10.1.1. Conservative Reuse of ISIDs 167

10.1.2. iSCSI Name, ISID, and TPGT Use 168

10.2. Autosense and Auto Contingent Allegiance (ACA) 170

10.3. iSCSI Timeouts .. 170

10.4. Command Retry and Cleaning Old Command Instances 171

10.5. Synch and Steering Layer and Performance 172

10.6. Considerations for State-dependent Devices and Long-lasting

SCSI Operations ... 172

10.6.1. Determining the Proper ErrorRecoveryLevel 173

10.7. Multi-task Abort Implementation Considerations 174

11. iSCSI PDU Formats... 175

11.1. iSCSI PDU Length and Padding 175

11.2. PDU Template, Header, and Opcodes 175

11.2.1. Basic Header Segment (BHS) 176

11.2.1.1. I .. 177

11.2.1.2. Opcode ... 177

11.2.1.3. Final (F) bit 179

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 9]

11.2.1.4. Opcode-specific Fields 179

11.2.1.5. TotalAHSLength 179

11.2.1.6. DataSegmentLength 179

11.2.1.7. LUN .. 179

11.2.1.8. Initiator Task Tag 180

11.2.2. Additional Header Segment (AHS) 180

11.2.2.1. AHSType .. 180

11.2.2.2. AHSLength .. 181

11.2.2.3. Extended CDB AHS 181

11.2.2.4. Bidirectional Expected Read-Data Length AHS 181

11.2.3. Header Digest and Data Digest 182

11.2.4. Data Segment .. 182

11.3. SCSI Command .. 182

11.3.1. Flags and Task Attributes (byte 1) 183

11.3.2. CmdSN - Command Sequence Number 184

11.3.3. ExpStatSN ... 185

11.3.4. Expected Data Transfer Length 185

11.3.5. CDB - SCSI Command Descriptor Block 186

11.3.6. Data Segment - Command Data 186

11.4. SCSI Response ... 186

11.4.1. Flags (byte 1) .. 187

11.4.2. Status .. 188

11.4.3. Response .. 189

11.4.4. SNACK Tag ... 190

11.4.5. Residual Count .. 190

11.4.5.1. Field Semantics 190

11.4.5.2. Residuals Concepts Overview 191

11.4.5.3. SCSI REPORT LUNS and Residual Overflow 191

11.4.6. Bidirectional Read Residual Count 193

11.4.7. Data Segment - Sense and Response Data Segment 193

11.4.7.1. SenseLength .. 194

11.4.7.2. Sense Data ... 194

11.4.8. ExpDataSN ... 195

11.4.9. StatSN - Status Sequence Number 195

11.4.10. ExpCmdSN - Next Expected CmdSN from this Initiator ... 196

11.4.11. MaxCmdSN - Maximum CmdSN from this Initiator 196

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 10]

11.5. Task Management Function Request 197

11.5.1. Function .. 197

11.5.2. TotalAHSLength and DataSegmentLength 201

11.5.3. LUN ... 201

11.5.4. Referenced Task Tag 201

11.5.5. RefCmdSN .. 201

11.5.6. ExpDataSN ... 202

11.6. Task Management Function Response 202

11.6.1. Response .. 203

11.6.2. TotalAHSLength and DataSegmentLength 205

11.7. SCSI Data-out & SCSI Data-in 205

11.7.1. F (Final) Bit ... 208

11.7.2. A (Acknowledge) bit 208

11.7.3. Flags (byte 1) .. 209

11.7.4. Target Transfer Tag and LUN 210

11.7.5. DataSN .. 210

11.7.6. Buffer Offset ... 210

11.7.7. DataSegmentLength 211

11.8. Ready To Transfer (R2T) 212

11.8.1. TotalAHSLength and DataSegmentLength 214

11.8.2. R2TSN ... 214

11.8.3. StatSN .. 214

11.8.4. Desired Data Transfer Length and Buffer Offset 214

11.8.5. Target Transfer Tag 214

11.9. Asynchronous Message 215

11.9.1. AsyncEvent .. 216

11.9.2. AsyncVCode .. 219

11.9.3. LUN ... 219

11.9.4. Sense Data and iSCSI Event Data 219

11.9.4.1. SenseLength .. 220

11.10. Text Request ... 220

11.10.1. F (Final) Bit .. 222

11.10.2. C (Continue) Bit 222

11.10.3. Initiator Task Tag 222

11.10.4. Target Transfer Tag 222

11.10.5. Text ... 223

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 11]

11.11. Text Response .. 224

11.11.1. F (Final) Bit .. 225

11.11.2. C (Continue) Bit 226

11.11.3. Initiator Task Tag 226

11.11.4. Target Transfer Tag 226

11.11.5. StatSN ... 227

11.11.6. Text Response Data 227

11.12. Login Request .. 227

11.12.1. T (Transit) Bit 228

11.12.2. C (Continue) Bit 229

11.12.3. CSG and NSG .. 229

11.12.4. Version .. 229

11.12.4.1. Version-max 229

11.12.4.2. Version-min 230

11.12.5. ISID ... 230

11.12.6. TSIH ... 232

11.12.7. Connection ID - CID 232

11.12.8. CmdSN .. 232

11.12.9. ExpStatSN .. 233

11.12.10. Login Parameters 233

11.13. Login Response ... 233

11.13.1. Version-max .. 234

11.13.2. Version-active 235

11.13.3. TSIH ... 235

11.13.4. StatSN ... 235

11.13.5. Status-Class and Status-Detail 235

11.13.6. T (Transit) bit 239

11.13.7. C (Continue) Bit 240

11.13.8. Login Parameters 240

11.14. Logout Request ... 240

11.14.1. Reason Code .. 243

11.14.2. TotalAHSLength and DataSegmentLength 244

11.14.3. CID .. 244

11.14.4. ExpStatSN .. 244

11.14.5. Implicit termination of tasks 244

11.15. Logout Response .. 245

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 12]

11.15.1. Response ... 246

11.15.2. TotalAHSLength and DataSegmentLength 247

11.15.3. Time2Wait .. 247

11.15.4. Time2Retain .. 247

11.16. SNACK Request .. 248

11.16.1. Type ... 249

11.16.2. Data Acknowledgement 250

11.16.3. Resegmentation 250

11.16.4. Initiator Task Tag 251

11.16.5. Target Transfer Tag or SNACK Tag 251

11.16.6. BegRun ... 252

11.16.7. RunLength .. 252

11.17. Reject ... 253

11.17.1. Reason ... 254

11.17.2. DataSN/R2TSN ... 255

11.17.3. StatSN, ExpCmdSN and MaxCmdSN 255

11.17.4. Complete Header of Bad PDU 256

11.18. NOP-Out .. 256

11.18.1. Initiator Task Tag 257

11.18.2. Target Transfer Tag 257

11.18.3. Ping Data .. 258

11.19. NOP-In ... 259

11.19.1. Target Transfer Tag 260

11.19.2. StatSN ... 260

11.19.3. LUN .. 260

12. iSCSI Security Text Keys and Authentication Methods........... 261

12.1. AuthMethod .. 261

12.1.1. Kerberos .. 263

12.1.2. Secure Remote Password (SRP) 264

12.1.3. Challenge Handshake Authentication Protocol (CHAP) 266

13. Login/Text Operational Text Keys.............................. 268

13.1. HeaderDigest and DataDigest 268

13.2. MaxConnections .. 271

13.3. SendTargets ... 271

13.4. TargetName .. 271

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 13]

13.5. InitiatorName ... 272

13.6. TargetAlias ... 273

13.7. InitiatorAlias .. 273

13.8. TargetAddress ... 274

13.9. TargetPortalGroupTag 275

13.10. InitialR2T ... 275

13.11. ImmediateData .. 276

13.12. MaxRecvDataSegmentLength 277

13.13. MaxBurstLength ... 278

13.14. FirstBurstLength ... 278

13.15. DefaultTime2Wait ... 279

13.16. DefaultTime2Retain 279

13.17. MaxOutstandingR2T .. 280

13.18. DataPDUInOrder ... 280

13.19. DataSequenceInOrder 281

13.20. ErrorRecoveryLevel 281

13.21. SessionType .. 282

13.22. The Private Extension Key Format 283

13.23. TaskReporting .. 283

13.24. iSCSIProtocolLevel Negotiation 284

13.25. Obsoleted Keys ... 284

13.26. X#NodeArchitecture 285

13.26.1. Definition ... 285

13.26.2. Implementation Requirements 286

14. Rationale for revised IANA Considerations..................... 287

15. IANA Considerations... 289

Appendix A. Examples ... 296

Read Operation Example .. 296

Write Operation Example ... 297

R2TSN/DataSN Use Examples 297

CRC Examples .. 301

Appendix B. Login Phase Examples 303

Appendix C. SendTargets Operation 313

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 14]

Appendix D. Algorithmic Presentation of Error Recovery Classes ... 318

D.2.1. Procedure Descriptions 320

Appendix E. Clearing Effects of Various Events on Targets 337

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 15]

1. Introduction

The Small Computer Systems Interface (SCSI) is a popular family of

protocols for communicating with I/O devices, especially storage

devices. SCSI is a client-server architecture. Clients of a SCSI

interface are called "initiators". Initiators issue SCSI

"commands" to request services from components, logical units of a

server known as a "target". A "SCSI transport" maps the client-

server SCSI protocol to a specific interconnect. An Initiator is

one endpoint of a SCSI transport and a target is the other

endpoint.

The SCSI protocol has been mapped over various transports,

including Parallel SCSI, IPI, IEEE-1394 (firewire) and Fibre

Channel. These transports are I/O specific and have limited

distance capabilities.

The iSCSI protocol defined in this document describes a means of

transporting of the SCSI packets over TCP/IP, providing for an

interoperable solution which can take advantage of existing

Internet infrastructure, Internet management facilities and

address distance limitations.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 16]

2. Acronyms, Definitions and Document Summary

2.1. Acronyms

Acronym Definition

--

3DES Triple Data Encryption Standard

ACA Auto Contingent Allegiance

AEN Asynchronous Event Notification

AES Advanced Encryption Standard

AH Additional Header (not the IPsec AH!)

AHS Additional Header Segment

API Application Programming Interface

ASC Additional Sense Code

ASCII American Standard Code for Information Interchange

ASCQ Additional Sense Code Qualifier

BHS Basic Header Segment

CBC Cipher Block Chaining

CD Compact Disk

CDB Command Descriptor Block

CHAP Challenge Handshake Authentication Protocol

CID Connection ID

CO Connection Only

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

CSG Current Stage

CSM Connection State Machine

DES Data Encryption Standard

DNS Domain Name Server

DOI Domain of Interpretation

DVD Digital Versatile Disk

EDTL Expected Data Transfer Length

ESP Encapsulating Security Payload

EUI Extended Unique Identifier

FFP Full Feature Phase

FFPO Full Feature Phase Only

Gbps Gigabits per Second

HBA Host Bus Adapter

HMAC Hashed Message Authentication Code

I_T Initiator_Target

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 17]

I_T_L Initiator_Target_LUN

IANA Internet Assigned Numbers Authority

IB InfiniBand

ID Identifier

IDN Internationalized Domain Name

IEEE Institute of Electrical & Electronics Engineers

IETF Internet Engineering Task Force

IKE Internet Key Exchange

I/O Input-Output

IO Initialize Only

IP Internet Protocol

IPsec Internet Protocol Security

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IQN iSCSI Qualified Name

iSCSI Internet SCSI

iSER iSCSI Extensions for RDMA

ISID Initiator Session ID

iSNS Internet Storage Name Service (see [RFC4171])

ITN iSCSI Target Name

ITT Initiator Task Tag

KRB5 Kerberos V5

LFL Lower Functional Layer

LTDS Logical-Text-Data-Segment

LO Leading Only

LU Logical Unit

LUN Logical Unit Number

MAC Message Authentication Codes

NA Not Applicable

NAA Network Address Authority

NIC Network Interface Card

NOP No Operation

NSG Next Stage

OS Operating System

PDU Protocol Data Unit

PKI Public Key Infrastructure

R2T Ready To Transfer

R2TSN Ready To Transfer Sequence Number

RDMA Remote Direct Memory Access

RFC Request For Comments

SAM SCSI Architecture Model

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 18]

SAM2 SCSI Architecture Model - 2

SAN Storage Area Network

SAS Serial Attached SCSI

SCSI Small Computer Systems Interface

SLP Service Location Protocol

SN Sequence Number

SNACK Selective Negative Acknowledgment - also

 Sequence Number Acknowledgement for data

SPDTL SCSI-Presented Data Transfer Length

SPKM Simple Public-Key Mechanism

SRP Secure Remote Password

SSID Session ID

SW Session-Wide

TCB Task Control Block

TCP Transmission Control Protocol

TMF Task Management Function

TPGT Target Portal Group Tag

TSIH Target Session Identifying Handle

TTT Target Transfer Tag

UA Unit Attention

UFL Upper Functional Layer

ULP Upper Level Protocol

URN Uniform Resource Names

UTF Universal Transformation Format

WG Working Group

2.2. Definitions

- Alias: An alias string can also be associated with an iSCSI

Node. The alias allows an organization to associate a user-

friendly string with the iSCSI Name. However, the alias string is

not a substitute for the iSCSI Name.

- CID (Connection ID): Connections within a session are identified

by a connection ID. It is a unique ID for this connection within

the session for the initiator. It is generated by the initiator

and presented to the target during login requests and during

logouts that close connections.

- Connection: A connection is a TCP connection. Communication

between the initiator and target occurs over one or more TCP

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 19]

connections. The TCP connections carry control messages, SCSI

commands, parameters, and data within iSCSI Protocol Data Units

(iSCSI PDUs).

- I/O Buffer:A buffer that is used in a SCSI Read or Write

operation so SCSI data may be sent from or received into that

buffer. For a read or write data transfer to take place for a

task, an I/O Buffer is required on the initiator and at least one

is required on the

target.

- INCITS: INCITS stands for InterNational Committee of Information

Technology Standards. The INCITS has a broad standardization scope

within the field of Information and Communications Technologies

(ICT), encompassing storage, processing, transfer, display,

management, organization, and retrieval of information. INCITS

serves as ANSI’s Technical Advisory Group for the ISO/IEC Joint

Technical Committee 1 (JTC 1). See http://www.incits.org.

- InfiniBand: An I/O architecture originally intended to replace

PCI and to address high performance server interconnectivity [IB].

- iSCSI Device: A SCSI Device using an iSCSI service delivery

subsystem. Service Delivery Subsystem is defined by [SAM2] as a

transport mechanism for SCSI commands and responses.

- iSCSI Initiator Name: The iSCSI Initiator Name specifies the

worldwide unique name of the initiator.

- iSCSI Initiator Node: The "initiator" device. The word

"initiator" has been appropriately qualified as either a port or a

device in the rest of the document when the context is ambiguous.

All unqualified usages of "initiator" refer to an initiator port

(or device) depending on the context.

- iSCSI Layer: This layer builds/receives iSCSI PDUs and

relays/receives them to/from one or more TCP connections that form

an initiator-target "session".

- iSCSI Name: The name of an iSCSI initiator or iSCSI target.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 20]

- iSCSI Node: The iSCSI Node represents a single iSCSI initiator

or iSCSI target or a single instance of each. There are one or

more iSCSI Nodes within a Network Entity. The iSCSI Node is

accessible via one or more Network Portals. An iSCSI Node is

identified by its iSCSI Name. The separation of the iSCSI Name

from the addresses used by and for the iSCSI Node allows multiple

iSCSI nodes to use the same address, and the same iSCSI node to

use multiple addresses.

- iSCSI Target Name: The iSCSI Target Name specifies the worldwide

unique name of the target.

- iSCSI Target Node: The "target" device. The word "target" has

been appropriately qualified as either a port or a device in the

rest of the document when the context is ambiguous. All

unqualified usages of "target" refer to a target port (or device)

depending on the context.

- iSCSI Task: An iSCSI task is an iSCSI request for which a

response is expected.

- iSCSI Transfer Direction: The iSCSI transfer direction is

defined with regard to the initiator. Outbound or outgoing

transfers are transfers from the initiator to the target, while

inbound or incoming transfers are from the target to the

initiator.

- ISID: The initiator part of the Session Identifier. It is

explicitly specified by the initiator during Login.

- I_T nexus: According to [SAM2], the I_T nexus is a relationship

between a SCSI Initiator Port and a SCSI Target Port. For iSCSI,

this relationship is a session, defined as a relationship between

an iSCSI Initiator's end of the session (SCSI Initiator Port) and

the iSCSI Target's Portal Group. The I_T nexus can be identified

by the conjunction of the SCSI port names; that is, the I_T nexus

identifier is the tuple (iSCSI Initiator Name + ',i,'+ ISID, iSCSI

Target Name + ',t,'+ Portal Group Tag).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 21]

- I_T_L nexus: An I_T_L nexus is a SCSI concept, and is defined as

the relationship between a SCSI Initiator Port, a SCSI Target

Port, and a Logical Unit (LU).

- NAA: Network Address Authority, a naming format defined by the

INCITS T11 Fibre Channel protocols [FC-FS3].

- Network Entity: The Network Entity represents a device or

gateway that is accessible from the IP network. A Network Entity

must have one or more Network Portals, each of which can be used

to gain access to the IP network by some iSCSI Nodes contained in

that Network Entity.

- Network Portal: The Network Portal is a component of a Network

Entity that has a TCP/IP network address and that may be used by

an iSCSI Node within that Network Entity for the connection(s)

within one of its iSCSI sessions. A Network Portal in an initiator

is identified by its IP address. A Network Portal in a target is

identified by its IP address and its listening TCP port.

- Originator: In a negotiation or exchange, the party that

initiates the negotiation or exchange.

- PDU (Protocol Data Unit): The initiator and target divide their

communications into messages. The term "iSCSI protocol data unit"

(iSCSI PDU) is used for these messages.

- Portal Groups: iSCSI supports multiple connections within the

same session; some implementations will have the ability to

combine connections in a session across multiple Network Portals.

A Portal Group defines a set of Network Portals within an iSCSI

Network Entity that collectively supports the capability of

coordinating a session with connections spanning these portals.

Not all Network Portals within a Portal Group need participate in

every session connected through that Portal Group. One or more

Portal Groups may provide access to an iSCSI Node. Each Network

Portal, as utilized by a given iSCSI Node, belongs to exactly one

portal group within that node.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 22]

- Portal Group Tag: This 16-bit quantity identifies a Portal Group

within an iSCSI Node. All Network Portals with the same portal

group tag in the context of a given iSCSI Node are in the same

Portal Group.

- Recovery R2T: An R2T generated by a target upon detecting the

loss of one or more Data-Out PDUs through one of the following

means: a digest error, a sequence error, or a sequence reception

timeout. A recovery R2T carries the next unused R2TSN, but

requests all or part of the data burst that an earlier R2T (with a

lower R2TSN) had already requested.

- Responder: In a negotiation or exchange, the party that responds

to the originator of the negotiation or exchange.

- SAS: Serial Attached SCSI. The Serial Attached SCSI (SAS)

standard contains both a physical layer compatible with Serial

ATA, and protocols for transporting SCSI commands to SAS devices

and ATA commands to SATA devices [SAS].

- SCSI Device: This is the SAM2 term for an entity that contains

one or more SCSI ports that are connected to a service delivery

subsystem and supports a SCSI application protocol. For example, a

SCSI Initiator Device contains one or more SCSI Initiator Ports

and zero or more application clients. A Target Device contains one

or more SCSI Target Ports and one or more device servers and

associated logical units. For iSCSI, the SCSI Device is the

component within an iSCSI Node that provides the SCSI

functionality. As such, there can be, at most, one SCSI Device

within a given iSCSI Node. Access to the SCSI Device can only be

achieved in an iSCSI normal operational session. The SCSI Device

Name is defined to be the iSCSI Name of the node.

- SCSI Layer: This builds/receives SCSI CDBs (Command Descriptor

Blocks) and relays/receives them with the remaining command

execute [SAM2] parameters to/from the iSCSI Layer.

- Session: The group of TCP connections that link an initiator

with a target form a session (loosely equivalent to a SCSI I-T

nexus). TCP connections can be added and removed from a session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 23]

Across all connections within a session, an initiator sees one and

the same target.

- SCSI Port: This is the SAM2 term for an entity in a SCSI Device

that provides the SCSI functionality to interface with a service

delivery subsystem. For iSCSI, the definition of the SCSI

Initiator Port and the SCSI Target Port are different.

- SCSI Initiator Port: This maps to the endpoint of an iSCSI

normal operational session. An iSCSI normal operational session is

negotiated through the login process between an iSCSI initiator

node and an iSCSI target node. At successful completion of this

process, a SCSI Initiator Port is created within the SCSI

Initiator Device. The SCSI Initiator Port Name and SCSI Initiator

Port Identifier are both defined to be the iSCSI Initiator Name

together with (a) a label that identifies it as an initiator port

name/identifier and (b) the ISID portion of the session

identifier.

- SCSI Port Name: A name consisting of UTF-8 [RFC3629] encoding of

Unicode [UNICODE] characters and includes the iSCSI Name + 'i' or

't' + ISID or Portal Group Tag.

- SCSI-Presented Data Transfer Length (SPDTL): SPDTL is the

aggregate data length of the data that the SCSI layer logically

"presents" to the iSCSI layer for a Data-In or Data-Out transfer

in the context of a SCSI task. For a bidirectional task, there are

two SPDTL values -- one for Data-In and one for Data-Out. Note

that the notion of "presenting" includes immediate data per the

data transfer model in [SAM2], and excludes overlapping data

transfers, if any, requested by the SCSI layer.

- SCSI Target Port: This maps to an iSCSI Target Portal Group.

- SCSI Target Port Name and SCSI Target Port Identifier: These are

both defined to be the iSCSI Target Name together with (a) a label

that identifies it as a target port name/identifier and (b) the

portal group tag.

- SSID (Session ID): A session between an iSCSI initiator and an

iSCSI target is defined by a session ID that is a tuple composed

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 24]

of an initiator part (ISID) and a target part (Target Portal Group

Tag). The ISID is explicitly specified by the initiator at session

establishment. The Target Portal Group Tag is implied by the

initiator through the selection of the TCP endpoint at connection

establishment. The TargetPortalGroupTag key must also be returned

by the target as a confimation during connection establishment.

- T10: A technical committee within INCITS that develops standards

and technical reports on I/O interfaces, particularly the series

of SCSI (Small Computer Systems Interface) standards. See

http://www.t10.org.

- T11: A technical committee within INCITS responsible for

standards development in the areas of Intelligent Peripheral

Interface (IPI), High-Performance Parallel Interface (HIPPI) and

Fibre Channel (FC). See http://www.t11.org.

- Target Portal Group Tag: A numerical identifier (16-bit) for an

iSCSI Target Portal Group.

-Target Transfer Tag (TTT): An iSCSI protocol field used in a few

iSCSI PDUs (e.g. R2T, NOP-In) which is always sent from the target

to the initiator first and then quoted as a reference in

initiator-sent PDUs back to the target relating to the same

task/exchange. So effectively, TTT acts as an opaque handle to an

existing task/exchange to help target associate the incoming PDUs

from the initiator to the proper execution context.

- Third-party: A term used in this document as a qualifier to

nexus objects (I_T or I_T_L) and iSCSI sessions, to indicate that

these objects and sessions reap the side effects of actions that

take place in the context of a separate iSCSI session. One

example of a third-party session is an iSCSI session discovering

that its I_T_L nexus to an LU got reset due to an LU Reset

operation orchestrated via a separate I_T nexus.

- TSIH (Target Session Identifying Handle): A target assigned tag

for a session with a specific named initiator. The target

generates it during session establishment. Other than defining it

as a 16 bit binary string, its internal format and content are not

defined by this protocol but for the all 0 value that is reserved

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 25]

and used by the initiator to indicate a new session. It is given

to the target during additional connection establishment for the

same session.

2.3. Summary of Changes

1) Consolidated RFCs 3720, 3980, 4850 and 5048, and made the

necessary editorial changes

2) iSCSIProtocolLevel is specified as "1" in Section 13.24, and

added a related normative reference to [iSCSI-SAM] draft

3) Markers and related keys were removed

4) SPKM authentication and related keys were removed

5) Added a new Section 13.25 on responding to obsoleted keys

6) Have explicitly allowed initiator+target implementations

throughout the text

7) Clarified in Section 4.2.7 that implementations SHOULD NOT

rely on SLP-based discovery

8) Added UML diagrams and related conventions in Section 3

9) FastAbort implementation is made a "SHOULD" requirement in

Section 4.2.3.4 from the previous "MUST" requirement.

10) Required in Section 4.2.7.1 that iSCSI Target Name must be

the same as iSCSI Initiator Name for SCSI (composite) devices

with both roles

11) Changed the “MUST NOT” to “should avoid” in Section 4.2.7.2

regarding usage of characters such as punctuation marks in

iSCSI Names.

12) Updated Section 9.3 to require the following: MUST implement

IPsec, 2400-series RFCs (IPsec v2, IKEv1) and SHOULD implement

IPsec, 4300-series RFCs (IPsec v3, IKEv2).

13) Clarified in Section 10.2 that ACA is a SHOULD requirement

only for iSCSI targets

14) Prohibited usage of X# name prefix for new public keys in

Section 6.2

15) Prohibited usage of Y# name prefix for new digest extensions

in Section 13.1, and Z# name prefix for new authentication

method extensions in Section 12.1

16) Added a SHOULD requirement in Section 6.2 that initiators and

targets support at least six (6) exchanges during text

negotiation.

17) Added a clarification that Appendix.C is normative.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 26]

18) Added a normative requirement on [IPSEC-IPS] draft, and made

a few related changes in Section 9.3 to align the text in this

document with that of [IPSEC-IPS]

19) Added a new Section 9.2.3 covering Kerberos authentication

considerations

2.4. Conventions

In examples, "I->" and "T->" show iSCSI PDUs sent by the initiator

and target respectively.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"

in this document are to be interpreted as described in RFC 2119

[RFC2119].

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 27]

3. UML Conventions

3.1. UML Conventions Overview

The SCSI Architecture Model (SAM) uses class diagrams and object

diagrams with notation that is based on the Unified Modeling

Language [UML]. Therefore, this document also uses UML to model

the relationships for SCSI and iSCSI objects.

A treatise on the graphical notation used in UML is beyond the

scope of this document. However, given the use of ASCII drawing

for UML static class diagrams, a description of the notational

conventions used in this document is included in the remainder of

this Section.

3.2. Multiplicity Notion

Not specified The number of instances of an attribute is not

specified.

1 One instance of the class or attribute exists.

0..* Zero or more instances of the class or attribute exist.

1..* One or more instances of the class or attribute exist.

0..1 Zero or one instance of the class or attribute exists.

n..m n to m instances of the class or attribute exist

(e.g., 2..8).

x, n..m Multiple disjoint instances of the class or

attribute exist (e.g., 2, 8..15).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 28]

3.3. Class Diagram Conventions

+--------------+ +--------------+ +--------------+

| Class Name | | Class Name | | Class Name |

+--------------+ +--------------+ +--------------+

| | | |

+--------------+ +--------------+

| |

+--------------+

The previous three diagrams are examples of a class with no

attributes and with no operations.

+-------------------+ +-------------------+

| Class Name | | Class Name |

+-------------------+ +-------------------+

| attribute 01[1] | | attribute 01[1] |

| attribute 02[1] | | attribute 02[1] |

+-------------------+ +-------------------+

| |

+-------------------+

The preceding two diagrams are examples of a class with attributes

and with no operations.

+------------------------+

| Class Name |

+------------------------+

| attribute 01[1..*] |

| attribute 02[1] |

+------------------------+

| operation 01() |

| operation 02() |

+------------------------+

The preceding diagram is an example of a class with attributes

that have a specified multiplicity and operations.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 29]

3.4. Class Diagram Notation for Associations

+-----------------+

| Class A |

+-----------------+ association_name +-----------------+

| attribute 01[1] |<------------------>| Class B |

| attribute 02[1] | 1..* 0..1 +-----------------+

+-----------------+ | attribute 03[1] |

| operation 1() | +-----------------+

+-----------------+

The preceding diagram is an example where Class A knows about

Class B (i.e., read as “Class A association_name ClassB”) and

Class B knows about Class A (i.e., read as “Class B

association_name Class A”). The use of association_name is

optional. The multiplicity notation (1..* and 0..1) indicates the

number of instances of the object.

+--------------------+

| Class A |

+--------------------+ +--------------------+

| attribute 01[1] |<-------------| Class B |

| attribute 02[1] | 1 0..1 +--------------------+

+--------------------+ | attribute 03[1] |

| operation 1() | +--------------------+

+--------------------+

The preceding diagram is an example where Class B knows about

Class A (i.e., read as “Class B knows about Class A”) but Class A

does not know about Class B.

+----------------------+

| Class A |

+----------------------+ +--------------------+

| attribute 01[1] |----------->| Class B |

| attribute 02[1] | 0..* 1 +--------------------+

+----------------------+ | attribute 03[1] |

| operation 1() | +--------------------+

+----------------------+

The preceding diagram is an example where Class A knows about

Class B (i.e., read as “Class A knows about Class B”) but Class B

does not know about Class A.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 30]

3.5. Class Diagram Notation for Aggregations

+---------------+ +--------------+

| Class whole |o------------| Class part |

+---------------+ +--------------+

The preceding diagram is an example where Class whole is an

aggregate that contains Class part and where Class part may

continue to exist even if Class whole is removed (i.e., read as

“the whole contains the part”).

+---------------+ +--------------+

| Class whole |@------------| Class part |

+---------------+ +--------------+

The preceding diagram is an example where Class whole is an

aggregate that contains Class part where Class part only belongs

to one Class whole, and the Class part does not continue to exist

if the Class whole is removed (i.e., read as “the whole contains

the part”).

+-------------+

| |

+-------------+

 | |

 + =(a)= +

 | |

The preceding diagram is an example where there is a constraint

between the associations where the (a) footnote describes the

constraint.

3.6. Class Diagram Notation for Generalizations

+---------------+

| Superclass |

+-------^-------+

 /_\

 |

+---------------+

| Subclass |

+---------------+

The preceding diagram is an example where the subclass is a kind

of superclass. A subclass shares all the attributes and

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 31]

operations of the superclass (i.e., the subclass inherits from the

superclass).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 32]

4. Overview

4.1. SCSI Concepts

The SCSI Architecture Model-2 [SAM2] describes in detail the

architecture of the SCSI family of I/O protocols. This Section

provides a brief background of the SCSI architecture and is

intended to familiarize readers with its terminology.

At the highest level, SCSI is a family of interfaces for

requesting services from I/O devices, including hard drives, tape

drives, CD and DVD drives, printers, and scanners. In SCSI

terminology, an individual I/O device is called a "logical unit"

(LU).

SCSI is a client-server architecture. Clients of a SCSI interface

are called "initiators". Initiators issue SCSI "commands" to

request services from components, logical units, of a server known

as a "target". The "device server" on the logical unit accepts

SCSI commands and processes them.

A "SCSI transport" maps the client-server SCSI protocol to a

specific interconnect. Initiator is one endpoint of a SCSI

transport. The "target" is the other endpoint. A target can

contain multiple Logical Units (LUs). Each Logical Unit has an

address within a target called a Logical Unit Number (LUN).

A SCSI task is a SCSI command or possibly a linked set of SCSI

commands. Some LUs support multiple pending (queued) tasks, but

the queue of tasks is managed by the logical unit. The target uses

an initiator provided "task tag" to distinguish between tasks.

Only one command in a task can be outstanding at any given time.

Each SCSI command results in an optional data phase and a required

response phase. In the data phase, information can travel from the

initiator to target (e.g., WRITE), target to initiator (e.g.,

READ), or in both directions. In the response phase, the target

returns the final status of the operation, including any errors.

Command Descriptor Blocks (CDB) are the data structures used to

contain the command parameters that an initiator sends to a

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 33]

target. The CDB content and structure is defined by [SAM2] and

device-type specific SCSI standards.

4.2. iSCSI Concepts and Functional Overview

The iSCSI protocol is a mapping of the SCSI command, event and

task management model (see [SAM2]) over the TCP protocol. SCSI

commands are carried by iSCSI requests and SCSI responses and

status are carried by iSCSI responses. iSCSI also uses the request

response mechanism for iSCSI protocol mechanisms.

For the remainder of this document, the terms "initiator" and

"target" refer to "iSCSI initiator node" and "iSCSI target node",

respectively (see iSCSI) unless otherwise qualified.

As its title suggests, Section 4 presents an overview of the iSCSI

concepts, and later Sections in the rest of the specification

contain the normative requirements - in many cases covering the

same concepts discussed in Section 4. Such normative requirements

text overrides the overview text in Section 4 if there is a

disagreement between the two.

In keeping with similar protocols, the initiator and target divide

their communications into messages. This document uses the term

"iSCSI protocol data unit" (iSCSI PDU) for these messages.

For performance reasons, iSCSI allows a "phase-collapse". A

command and its associated data may be shipped together from

initiator to target, and data and responses may be shipped

together from targets.

The iSCSI transfer direction is defined with respect to the

initiator. Outbound or outgoing transfers are transfers from an

initiator to a target, while inbound or incoming transfers are

from a target to an initiator.

An iSCSI task is an iSCSI request for which a response is

expected.

In this document "iSCSI request", "iSCSI command", request, or

(unqualified) command have the same meaning. Also, unless

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 34]

otherwise specified, status, response, or numbered response have

the same meaning.

4.2.1. Layers and Sessions

The following conceptual layering model is used to specify

initiator and target actions and the way in which they relate to

transmitted and received Protocol Data Units:

- The SCSI layer builds/receives SCSI CDBs (Command Descriptor

Blocks) and passes/receives them with the remaining command

execute parameters ([SAM2]) to/from

- the iSCSI layer that builds/receives iSCSI PDUs and

relays/receives them to/from one or more TCP connections;

the group of connections form an initiator-target "session".

Communication between the initiator and target occurs over one or

more TCP connections. The TCP connections carry control messages,

SCSI commands, parameters, and data within iSCSI Protocol Data

Units (iSCSI PDUs). The group of TCP connections that link an

initiator with a target form a session (equivalent to a SCSI I_T

nexus, see Section 4.4.2). A session is defined by a session ID

that is composed of an initiator part and a target part. TCP

connections can be added and removed from a session. Each

connection within a session is identified by a connection ID

(CID).

Across all connections within a session, an initiator sees one

"target image". All target identifying elements, such as LUN, are

the same. A target also sees one "initiator image" across all

connections within a session. Initiator-identifying elements, such

as the Initiator Task Tag, are global across the session

regardless of the connection on which they are sent or received.

iSCSI targets and initiators MUST support at least one TCP

connection and MAY support several connections in a session. For

error recovery purposes, targets and initiators that support a

single active connection in a session SHOULD support two

connections during recovery.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 35]

4.2.2. Ordering and iSCSI Numbering

iSCSI uses Command and Status numbering schemes and a Data

sequencing scheme.

Command numbering is session-wide and is used for ordered command

delivery over multiple connections. It can also be used as a

mechanism for command flow control over a session.

Status numbering is per connection and is used to enable missing

status detection and recovery in the presence of transient or

permanent communication errors.

Data sequencing is per command or part of a command (R2T-triggered

sequence) and is used to detect missing data and/or R2T PDUs due

to header digest errors.

Typically, fields in the iSCSI PDUs communicate the Sequence

Numbers between the initiator and target. During periods when

traffic on a connection is unidirectional, iSCSI NOP-Out/In PDUs

may be utilized to synchronize the command and status ordering

counters of the target and initiator.

The iSCSI session abstraction is equivalent to the SCSI I_T nexus,

and the iSCSI session provides an ordered command delivery from

the SCSI initiator to the SCSI target. For detailed design

considerations that led to the iSCSI session model as it is

defined here and how it relates the SCSI command ordering features

defined in SCSI specifications to the iSCSI concepts see

[RFC3783].

4.2.2.1. Command Numbering and Acknowledging

iSCSI performs ordered command delivery within a session. All

commands (initiator-to-target PDUs) in transit from the initiator

to the target are numbered.

iSCSI considers a task to be instantiated on the target in

response to every request issued by the initiator. A set of task

management operations including abort and reassign (see Section

11.5) may be performed on an iSCSI task – however an abort

operation cannot be performed on a task management operation, and

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 36]

usage of reassign operation has certain constraints. See Section

11.5.1 for the details.

Some iSCSI tasks are SCSI tasks, and many SCSI activities are

related to a SCSI task ([SAM2]). In all cases, the task is

identified by the Initiator Task Tag for the life of the task.

The command number is carried by the iSCSI PDU as CmdSN (Command-

Sequence-Number). The numbering is session-wide. Outgoing iSCSI

PDUs carry this number. The iSCSI initiator allocates CmdSNs with

a 32-bit unsigned counter (modulo 2**32). Comparisons and

arithmetic on CmdSN use Serial Number Arithmetic as defined in

[RFC1982] where SERIAL_BITS = 32.

Commands meant for immediate delivery are marked with an immediate

delivery flag; they MUST also carry the current CmdSN. CmdSN MUST

NOT advance after a command marked for immediate delivery is sent.

Command numbering starts with the first login request on the first

connection of a session (the leading login on the leading

connection) and CmdSN MUST be incremented by 1, in a Serial Number

Arithmetic sense as defined in [RFC1982], for every non-immediate

command issued afterwards.

If immediate delivery is used with task management commands, these

commands may reach the target before the tasks on which they are

supposed to act. However their CmdSN serves as a marker of their

position in the stream of commands. The initiator and target MUST

ensure that the SCSI task management functions specified in [SAM2]

act in accordance with the [SAM2] specification. For example, both

commands and responses appear as if delivered in order. Whenever

CmdSN for an outgoing PDU is not specified by an explicit rule,

CmdSN will carry the current value of the local CmdSN variable

(see later in this Section).

The means by which an implementation decides to mark a PDU for

immediate delivery or by which iSCSI decides by itself to mark a

PDU for immediate delivery are beyond the scope of this document.

The number of commands used for immediate delivery is not limited

and their delivery to execution is not acknowledged through the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 37]

numbering scheme. An iSCSI target MAY reject immediate commands,

e.g., due to lack of resources to accommodate additional commands.

An iSCSI target MUST be able to handle at least one immediate task

management command and one immediate non-task-management iSCSI

command per connection at any time.

In this document, delivery for execution means delivery to the

SCSI execution engine or an iSCSI protocol specific execution

engine (e.g., for text requests with public or private extension

keys involving an execution component). With the exception of the

commands marked for immediate delivery, the iSCSI target layer

MUST deliver the commands for execution in the order specified by

CmdSN. Commands marked for immediate delivery may be delivered by

the iSCSI target layer for execution as soon as detected. iSCSI

may avoid delivering some commands to the SCSI target layer if

required by a prior SCSI or iSCSI action (e.g., CLEAR TASK SET

Task Management request received before all the commands on which

it was supposed to act).

On any connection, the iSCSI initiator MUST send the commands in

increasing order of CmdSN, except for commands that are

retransmitted due to digest error recovery and connection

recovery.

For the numbering mechanism, the initiator and target maintain the

following three variables for each session:

 - CmdSN - the current command Sequence Number, advanced by 1

on each command shipped except for commands marked for

immediate delivery (see Section 4.2.2.1). CmdSN always

contains the number to be assigned to the next Command PDU.

 - ExpCmdSN - the next expected command by the target. The

target acknowledges all commands up to, but not including,

this number. The initiator treats all commands with CmdSN

less than ExpCmdSN as acknowledged. The target iSCSI layer

sets the ExpCmdSN to the largest non-immediate CmdSN that it

can deliver for execution "plus 1" per [RFC1982]. There

MUST NOT be any holes in the acknowledged CmdSN sequence.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 38]

 - MaxCmdSN - the maximum number to be shipped. The queuing

capacity of the receiving iSCSI layer is MaxCmdSN - ExpCmdSN

+ 1.

The initiator’s ExpCmdSN and MaxCmdSN are derived from target-to-

initiator PDU fields. Comparisons and arithmetic on ExpCmdSN and

MaxCmdSN MUST use Serial Number Arithmetic as defined in [RFC1982]

where SERIAL_BITS = 32.

The target MUST NOT transmit a MaxCmdSN that is less than

ExpCmdSN-1. For non-immediate commands, the CmdSN field can take

any value from ExpCmdSN to MaxCmdSN inclusive. The target MUST

silently ignore any non-immediate command outside of this range or

non-immediate duplicates within the range. The CmdSN carried by

immediate commands may lie outside the ExpCmdSN to MaxCmdSN range.

For example, if the initiator has previously sent a non-immediate

command carrying the CmdSN equal to MaxCmdSN, the target window is

closed. For group task management commands issued as immediate

commands, CmdSN indicates the scope of the group action (e.g., on

ABORT TASK SET indicates which commands are to be aborted).

MaxCmdSN and ExpCmdSN fields are processed by the initiator as

follows:

-If the PDU MaxCmdSN is less than the PDU ExpCmdSN-1 (in

Serial Arithmetic Sense), they are both ignored.

-If the PDU MaxCmdSN is greater than the local MaxCmdSN (in

Serial Arithmetic Sense), it updates the local MaxCmdSN;

otherwise, it is ignored.

-If the PDU ExpCmdSN is greater than the local ExpCmdSN (in

Serial Arithmetic Sense), it updates the local ExpCmdSN;

otherwise, it is ignored.

This sequence is required because updates may arrive out of order

(e.g., the updates are sent on different TCP connections).

iSCSI initiators and targets MUST support the command numbering

scheme.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 39]

A numbered iSCSI request will not change its allocated CmdSN,

regardless of the number of times and circumstances in which it is

reissued (see Section 7.2.1). At the target, CmdSN is only

relevant while the command has not created any state related to

its execution (execution state); afterwards, CmdSN becomes

irrelevant. Testing for the execution state (represented by

identifying the Initiator Task Tag) MUST precede any other action

at the target. If no execution state is found, it is followed by

ordering and delivery. If an execution state is found, it is

followed by delivery if it has not already been delivered.

If an initiator issues a command retry for a command with CmdSN R

on a connection when the session CmdSN value is Q, it MUST NOT

advance the CmdSN past R + 2**31 -1 unless the connection is no

longer operational (i.e., it has returned to the FREE state, see

Section 8.1.3), the connection has been reinstated (see Section

6.3.4), or a non-immediate command with CmdSN equal or greater

than Q was issued subsequent to the command retry on the same

connection and the reception of that command is acknowledged by

the target (see Section 10.4).

A target command response or Data-in PDU with status MUST NOT

precede the command acknowledgement. However, the acknowledgement

MAY be included in the response or the Data-in PDU.

4.2.2.2. Response/Status Numbering and Acknowledging

Responses in transit from the target to the initiator are

numbered. The StatSN (Status Sequence Number) is used for this

purpose. StatSN is a counter maintained per connection. ExpStatSN

is used by the initiator to acknowledge status. The status

sequence number space is 32-bit unsigned-integers and the

arithmetic operations are the regular mod(2**32) arithmetic.

Status numbering starts with the Login response to the first Login

request of the connection. The Login response includes an initial

value for status numbering (any initial value is valid).

To enable command recovery, the target MAY maintain enough state

information for data and status recovery after a connection

failure. A target doing so can safely discard all of the state

information maintained for recovery of a command after the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 40]

delivery of the status for the command (numbered StatSN) is

acknowledged through ExpStatSN.

A large absolute difference between StatSN and ExpStatSN may

indicate a failed connection. Initiators MUST undertake recovery

actions if the difference is greater than an implementation

defined constant that MUST NOT exceed 2**31-1.

Initiators and Targets MUST support the response-numbering scheme.

4.2.2.3. Response Ordering

4.2.2.3.1. Need for Response Ordering

Whenever an iSCSI session is composed of multiple connections, the

Response PDUs (task responses or TMF responses) originating in

the target SCSI layer are distributed onto the multiple

connections by the target iSCSI layer according to iSCSI

connection allegiance rules. This process generally may not

preserve the ordering of the responses by the time they are

delivered to the initiator SCSI layer.

Since ordering is not expected across SCSI responses anyway, this

approach works fine in the general case. However, to address the

special cases where some ordering is desired by the SCSI layer, we

introduce the notion of a "Response Fence": Response Fence is

logically the attribute/property of a SCSI response message handed

off to a target iSCSI layer which indicates that there are special

SCSI-level ordering considerations associated with this particular

response message – whenever Response Fence is set or required on a

SCSI response message, we define the semantics in 4.2.2.3.2 with

respect to target iSCSI layer's handling of such SCSI response

messages.

4.2.2.3.2. Response Ordering Model Description

The target SCSI protocol layer hands off the SCSI response

messages to the target iSCSI layer by invoking the "Send Command

Complete" protocol data service ([SAM2], clause 5.4.2) and "Task

Management Function Executed" ([SAM2], clause 6.9) service. On

receiving the SCSI response message, the iSCSI layer exhibits the

Response Fence behavior for certain SCSI response messages

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 41]

(Section 4.2.2.3.4 describes the specific instances where the

semantics must be realized).

Whenever the Response Fence behavior is required for a SCSI

response message, the target iSCSI layer MUST ensure that the

following conditions are met in delivering the response message to

the initiator iSCSI layer:

- Response with Response Fence MUST be delivered

chronologically after all the "preceding" responses on the

I_T_L nexus, if the preceding responses are delivered at

all, to the initiator iSCSI layer.

- Response with Response Fence MUST be delivered

chronologically prior to all the "following" responses on

the I_T_L nexus.

The "preceding" and "following" notions refer to the order of

handoff of a response message from the target SCSI protocol layer

to the target iSCSI layer.

4.2.2.3.3. iSCSI Semantics with the Interface Model

Whenever the TaskReporting key (Section 13.23) is negotiated to

ResponseFence or FastAbort for an iSCSI session and the Response

Fence behavior is required for a SCSI response message, the target

iSCSI layer MUST perform the actions described in this Section for

that session.

a) If it is a single-connection session, no special
processing is required. The standard SCSI Response PDU

build and dispatch process happens.

b) If it is a multi-connection session, the target iSCSI
layer takes note of the last-sent and unacknowledged

StatSN on each of the connections in the iSCSI session,

and waits for an acknowledgement (NOP-In PDUs MAY be used

to solicit acknowledgements as needed in order to

accelerate this process) of each such StatSN to clear the

fence. The SCSI response requiring Response Fence

behavior MUST NOT be sent to the initiator before

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 42]

acknowledgements are received for each of the

unacknowledged StatSNs.

c) The target iSCSI layer must wait for an acknowledgement
of the SCSI Response PDU that carried the SCSI response

requiring the Response Fence behavior. The fence MUST be

considered cleared only after receiving the

acknowledgement.

d) All further status processing for the LU is resumed only
after clearing the fence. If any new responses for the

I_T_L nexus are received from the SCSI layer before the

fence is cleared, those Response PDUs MUST be held and

queued at the iSCSI layer until the fence is cleared.

4.2.2.3.4. Current List of Fenced Response Use Cases

This Section lists the situations in which fenced response

behavior is REQUIRED in iSCSI target implementations. Note that

the following list is an exhaustive enumeration as currently

identified - it is expected that as SCSI protocol specifications

evolve, the specifications will specify when response fencing is

required on a case-by-case basis.

Whenever the TaskReporting key (Section 13.23) is negotiated to

ResponseFence or FastAbort for an iSCSI session, the target iSCSI

layer MUST assume that the Response Fence is required for the

following SCSI completion messages:

1. The first completion message carrying the UA after the
multi-task abort on issuing and third-party sessions. See

Section 4.2.3.2 for related TMF discussion.

2. The TMF Response carrying the multi-task TMF Response on
the issuing session.

3. The completion message indicating ACA establishment on the
issuing session.

4. The first completion message carrying the ACA ACTIVE status
after ACA establishment on issuing and third-party

sessions.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 43]

5. The TMF Response carrying the Clear ACA response on the
issuing session.

6. The response to a PERSISTENT RESERVE OUT/PREEMPT AND ABORT
command.

Note:

- Due to the absence of ACA-related fencing requirements in

[RFC3720], initiator implementations SHOULD NOT use ACA on

multi-connection iSCSI sessions with targets complying only

with [RFC3720]. This can be determined via TaskReporting key

(Section 13.23) negotiation - when the negotiation results

in either "RFC3720" or "NotUnderstood".

- Initiators that want to employ ACA on multi-connection iSCSI

sessions SHOULD first assess response-fencing behavior via

negotiating for "ResponseFence" or "FastAbort" value for the

TaskReporting (Section 13.23) key.

4.2.2.4. Data Sequencing

Data and R2T PDUs transferred as part of some command execution

MUST be sequenced. The DataSN field is used for data sequencing.

For input (read) data PDUs, DataSN starts with 0 for the first

data PDU of an input command and advances by 1 for each subsequent

data PDU. For output data PDUs, DataSN starts with 0 for the first

data PDU of a sequence (the initial unsolicited sequence or any

data PDU sequence issued to satisfy an R2T) and advances by 1 for

each subsequent data PDU. R2Ts are also sequenced per command. For

example, the first R2T has an R2TSN of 0 and advances by 1 for

each subsequent R2T. For bidirectional commands, the target uses

the DataSN/R2TSN to sequence Data-In and R2T PDUs in one

continuous sequence (undifferentiated). Unlike command and status,

data PDUs and R2Ts are not acknowledged by a field in regular

outgoing PDUs. Data-In PDUs can be acknowledged on demand by a

special form of the SNACK PDU. Data and R2T PDUs are implicitly

acknowledged by status for the command. The DataSN/R2TSN field

enables the initiator to detect missing data or R2T PDUs.

For any read or bidirectional command, a target MUST issue less

than 2**32 combined R2T and Data-In PDUs. Any output data sequence

MUST contain less than 2**32 Data-Out PDUs.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 44]

4.2.3. iSCSI Task Management

4.2.3.1. Task Management Overview

iSCSI task management features allow an initiator to control the

active iSCSI tasks on an operational iSCSI session that it has

with an iSCSI target. Section 11.5 defines the task management

function types that this specification defines - ABORT TASK, ABORT

TASK SET, CLEAR ACA, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET

WARM RESET, TARGET COLD RESET, and TASK REASSIGN.

Out of these function types, ABORT TASK and TASK REASSIGN

functions manage a single active task, whereas ABORT TASK SET,

CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET and TARGET

COLD RESET functions can each potentially affect multiple active

tasks.

4.2.3.2. Notion of Affected Tasks

This Section defines the notion of "affected tasks" in multi-task

abort scenarios. Scope definitions in this Section apply to both

the Standard Multi-task Abort semantics (Section 4.2.3.3) and the

FastAbort Multi-task Abort semantics behavior (Section 4.2.3.4).

ABORT TASK SET: All outstanding tasks for the I_T_L nexus

identified by the LUN field in the ABORT TASK SET TMF Request PDU

(Section 11.5).

CLEAR TASK SET: All outstanding tasks in the task set for the LU

identified by the LUN field in the CLEAR TASK SET TMF Request PDU.

See [SPC3] for the definition of a "task set".

LOGICAL UNIT RESET: All outstanding tasks from all initiators for

the LU identified by the LUN field in the LOGICAL UNIT RESET

Request PDU.

TARGET WARM RESET/TARGET COLD RESET: All outstanding tasks from

all initiators across all LUs to which the TMF-issuing session has

access on the SCSI target device hosting the iSCSI session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 45]

Usage: An "ABORT TASK SET TMF Request PDU" in the preceding text

is an iSCSI TMF Request PDU with the "Function" field set to

"ABORT TASK SET" as defined in Section 11.5. Similar usage is

employed for other scope descriptions.

4.2.3.3. Standard Multi-task Abort Semantics

All iSCSI implementations MUST support the protocol behavior

defined in this Section as the default behavior. The execution of

ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM

RESET, and TARGET COLD RESET TMF Requests consists of the

following sequence of actions in the specified order on the

specified party.

The initiator iSCSI layer:

a. MUST continue to respond to each TTT received for the

affected tasks.

b. SHOULD process any responses received for affected tasks in

the normal fashion. This is acceptable because the

responses are guaranteed to have been sent prior to the TMF

response.

c. SHOULD receive the TMF Response concluding all the tasks in

the set of affected tasks unless the initiator has done

something (e.g., LU reset, connection drop) that may

prevent the TMF Response from being sent or received. The

initiator MUST thus conclude all affected tasks as part of

this step in either case, and MUST discard any TMF Response

received after the affected tasks are concluded.

The target iSCSI layer:

a. MUST wait for responses on currently valid target-transfer
tags of the affected tasks from the issuing initiator. MAY

wait for responses on currently valid target-transfer tags

of the affected tasks from third-party initiators.

b. MUST wait (concurrent with the wait in Step a) for all
commands of the affected tasks to be received based on the

CmdSN ordering. SHOULD NOT wait for new commands on third-

party affected sessions -- only the instantiated tasks have

to be considered for the purpose of determining the

affected tasks. In the case of target-scoped requests

(i.e., TARGET WARM RESET and TARGET COLD RESET), all of the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 46]

commands that are not yet received on the issuing session

in the command stream however can be considered to have

been received with no command waiting period -- i.e., the

entire CmdSN space up to the CmdSN of the task management

function can be "plugged".

c. MUST propagate the TMF request to and receive the response
from the target SCSI layer.

d. MUST provide the Response Fence behavior for the TMF
Response on the issuing session as specified in Section

4.2.2.3.2.

e. MUST provide the Response Fence behavior on the first post-
TMF Response on third-party sessions as specified in

Section 4.2.2.3.3. If some tasks originate from non-iSCSI

I_T_L nexuses, then the means by which the target ensures

that all affected tasks have returned their status to the

initiator are defined by the specific non-iSCSI transport

protocol(s).

Technically, the TMF servicing is complete in Step d. Data

transfers corresponding to terminated tasks may however still be

in progress on third-party iSCSI sessions even at the end of Step

e. The TMF Response MUST NOT be sent by the target iSCSI layer

before the end of Step d, and MAY be sent at the end of Step d

despite these outstanding data transfers until after Step e.

4.2.3.4. FastAbort Multi-task Abort Semantics

Protocol behavior defined in this Section SHOULD be implemented by

all iSCSI implementations complying with this document, noting

that some steps below may not be compatible with [RFC3720]

semantics. However, protocol behavior defined in this Section MUST

be exhibited by iSCSI implementations on an iSCSI session when

they negotiate the TaskReporting (Section 13.23) key to

"FastAbort" on that session. The execution of ABORT TASK SET,

CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET

COLD RESET TMF Requests consists of the following sequence of

actions in the specified order on the specified party.

The initiator iSCSI layer:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 47]

a. MUST NOT send any more Data-Out PDUs for affected tasks on
the issuing connection of the issuing iSCSI session once

the TMF is sent to the target.

b. SHOULD process any responses received for affected tasks in
the normal fashion. This is acceptable because the

responses are guaranteed to have been sent prior to the TMF

response.

c. MUST respond to each Async Message PDU with FAST_ABORT
AsyncEvent as defined in Section 11.9.

d. MUST treat the TMF response as terminating all affected

tasks for which responses have not been received, and MUST

discard any responses for affected tasks received after the

TMF response is passed to the SCSI layer (although the

semantics defined in this Section ensure that such an out-

of-order scenario will never happen with a compliant target

implementation).

The target iSCSI layer:

a. MUST wait for all commands of the affected tasks to be
received based on the CmdSN ordering on the issuing

session. SHOULD NOT wait for new commands on third-party

affected sessions - only the instantiated tasks have to be

considered for the purpose of determining the affected

tasks. In the case of target-scoped requests (i.e., TARGET

WARM RESET and TARGET COLD RESET), all the commands that

are not yet received on the issuing session in the command

stream can be considered to have been received with no

command waiting period -- i.e., the entire CmdSN space up

to the CmdSN of the task management function can be

"plugged".

b. MUST propagate the TMF request to and receive the response
from the target SCSI layer.

c. MUST leave all active "affected TTTs" (i.e., active TTTs
associated with affected tasks) valid.

d. MUST send an Asynchronous Message PDU with AsyncEvent=5
(Section 11.9) on:

i) each connection of each third-party session to

which at least one affected task is allegiant if

TaskReporting=FastAbort is operational on that third-

party session, and,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 48]

ii) each connection except the issuing connection of

the issuing session that has at least one allegiant

affected task.

If there are multiple affected LUs (say, due to a target

reset), then one Async Message PDU MUST be sent for each

such LU on each connection that has at least one allegiant

affected task. The LUN field in the Asynchronous Message PDU

MUST be set to match the LUN for each such LU.

e. MUST address the Response Fence flag on the TMF Response on
the issuing session as defined in Section 4.2.2.3.3.

f. MUST address the Response Fence flag on the first post-TMF
Response on third-party sessions as defined in Section

4.2.2.3.3. If some tasks originate from non-iSCSI I_T_L

nexuses, then the means by which the target ensures that

all affected tasks have returned their status to the

initiator are defined by the specific non-iSCSI transport

protocol(s).

g. MUST free up the affected TTTs (and STags, if applicable)
and the corresponding buffers, if any, once it receives

each associated NOP-Out acknowledgement that the initiator

generated in response to each Async Message.

Technically, the TMF servicing is complete in Step e. Data

transfers corresponding to terminated tasks may however still be

in progress even at the end of Step f. A TMF Response MUST NOT be

sent by the target iSCSI layer before the end of Step e, and MAY

be sent at the end of Step e despite these outstanding Data

transfers until Step g. Step g specifies an event to free up any

such resources that may have been reserved to support outstanding

data transfers.

4.2.3.5. Affected Tasks Shared across Standard and FastAbort Sessions

If an iSCSI target implementation is capable of supporting

TaskReporting=FastAbort functionality (Section 13.23), it may end

up in a situation where some sessions have TaskReporting=RFC3720

operational (RFC 3720 sessions) while some other sessions have

TaskReporting=FastAbort operational (FastAbort sessions) even

while accessing a shared set of affected tasks (Section 4.2.3.2).

If the issuing session is an RFC 3720 session, the iSCSI target

implementation is FastAbort-capable, and the third-party affected

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 49]

session is a FastAbort session, the following behavior SHOULD be

exhibited by the iSCSI target layer:

a. Between Steps c and d of the target behavior in Section
4.2.3.3, send an Asynchronous Message PDU with AsyncEvent=5

(Section 11.9) on each connection of each third-party

session to which at least one affected task is allegiant.

If there are multiple affected LUs, then send one Async

Message PDU for each such LU on each connection that has at

least one allegiant affected task. When sent, the LUN field

in the Asynchronous Message PDU MUST be set to match the

LUN for each such LU.

b. After Step e of the target behavior in Section 4.2.3.3,
free up the affected TTTs (and STags, if applicable) and

the corresponding buffers, if any, once each associated

NOP-Out acknowledgement is received that the third-party

initiator generated in response to each Async Message sent

in Step a.

If the issuing session is a FastAbort session, the iSCSI target

implementation is FastAbort-capable, and the third-party affected

session is an RFC 3720 session, iSCSI target layer MUST NOT send

Asynchronous Message PDUs on the third-party session to prompt the

FastAbort behavior.

If the third-party affected session is a FastAbort session and the

issuing session is a FastAbort session, the initiator in the

third-party role MUST respond to each Async Message PDU with

AsyncEvent=5 as defined in Section 11.9. Note that an initiator

MAY thus receive these Async Messages on a third-party affected

session even if the session is a single-connection session.

4.2.3.6. Rationale behind the FastAbort Semantics

There are fundamentally three basic objectives behind the

semantics

specified in Sections 4.2.3.3 and 4.2.3.4.

1. Maintaining an ordered command flow I_T nexus abstraction

to the target SCSI layer even with multi-connection

sessions.

- Target iSCSI processing of a TMF request must

maintain the single flow illusion. Target behavior in

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 50]

Step b of Section 4.2.3.3 and Step a of Section 4.2.3.4

correspond to this objective.

2. Maintaining a single ordered response flow I_T nexus

abstraction to the initiator SCSI layer even with multi-

connection sessions when one response (i.e., TMF response)

could imply the status of other unfinished tasks from the

initiator’s perspective.

- The target must ensure that the initiator does not

see "old" task responses (that were placed on the wire

chronologically earlier than the TMF Response) after

seeing the TMF response. The target behavior in Step d

of Section 4.2.3.3 and Step e of Section 4.2.3.4

correspond to this objective.

- Whenever the result of a TMF action is visible across

multiple I_T_L nexuses, [SAM2] requires the SCSI device

server to trigger a UA on each of the other I_T_L

nexuses. Once an initiator is notified of such an UA,

the application client on the receiving initiator is

required to clear its task state (clause 5.5 in [SAM2])

for the affected tasks. It would thus be inappropriate

to deliver a SCSI Response for a task after the task

state is cleared on the initiator, i.e., after the UA

is notified. The UA notification contained in the first

SCSI Response PDU on each affected Third-party I_T_L

nexus after the TMF action thus MUST NOT pass the

affected task responses on any of the iSCSI sessions

accessing the LU. The target behavior in Step e of

Section 4.2.3.3 and Step f of Section 4.2.3.4

correspond to this objective.

3. Draining all active TTTs corresponding to affected tasks in

a deterministic fashion.

- Data-Out PDUs with stale TTTs arriving after the

tasks are terminated can create a buffer management

problem even for traditional iSCSI implementations, and

is fatal for the connection for iSCSI/iSER

implementations. Either the termination of affected

tasks should be postponed until the TTTs are retired

(as in Step a of Section 4.2.3.3), or the TTTs and the

buffers should stay allocated beyond task termination

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 51]

to be deterministically freed up later (as in Steps c

and g of Section 4.2.3.4).

The only other notable optimization is the plugging. If all tasks

on an I_T nexus will be aborted anyway (as with a target reset),

there is no need to wait to receive all commands to plug the CmdSN

holes. The target iSCSI layer can simply plug all missing CmdSN

slots and move on with TMF processing. The first objective

(maintaining a single ordered command flow) is still met with this

optimization because the target SCSI layer only sees ordered

commands.

4.2.4. iSCSI Login

The purpose of the iSCSI login is to enable a TCP connection for

iSCSI use, authentication of the parties, negotiation of the

session's parameters and marking of the connection as belonging to

an iSCSI session.

A session is used to identify to a target all the connections with

a given initiator that belong to the same I_T nexus. (For more

details on how a session relates to an I_T nexus, see Section

4.4.2).

The targets listen on a well-known TCP port or other TCP port for

incoming connections. The initiator begins the login process by

connecting to one of these TCP ports.

As part of the login process, the initiator and target SHOULD

authenticate each other and MAY set a security association

protocol for the session. This can occur in many different ways

and is subject to negotiation – see Section 12.

To protect the TCP connection, an IPsec security association MAY

be established before the Login request. For information on using

IPsec security for iSCSI see Section 9, [RFC3723] and [IPSEC-IPS}.

The iSCSI Login Phase is carried through Login requests and

responses. Once suitable authentication has occurred and

operational parameters have been set, the session transitions to

Full Feature Phase and the initiator may start to send SCSI

commands. The security policy for whether, and by what means, a

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 52]

target chooses to authorize an initiator is beyond the scope of

this document. For a more detailed description of the Login Phase,

see Section 6.

The login PDU includes the ISID part of the session ID (SSID). The

target portal group that services the login is implied by the

selection of the connection endpoint. For a new session, the TSIH

is zero. As part of the response, the target generates a TSIH.

During session establishment, the target identifies the SCSI

initiator port (the "I" in the "I_T nexus") through the value pair

(InitiatorName, ISID). We describe InitiatorName later in this

Section. Any persistent state (e.g., persistent reservations) on

the target that is associated with a SCSI initiator port is

identified based on this value pair. Any state associated with the

SCSI target port (the "T" in the "I_T nexus") is identified

externally by the TargetName and portal group tag (see Section

4.4.1). ISID is subject to reuse restrictions because it is used

to identify a persistent state (see Section 4.4.3).

Before the Full Feature Phase is established, only Login Request

and Login Response PDUs are allowed. Login requests and responses

MUST be used exclusively during Login. On any connection, the

login phase MUST immediately follow TCP connection establishment

and a subsequent Login Phase MUST NOT occur before tearing down a

connection.

A target receiving any PDU except a Login request before the Login

phase is started MUST immediately terminate the connection on

which the PDU was received. Once the Login phase has started, if

the target receives any PDU except a Login request, it MUST send a

Login reject (with Status "invalid during login") and then

disconnect. If the initiator receives any PDU except a Login

response, it MUST immediately terminate the connection.

4.2.5. iSCSI Full Feature Phase

Once the two sides successfully conclude the Login on the first –

also called the leading - connection in the session, the iSCSI

session is in the iSCSI Full Feature Phase. A connection is in

Full Feature Phase if the session is in Full Feature Phase and the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 53]

connection login has completed successfully. An iSCSI connection

is not in Full Feature Phase

a) when it does not have an established transport
connection,

OR

b) when it has a valid transport connection, but a
successful login was not performed or the connection is

currently logged out.

In a normal Full Feature Phase, the initiator may send SCSI

commands and data to the various LUs on the target by

encapsulating them in iSCSI PDUs that go over the established

iSCSI session.

4.2.5.1. Command Connection Allegiance

For any iSCSI request issued over a TCP connection, the

corresponding response and/or other related PDU(s) MUST be sent

over the same connection. We call this "connection allegiance". If

the original connection fails before the command is completed, the

connection allegiance of the command may be explicitly reassigned

to a different transport connection as described in detail in

Section 7.2.

Thus, if an initiator issues a READ command, the target MUST send

the requested data, if any, followed by the status to the

initiator over the same TCP connection that was used to deliver

the SCSI command. If an initiator issues a WRITE command, the

initiator MUST send the data, if any, for that command over the

same TCP connection that was used to deliver the SCSI command. The

target MUST return Ready To Transfer (R2T), if any, and the status

over the same TCP connection that was used to deliver the SCSI

command. Retransmission requests (SNACK PDUs) and the data and

status that they generate MUST also use the same connection.

However, consecutive commands that are part of a SCSI linked

command-chain task (see [SAM2]) MAY use different connections.

Connection allegiance is strictly per-command and not per-task.

During the iSCSI Full Feature Phase, the initiator and target MAY

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 54]

interleave unrelated SCSI commands, their SCSI Data, and responses

over the session.

4.2.5.2. Data Transfer Overview

Outgoing SCSI data (initiator to target user data or command

parameters) is sent as either solicited data or unsolicited data.

Solicited data are sent in response to R2T PDUs. Unsolicited data

can be sent as part of an iSCSI command PDU ("immediate data") or

in separate iSCSI data PDUs.

Immediate data are assumed to originate at offset 0 in the

initiator SCSI write-buffer (outgoing data buffer). All other Data

PDUs have the buffer offset set explicitly in the PDU header.

An initiator may send unsolicited data up to FirstBurstLength

(see Section 13.14) as immediate (up to the negotiated maximum PDU

length), in a separate PDU sequence or both. All subsequent data

MUST be solicited. The maximum length of an individual data PDU or

the immediate-part of the first unsolicited burst MAY be

negotiated at login.

The maximum amount of unsolicited data that can be sent with a

command is negotiated at login through the FirstBurstLength (see

Section 13.14) key. A target MAY separately enable immediate data

(through the ImmediateData key) without enabling the more general

(separate data PDUs) form of unsolicited data (through the

InitialR2T key).

Unsolicited data on write are meant to reduce the effect of

latency on throughput (no R2T is needed to start sending data). In

addition, immediate data is meant to reduce the protocol overhead

(both bandwidth and execution time).

An iSCSI initiator MAY choose not to send unsolicited data, only

immediate data or FirstBurstLength bytes of unsolicited data with

a command. If any non-immediate unsolicited data is sent, the

total unsolicited data MUST be either FirstBurstLength, or all of

the data if the total amount is less than the FirstBurstLength.

It is considered an error for an initiator to send unsolicited

data PDUs to a target that operates in R2T mode (only solicited

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 55]

data are allowed). It is also an error for an initiator to send

more unsolicited data, whether immediate or as separate PDUs, than

FirstBurstLength.

An initiator MUST honor an R2T data request for a valid

outstanding command (i.e., carrying a valid Initiator Task Tag)

and deliver all the requested data provided the command is

supposed to deliver outgoing data and the R2T specifies data

within the command bounds. The initiator action is unspecified for

receiving an R2T request that specifies data, all or part, outside

of the bounds of the command.

A target SHOULD NOT silently discard data and then request

retransmission through R2T. Initiators SHOULD NOT keep track of

the data transferred to or from the target (scoreboarding). SCSI

targets perform residual count calculation to check how much data

was actually transferred to or from the device by a command. This

may differ from the amount the initiator sent and/or received for

reasons such as retransmissions and errors. Read or bidirectional

commands implicitly solicit the transmission of the entire amount

of data covered by the command. SCSI data packets are matched to

their corresponding SCSI commands by using tags specified in the

protocol.

In addition, iSCSI initiators and targets MUST enforce some

ordering rules. When unsolicited data is used, the order of the

unsolicited data on each connection MUST match the order in which

the commands on that connection are sent. Command and unsolicited

data PDUs may be interleaved on a single connection as long as the

ordering requirements of each are maintained (e.g., command N+1

MAY be sent before the unsolicited Data-Out PDUs for command N,

but the unsolicited Data-Out PDUs for command N MUST precede the

unsolicited Data-Out PDUs of command N+1). A target that receives

data out of order MAY terminate the session.

4.2.5.3. Tags and Integrity Checks

Initiator tags for pending commands are unique initiator-wide for

a session. Target tags are not strictly specified by the protocol.

It is assumed that target tags are used by the target to tag

(alone or in combination with the LUN) the solicited data. Target

tags are generated by the target and "echoed" by the initiator.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 56]

These mechanisms are designed to accomplish efficient data

delivery along with a large degree of control over the data flow.

As the Initiator Task Tag is used to identify a task during its

execution the iSCSI initiator and target MUST verify that all

other fields used in task related PDUs have values that are

consistent with the values used at the task instantiation based on

Initiator Task Tag (e.g., the LUN used in an R2T PDU MUST be the

same as the one used in the SCSI command PDU used to instantiate

the task). Using inconsistent field values is considered a

protocol error.

4.2.5.4. Task Management

SCSI task management assumes that individual tasks and task groups

can be aborted solely based on the task tags (for individual

tasks) or the timing of the task management command (for task

groups) and that the task management action is executed

synchronously - i.e, no message involving an aborted task will be

seen by the SCSI initiator after receiving the task management

response. In iSCSI initiators and targets interact asynchronously

over several connections. iSCSI specifies the protocol mechanism

and implementation requirements needed to present a synchronous

view while using an asynchronous infrastructure.

4.2.6. iSCSI Connection Termination

An iSCSI connection may be terminated by use of a transport

connection shutdown or a transport reset. Transport reset is

assumed to be an exceptional event.

Graceful TCP connection shutdowns are done by sending TCP FINs. A

graceful transport connection shutdown SHOULD only be initiated by

either party when the connection is not in iSCSI Full Feature

Phase. A target MAY terminate a Full Feature Phase connection on

internal exception events, but it SHOULD announce the fact through

an Asynchronous Message PDU. Connection termination with

outstanding commands may require recovery actions.

If a connection is terminated while in Full Feature Phase,

connection cleanup (see Section 7) is required prior to recovery.

By doing connection cleanup before starting recovery, the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 57]

initiator and target will avoid receiving stale PDUs after

recovery.

4.2.7. iSCSI Names

Both targets and initiators require names for the purpose of

identification. In addition, names enable iSCSI storage resources

to be managed regardless of location (address). An iSCSI node name

is also the SCSI device name contained in the iSCSI Node. The

iSCSI name of a SCSI device is the principal object used in

authentication of targets to initiators and initiators to targets.

This name is also used to identify and manage iSCSI storage

resources.

iSCSI names must be unique within the operation domain of the end

user. However, because the operation domain of an IP network is

potentially worldwide, the iSCSI name formats are architected to

be worldwide unique. To assist naming authorities in the

construction of worldwide unique names, iSCSI provides three name

formats for different types of naming authorities.

iSCSI names are associated with iSCSI nodes, and not iSCSI network

adapter cards, to ensure that the replacement of network adapter

cards does not require reconfiguration of all SCSI and iSCSI

resource allocation information.

Some SCSI commands require that protocol-specific identifiers be

communicated within SCSI CDBs. See SCSI for the definition of the

SCSI port name/identifier for iSCSI ports.

An initiator may discover the iSCSI Target Names to which it has

access, along with their addresses, using the SendTargets text

request, or other techniques discussed in [RFC3721].

iSCSI equipment that needs discovery functions beyond SendTargets

SHOULD implement iSNS (see [RFC4171]) for extended discovery

management capabilities and interoperability. Although [RFC3721]

implies an SLP ([RFC2608]) implementation requirement, SLP has not

been widely implemented or deployed for use with iSCSI in

practice. iSCSI implementations therefore SHOULD NOT rely on SLP-

based discovery interoperability.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 58]

4.2.7.1. iSCSI Name Properties

Each iSCSI node, whether it is an initiator or target or both,

MUST have an iSCSI name. Whenever an iSCSI Node contains an iSCSI

Initiator Node and an iSCSI Target Node, the iSCSI Initiator Name

MUST be the same as the iSCSI Target Name for the contained Nodes

such that there is only one iSCSI Node Name for the iSCSI Node

overall. Note the related requirements in Section 9.2.1 on how to

map CHAP names to iSCSI Names in such a scenario.

Initiators and targets MUST support the receipt of iSCSI names of

up to the maximum length of 223 bytes.

The initiator MUST present both its iSCSI Initiator Name and the

iSCSI Target Name to which it wishes to connect in the first login

request of a new session or connection. The only exception is if a

discovery session (see Section 4.3) is to be established. In this

case, the iSCSI Initiator Name is still required, but the iSCSI

Target Name MAY be omitted.

iSCSI names have the following properties:

- iSCSI names are globally unique. No two initiators or

targets can have the same name.

- iSCSI names are permanent. An iSCSI initiator node or target

node has the same name for its lifetime.

- iSCSI names do not imply a location or address. An iSCSI

initiator or target can move, or have multiple addresses. A

change of address does not imply a change of name.

- iSCSI names do not rely on a central name broker; the naming

authority is distributed.

- iSCSI names support integration with existing unique naming

schemes.

- iSCSI names rely on existing naming authorities. iSCSI does

not create any new naming authority.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 59]

The encoding of an iSCSI name has the following properties:

- iSCSI names have the same encoding method regardless of the

underlying protocols.

- iSCSI names are relatively simple to compare. The algorithm

for comparing two iSCSI names for equivalence does not rely

on an external server.

- iSCSI names are composed only of printable ASCII and Unicode

characters. iSCSI names allow the use of international

character sets but uppercase characters are prohibited. The

iSCSI stringprep profile [RFC3722] maps uppercase characters

to lowercase and SHOULD be used to prepare iSCSI names from

input that may include uppercase characters. No whitespace

characters are used in iSCSI names, see [RFC3722] for

details.

- iSCSI names may be transported using both binary and ASCII-

based protocols.

An iSCSI name really names a logical software entity, and is not

tied to a port or other hardware that can be changed. For

instance, an initiator name should name the iSCSI initiator node,

not a particular NIC or HBA. When multiple NICs are used, they

should generally all present the same iSCSI initiator name to the

targets, because they are simply paths to the same SCSI layer. In

most operating systems, the named entity is the operating system

image.

Similarly, a target name should not be tied to hardware interfaces

that can be changed. A target name should identify the logical

target and must be the same for the target regardless of the

physical portion being addressed. This assists iSCSI initiators in

determining that the two targets it has discovered are really two

paths to the same target.

The iSCSI name is designed to fulfill the functional requirements

for Uniform Resource Names (URN) [RFC1737]. For example, it is

required that the name have a global scope, be independent of

address or location, and be persistent and globally unique. Names

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 60]

must be extensible and scalable with the use of naming

authorities. The name encoding should be both human and machine

readable. See [RFC1737] for further requirements.

4.2.7.2. iSCSI Name Encoding

An iSCSI name MUST be a UTF-8 (see [RFC3629]) encoding of a string

of Unicode characters with the following properties:

- It is in Normalization Form C (see "Unicode Normalization

Forms" [UNICODE]).

- It only contains characters allowed by the output of the

iSCSI stringprep template (described in [RFC3722]).

- The following characters are used for formatting iSCSI

names:

- dash ('-'=U+002d)

- dot ('.'=U+002e)

- colon (':'=U+003a)

- The UTF-8 encoding of the name is not larger than 223 bytes.

The stringprep process is described in [RFC3454]; iSCSI's use of

the stringprep process is described in [RFC3722]. Stringprep is a

method designed by the Internationalized Domain Name (IDN) working

group to translate human-typed strings into a format that can be

compared as opaque strings. iSCSI names are expected to be used by

administrators for purposes such as system configuration - for

this reason, characters that may lead to human confusion among

different iSCSI names (e.g., punctuation, spacing, diacritical

marks) should be avoided, even when such characters are allowed as

stringprep processing output by [RFC3722]. The stringprep process

also converts strings into equivalent strings of lower-case

characters.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 61]

The stringprep process does not need to be implemented if the

names are generated using only characters allowed as output by the

stringprep processing specified in [RFC3722]. Those allowed

characters include all ASCII lowercase and numeric characters, as

well as lowercase Unicode characters as specified in [RFC3722].

Once iSCSI names encoded in UTF-8 are "normalized" as described in

this Section, they may be safely compared byte-for-byte.

4.2.7.3. iSCSI Name Structure

An iSCSI name consists of two parts—a type designator followed by

a unique name string.

iSCSI uses three existing naming authorities in constructing

globally unique iSCSI names. Type designator in an iSCSI name

indicates the naming authority on which the name is based. The

three iSCSI name formats are the following:

a) iSCSI-Qualified Name: it is based on domain names to
identify a naming authority,

b) NAA format Name: it is based on a naming format defined
by [FC-FS3] for constructing globally unique identifiers,

referred to as the Network Address Authority (NAA), and,

c) EUI format Name: it is based on EUI names where the IEEE
Registration Authority assists in the formation of

worldwide unique names (EUI-64 format).

The corresponding type designator strings currently defined are:

a) iqn. - iSCSI Qualified name

b) naa. - Remainder of the string is an INCITS T11-defined
Network Address Authority identifier, in ASCII-encoded

hexadecimal.

c) eui. - Remainder of the string is an IEEE EUI-64
identifier, in ASCII-encoded hexadecimal.

These three naming authority designators were considered

sufficient at the time of writing this document. The creation of

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 62]

additional naming type designators for iSCSI may be considered by

the IETF and detailed in separate RFCs.

The following table summarizes the current SCSI transport

protocols and their naming formats.

 SCSI Transport Protocol Naming Format

+----------------------------+-------+-----+----+

| | EUI-64| NAA |IQN |

|----------------------------|-------|-----|----|

| iSCSI (Internet SCSI) | X | X | X |

|----------------------------|-------|-----|----|

| FCP (Fibre Channel) | | X | |

|----------------------------|-------|-----|----|

| SAS (Serial Attached SCSI) | | X | |

+----------------------------+-------+-----+----+

4.2.7.4. Type "iqn." (iSCSI Qualified Name)

This iSCSI name type can be used by any organization that owns a

domain name. This naming format is useful when an end user or

service provider wishes to assign iSCSI names for targets and/or

initiators.

To generate names of this type, the person or organization

generating the name must own a registered domain name. This domain

name does not have to resolve to an address; it just needs to be

reserved to prevent others from generating iSCSI names using the

same domain name.

Since a domain name can expire, be acquired by another entity, or

may be used to generate iSCSI names by both owners, the domain

name must be additionally qualified by a date during which the

naming authority owned the domain name. A date code is provided as

part of the "iqn." format for this reason.

The iSCSI qualified name string consists of:

- The string "iqn.", used to distinguish these names from

"eui." formatted names.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 63]

- A date code, in yyyy-mm format. This date MUST be a date

during which the naming authority owned the domain name used

in this format, and SHOULD be the first month in which the

domain name was owned by this naming authority at 00:01 GMT

of the first day of the month. This date code uses the

Gregorian calendar. All four digits in the year must be

present. Both digits of the month must be present, with

January == "01" and December == "12". The dash must be

included.

- A dot "."

- The reversed domain name of the naming authority (person or

organization) creating this iSCSI name.

- An optional, colon (:) prefixed, string within the character

set and length boundaries that the owner of the domain name

deems appropriate. This may contain product types, serial

numbers, host identifiers, or software keys (e.g, it may

include colons to separate organization boundaries). With

the exception of the colon prefix, the owner of the domain

name can assign everything after the reversed domain name as

desired. It is the responsibility of the entity that is the

naming authority to ensure that the iSCSI names it assigns

are worldwide unique. For example, "Example Storage Arrays,

Inc.", might own the domain name "example.com".

The following are examples of iSCSI qualified names that might be

generated by "EXAMPLE Storage Arrays, Inc."

 Naming String defined by

 Type Date Auth "example.com" naming authority

 +--++-----+ +---------+ +--------------------------------+

 | || | | | | |

 iqn.2001-04.com.example:storage:diskarrays-sn-a8675309

 iqn.2001-04.com.example

 iqn.2001-04.com.example:storage.tape1.sys1.xyz

 iqn.2001-04.com.example:storage.disk2.sys1.xyz

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 64]

4.2.7.5. Type "eui." (IEEE EUI-64 format)

The IEEE Registration Authority provides a service for assigning

globally unique identifiers [EUI]. The EUI-64 format is used to

build a global identifier in other network protocols. For example,

Fibre Channel defines a method of encoding it into a

WorldWideName. For more information on registering for EUI

identifiers, see [OUI].

The format is "eui." followed by an EUI-64 identifier (16 ASCII-

encoded hexadecimal digits).

Example iSCSI name:

 Type EUI-64 identifier (ASCII-encoded hexadecimal)

 +--++--------------+

 | || |

 eui.02004567A425678D

The IEEE EUI-64 iSCSI name format might be used when a

manufacturer is already registered with the IEEE Registration

Authority and uses EUI-64 formatted worldwide unique names for its

products.

More examples of name construction are discussed in [RFC3721].

4.2.7.6. Type "naa." - Network Address Authority

The INCITS T11 Framing and Signaling Specification [FC-FS3]

defines a format called the Network Address Authority (NAA) format

for constructing worldwide unique identifiers that use various

identifier registration authorities. This identifier format is

used by the Fibre Channel and SAS SCSI transport protocols. As FC

and SAS constitute a large fraction of networked SCSI ports, the

NAA format is a widely used format for SCSI transports. The

objective behind iSCSI supporting a direct representation of an

NAA-format name is to facilitate construction of a target device

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 65]

name that translates easily across multiple namespaces for a SCSI

storage device containing ports served by different transports.

More specifically, this format allows implementations wherein one

NAA identifier can be assigned as the basis for the SCSI device

name for a SCSI target with both SAS ports and iSCSI ports.

The iSCSI NAA naming format is "naa.", followed by an NAA

identifier represented in ASCII-encoded hexadecimal digits.

An example of an iSCSI name with a 64-bit NAA value follows:

Type NAA identifier (ASCII-encoded hexadecimal)

+--++--------------+

| || |

naa.52004567BA64678D

An example of an iSCSI name with a 128-bit NAA value follows:

Type NAA identifier (ASCII-encoded hexadecimal)

+--++------------------------------+

| || |

naa.62004567BA64678D0123456789ABCDEF

The iSCSI NAA naming format might be used in an implementation

when the infrastructure for generating NAA worldwide unique names

is already in place because the device contains both SAS and iSCSI

SCSI ports.

The NAA identifier formatted in an ASCII-hexadecimal

representation has a maximum size of 32 characters (128 bit NAA

format). As a result, there is no issue with this naming format

exceeding the maximum size for iSCSI node names.

4.2.8. Persistent State

iSCSI does not require any persistent state maintenance across

sessions. However, in some cases, SCSI requires persistent

identification of the SCSI initiator port name (See Section 4.4.2

and Section 4.4.3).

iSCSI sessions do not persist through power cycles and boot

operations.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 66]

All iSCSI session and connection parameters are re-initialized on

session and connection creation.

Commands persist beyond connection termination if the session

persists and command recovery within the session is supported.

However, when a connection is dropped, command execution, as

perceived by iSCSI (i.e., involving iSCSI protocol exchanges for

the affected task), is suspended until a new allegiance is

established by the 'task reassign' task management function. (See

Section 11.5.)

4.2.9. Message Synchronization and Steering

iSCSI presents a mapping of the SCSI protocol onto TCP. This

encapsulation is accomplished by sending iSCSI PDUs of varying

lengths. Unfortunately, TCP does not have a built-in mechanism for

signaling message boundaries at the TCP layer. iSCSI overcomes

this obstacle by placing the message length in the iSCSI message

header. This serves to delineate the end of the current message as

well as the beginning of the next message.

In situations where IP packets are delivered in order from the

network, iSCSI message framing is not an issue and messages are

processed one after the other. In the presence of IP packet

reordering (i.e., frames being dropped), legacy TCP

implementations store the "out of order" TCP segments in temporary

buffers until the missing TCP segments arrive, upon which the data

must be copied to the application buffers. In iSCSI, it is

desirable to steer the SCSI data within these out of order TCP

segments into the pre-allocated SCSI buffers rather than store

them in temporary buffers. This decreases the need for dedicated

reassembly buffers as well as the latency and bandwidth related to

extra copies.

Relying solely on the "message length" information from the iSCSI

message header may make it impossible to find iSCSI message

boundaries in subsequent TCP segments due to the loss of a TCP

segment that contains the iSCSI message length. The missing TCP

segment(s) must be received before any of the following segments

can be steered to the correct SCSI buffers (due to the inability

to determine the iSCSI message boundaries). Since these segments

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 67]

cannot be steered to the correct location, they must be saved in

temporary buffers that must then be copied to the SCSI buffers.

Different schemes can be used to recover synchronization. The

details of any such schemes are beyond this protocol

specification, but it suffices to note that [RFC4297] provides an

overview of the direct data placement problem on IP networks, and

[RFC5046] specifies a protocol extension for iSCSI that

facilitates this direct data placement objective. Rest of this

document refers to any such direct data placement protocol usage

as an example of a “Synch and Steering layer”.

Under normal circumstances (no PDU loss or data reception out of

order), iSCSI data steering can be accomplished by using the

identifying tag and the data offset fields in the iSCSI header in

addition to the TCP sequence number from the TCP header. The

identifying tag helps associate the PDU with a SCSI buffer address

while the data offset and TCP sequence number are used to

determine the offset within the buffer.

4.2.9.1. Sync/Steering and iSCSI PDU Length

When a large iSCSI message is sent, the TCP segment(s) that

contain the iSCSI header may be lost. The remaining TCP segment(s)

up to the next iSCSI message must be buffered (in temporary

buffers) because the iSCSI header that indicates to which SCSI

buffers the data are to be steered was lost. To minimize the

amount of buffering, it is recommended that the iSCSI PDU length

be restricted to a small value (perhaps a few TCP segments in

length). During login, each end of the iSCSI session specifies the

maximum iSCSI PDU length it will accept.

4.3. iSCSI Session Types

iSCSI defines two types of sessions:

a) Normal operational session - an unrestricted session.

b) Discovery-session - a session only opened for target
discovery. The target MUST ONLY accept text requests with

the SendTargets key and a logout request with reason

"close the session". All other requests MUST be rejected.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 68]

The session type is defined during login with SessionType=value

parameter in the login command.

4.4. SCSI to iSCSI Concepts Mapping Model

The following diagram shows an example of how multiple iSCSI Nodes

(targets in this case) can coexist within the same Network Entity

and can share Network Portals (IP addresses and TCP ports). Other

more complex configurations are also possible. For detailed

descriptions of the components of these diagrams, see Section

4.4.1.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 69]

 +-----------------------------------+

 | Network Entity (iSCSI Client) |

 | |

 | +-------------+ |

 | | iSCSI Node | |

 | | (Initiator) | |

 | +-------------+ |

 | | | |

 | +--------------+ +--------------+ |

 | |Network Portal| |Network Portal| |

 | | 192.0.2.4 | | 192.0.2.5 | |

 +-+--------------+-+--------------+-+

 | |

 | IP Networks |

 | |

 +-+--------------+-+--------------+-+

 | |Network Portal| |Network Portal| |

 | |198.51.100.21 | |198.51.100.3 | |

 | | TCP Port 3260| | TCP Port 3260| |

 | +--------------+ +--------------+ |

 | | | |

 | ----------------- |

 | | | |

 | +-------------+ +--------------+ |

 | | iSCSI Node | | iSCSI Node | |

 | | (Target) | | (Target) | |

 | +-------------+ +--------------+ |

 | |

 | Network Entity (iSCSI Server) |

 +-----------------------------------+

4.4.1. iSCSI Architecture Model

This Section describes the part of the iSCSI architecture model

that has the most bearing on the relationship between iSCSI and

the SCSI Architecture Model.

- Network Entity - represents a device or gateway that is

accessible from the IP network. A Network Entity must have

one or more Network Portals (see a following item), each of

which can be used by some iSCSI Nodes (see the following

item) contained in that Network Entity to gain access to the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 70]

IP network.

- iSCSI Node - represents a single iSCSI initiator or iSCSI

target or an instance of each. There are one or more iSCSI

Nodes within a Network Entity. The iSCSI Node is accessible

via one or more Network Portals (see item d). An iSCSI Node

is identified by its iSCSI Name (see Section 4.2.7 and

Section 13). The separation of the iSCSI Name from the

addresses used by and for the iSCSI node allows multiple

iSCSI nodes to use the same addresses, and the same iSCSI

node to use multiple addresses.

- An alias string may also be associated with an iSCSI Node.

The alias allows an organization to associate a user

friendly string with the iSCSI Name. However, the alias

string is not a substitute for the iSCSI Name.

- Network Portal - a component of a Network Entity that has a

TCP/IP network address and that may be used by an iSCSI Node

within that Network Entity for the connection(s) within one

of its iSCSI sessions. In an initiator, it is identified by

its IP address. In a target, it is identified by its IP

address and its listening TCP port.

- Portal Groups - iSCSI supports multiple connections within

the same session; some implementations will have the ability

to combine connections in a session across multiple Network

Portals. A Portal Group defines a set of Network Portals

within an iSCSI Node that collectively supports the

capability of coordinating a session with connections that

span these portals. Not all Network Portals within a Portal

Group need to participate in every session connected through

that Portal Group. One or more Portal Groups may provide

access to an iSCSI Node. Each Network Portal, as utilized by

a given iSCSI Node, belongs to exactly one portal group

within that node. Portal Groups are identified within an

iSCSI Node by a portal group tag, a simple unsigned-integer

between 0 and 65535 (see Section 13.3). All Network Portals

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 71]

with the same portal group tag in the context of a given

iSCSI Node are in the same Portal Group.

Both iSCSI Initiators and iSCSI Targets have portal groups,

though only the iSCSI Target Portal Groups are used directly

in the iSCSI protocol (e.g., in SendTargets). For references

to the Initiator Portal Groups, see Section 10.1.1.

- Portals within a Portal Group should support similar session

parameters, because they may participate in a common

session.

The following diagram shows an example of one such configuration

on a target and how a session that shares Network Portals within a

Portal Group may be established.

 ----------------------------IP Network---------------------

 | | |

 +----|---------------|-----+ +----|---------+

 | +---------+ +---------+ | | +---------+ |

 | | Network | | Network | | | | Network | |

 | | Portal | | Portal | | | | Portal | |

 | +--|------+ +---------+ | | +---------+ |

 | | | | | | |

 | | Portal | | | | Portal |

 | | Group 1 | | | | Group 2 |

 +--------------------------+ +--------------+

 | | |

+--------|---------------|--------------------|------------------+

| | | | |

| +----------------------------+ +----------------------------+|

| | iSCSI Session (Target side)| | iSCSI Session (Target side)||

| | | | ||

| | (TSIH = 56) | | (TSIH = 48) ||

| +----------------------------+ +----------------------------+|

| |

| iSCSI Target Node |

| (within Network Entity, not shown) |

+--+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 72]

4.4.2. SCSI Architecture Model

This Section describes the relationship between the SCSI

Architecture Model [SAM2] and constructs of the SCSI device, SCSI

port and I_T nexus, and the iSCSI constructs described in Section

4.4.1.

This relationship implies implementation requirements in order to

conform to the SAM2 model and other SCSI operational functions.

These requirements are detailed in Section 4.4.3.

The following list outlines mappings of SCSI architectural

elements to iSCSI.

a) SCSI Device - the SAM2 term for an entity that contains
one or more SCSI ports that are connected to a service

delivery subsystem and supports a SCSI application

protocol. For example, a SCSI Initiator Device contains

one or more SCSI Initiator Ports and zero or more

application clients. A SCSI Target Device contains one or

more SCSI Target Ports and one or more logical units. For

iSCSI, the SCSI Device is the component within an iSCSI

Node that provides the SCSI functionality. As such, there

can be one SCSI Device, at most, within an iSCSI Node.

Access to the SCSI Device can only be achieved in an

iSCSI normal operational session (see Section 4.3). The

SCSI Device Name is defined to be the iSCSI Name of the

node and MUST be used in the iSCSI protocol.

b) SCSI Port - the SAM2 term for an entity in a SCSI Device
that provides the SCSI functionality to interface with a

service delivery subsystem or transport. For iSCSI, the

definition of SCSI Initiator Port and SCSI Target Port

are different.

SCSI Initiator Port: This maps to one endpoint of an

iSCSI normal operational session (see Section 4.3). An

iSCSI normal operational session is negotiated through

the login process between an iSCSI initiator node and an

iSCSI target node. At successful completion of this

process, a SCSI Initiator Port is created within the SCSI

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 73]

Initiator Device. The SCSI Initiator Port Name and SCSI

Initiator Port Identifier are both defined to be the

iSCSI Initiator Name together with (a) a label that

identifies it as an initiator port name/identifier and

(b) the ISID portion of the session identifier.

SCSI Target Port: This maps to an iSCSI Target Portal

Group. The SCSI Target Port Name and the SCSI Target Port

Identifier are both defined to be the iSCSI Target Name

together with (a) a label that identifies it as a target

port name/identifier and (b) the portal group tag.

The SCSI Port Name MUST be used in iSCSI. When used in

SCSI parameter data, the SCSI port name MUST be encoded

as:

1. The iSCSI Name in UTF-8 format, followed by
2. a comma separator (1 byte), followed by
3. the ASCII character 'i' (for SCSI Initiator Port)

or the ASCII character 't' (for SCSI Target Port)

(1 byte), followed by

4. a comma separator (1 byte), followed by
5. a text encoding as a hex-constant (see Section 6.1)

of the ISID (for SCSI initiator port) or the

portal group tag (for SCSI target port) including

the initial 0X or 0x and the terminating null (14

bytes).

The ASCII character 'i' or 't' is the label that

identifies this port as either a SCSI Initiator

Port or a SCSI Target Port.

c) I_T nexus - a relationship between a SCSI Initiator Port
and a SCSI Target Port, according to [SAM2]. For iSCSI,

this relationship is a session, defined as a relationship

between an iSCSI Initiator's end of the session (SCSI

Initiator Port) and the iSCSI Target's Portal Group. The

I_T nexus can be identified by the conjunction of the

SCSI port names or by the iSCSI session identifier SSID.

iSCSI defines the I_T nexus identifier to be the tuple

(iSCSI Initiator Name + ",i,0x" + ISID in text format,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 74]

iSCSI Target Name + ",t,0x" + Portal Group Tag in text

format) - an upper case hex prefix "0X" may alternatively

be used in place of "0x".

NOTE: The I_T nexus identifier is not equal to the

session identifier (SSID).

4.4.3. Consequences of the Model

This Section describes implementation and behavioral requirements

that result from the mapping of SCSI constructs to the iSCSI

constructs defined above. Between a given SCSI initiator port and

a given SCSI target port, only one I_T nexus (session) can exist.

No more than one nexus relationship (parallel nexus) is allowed by

[SAM2]. Therefore, at any given time, only one session with the

same session identifier (SSID) can exist between a given iSCSI

initiator node and an iSCSI target node.

These assumptions lead to the following conclusions and

requirements:

ISID RULE: Between a given iSCSI Initiator and iSCSI Target Portal

Group (SCSI target port), there can only be one session with a

given value for ISID that identifies the SCSI initiator port. See

Section 11.12.5.

The structure of the ISID that contains a naming authority

component (see Section 11.12.5 and [RFC3721]) provides a mechanism

to facilitate compliance with the ISID rule. (See Section 10.1.1)

The iSCSI Initiator Node should manage the assignment of ISIDs

prior to session initiation. The "ISID RULE" does not preclude the

use of the same ISID from the same iSCSI Initiator with different

Target Portal Groups on the same iSCSI target or on other iSCSI

targets (see Section 10.1.1). Allowing this would be analogous to

a single SCSI Initiator Port having relationships (nexus) with

multiple SCSI target ports on the same SCSI target device or SCSI

target ports on other SCSI target devices. It is also possible to

have multiple sessions with different ISIDs to the same Target

Portal Group. Each such session would be considered to be with a

different initiator even when the sessions originate from the same

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 75]

initiator device. The same ISID may be used by a different iSCSI

initiator because it is the iSCSI Name together with the ISID that

identifies the SCSI Initiator Port.

NOTE: A consequence of the ISID RULE and the specification for the

I_T nexus identifier is that two nexus with the same identifier

should never exist at the same time.

TSIH RULE: The iSCSI Target selects a non-zero value for the TSIH

at session creation (when an initiator presents a 0 value at

Login). After being selected, the same TSIH value MUST be used

whenever initiator or target refers to the session and a TSIH is

required.

4.4.3.1. I_T Nexus State

Certain nexus relationships contain an explicit state (e.g.,

initiator-specific mode pages) that may need to be preserved by

the device server [SAM2] in a logical unit through changes or

failures in the iSCSI layer (e.g., session failures). In order for

that state to be restored, the iSCSI initiator should reestablish

its session (re-login) to the same Target Portal Group using the

previous ISID. That is, it should reinstate the session via iSCSI

session reinstatement (Section 6.3.5) or continue via session

continuation (Section 6.3.6). This is because the SCSI initiator

port identifier and the SCSI target port identifier (or relative

target port) form the datum that the SCSI logical unit device

server uses to identify the I_T nexus.

4.4.3.2. Reservations

There are two reservation management methods defined in the SCSI

standards, reserve/release reservations, based on the RESERVE and

RELEASE commands [SPC2], and persistent reservations, based on the

PERSISTENT RESERVE IN and PERSISTENT RESERVE OUT commands [SPC3].

Reserve/release reservations are obsolete [SPC3] and should not be

used; persistent reservations are suggested as an alternative, see

Annex B of [SPC4].

State for persistent reservations is required to persist through

changes and failures at the iSCSI layer that result in I_T nexus

failures, see [SPC3] for details and specific requirements.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 76]

In contrast, [SPC2] does not specify detailed persistence

requirements for reserve/release reservation state after an I_T

nexus failure. Nonetheless, when reserve/release reservations are

supported by an iSCSI target, the preferred implementation

approach is to preserve reserve/release reservation state for

iSCSI session reinstatement (see Section 6.3.5) or session

continuation (see Section 6.3.6).

Two additional caveats apply to reserve/release reservations:

- Retention of a failed session's reserve/release reservation

state by an iSCSI target, even after that failed iSCSI

session is not reinstated or continued, may require an

initiator to issue a reset (e.g., LOGICAL UNIT RESET, see

Section 11.5) in order to remove that reservation state.

- Reserve/release reservations may not behave as expected when

persistent reservations are also used on the same logical

unit; see the discussion of "Exceptions to SPC-2 RESERVE and

RELEASE behavior" in [SPC4].

4.5. iSCSI UML Model

This Section presents the application of the UML modeling concepts

discussed in Section 3 to the iSCSI and SCSI architecture model

discussed in Section 4.4.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 77]

 +----------------+

 | Network Entity |

 +----------------+

 @ 1 @ 1

 | |

+--------------------+ |

| |

| | 0..*

| +------------------+

| | iSCSI Node |

| +------------------+

| @ @

| | |

| +-----------+ =(a)= +-----------+

| | |

| | 0..1 | 0..1

| +------------------------+ +----------------------+

| | iSCSI Target Node | | iSCSI Initiator Node |

| +------------------------+ +----------------------+

| @ 1 @ 1

| +--------------+ |

| 1..* | | 1..*

| +-----------------------------+

| | Portal Group |

| +-----------------------------+

| O 1

| |

| | 1..*

| 1..* +------------------------+

+-------------------| Network Portal |

 +------------------------+

(a) Each instance of an iSCSI Node class MUST contain one iSCSI
Target Node instance or one iSCSI Initiator Node instance, or

both.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 78]

 +----------------+

 | Network Entity |

 +----------------+

 @ 1 @ 1

 | | +-------------------+

+------------------+ | | iSCSI Session |

| | +-------------------+

| | 0..* | SSID[1] |

| +--------------------+ | ISID[1] |

| | iSCSI Node | +-------------------+

| +--------------------+ @ 1

| | iSCSI Node Name[1] | |

| | Alias [0..1] | | 0..*

| +--------------------+ +------------------+

| | | | iSCSI Connection |

| +--------------------+ +------------------+

| @ 1 @ 1 | CID[1] |

| | | +------------------+

| +---------+ ==(b)== +---------+ 0..*|

| | 1 | 1 |

| +------------------------+ +------------------------+ |

| | iSCSI Target Node | | iSCSI Initiator Node | |

| +------------------------+ +------------------------+ |

| | iSCSI Target name [1] | |iSCSI Initiator Name [1]| |

| +------------------------+ +------------------------+ |

| @ 1 @ 1 |

| | 1..* | 1..* |

| +--------------------------+ +------------------------+ |

| | Target Portal Group | | Initiator Portal Group | |

| +--------------------------+ +------------------------+ |

| |Target Portal Group Tag[1]| | Portal group tag[1] | |

| +--------------------------+ +------------------------+ |

| o 1 o 1 |

| +---------+ +---------+ |

| 1..* | | 1..* |

| +-------------------------+ |

| | Network Portal | |

| +-------------------------+ |

| 1..* | IP Address [1] | 1 |

+---------------| TCP Port [0..1] |<----------------+

 +-------------------------+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 79]

(b) Each instance of an iSCSI Node class MUST contain one iSCSI
Target Node instance or one iSCSI Initiator Node instance, or

both. However, in all scenarios, note that an iSCSI Node MUST

only have a single iSCSI Name. Note the related requirement in

Section 4.2.7.1.

4.6. Request/Response Summary

This Section lists and briefly describes all the iSCSI PDU types

(request and responses).

All iSCSI PDUs are built as a set of one or more header segments

(basic and auxiliary) and zero or one data segments. The header

group and the data segment may each be followed by a CRC (digest)

(see [CRC]).

The basic header segment has a fixed length of 48 bytes.

4.6.1. Request/Response Types Carrying SCSI Payload

4.6.1.1. SCSI-Command

This request carries the SCSI CDB and all the other SCSI execute

command procedure call (see [SAM2]) IN arguments such as task

attributes, Expected Data Transfer Length for one or both transfer

directions (the latter for bidirectional commands), and Task Tag

(as part of the I_T_L_x nexus). The I_T_L nexus is derived by the

initiator and target from the LUN field in the request and the I_T

nexus is implicit in the session identification.

In addition, the SCSI-command PDU carries information required for

the proper operation of the iSCSI protocol - the command sequence

number (CmdSN) and the expected status number (ExpStatSN) on the

connection it is issued.

All or part of the SCSI output (write) data associated with the

SCSI command may be sent as part of the SCSI-Command PDU as a data

segment.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 80]

4.6.1.2. SCSI-Response

The SCSI-Response carries all the SCSI execute-command procedure

call (see [SAM2]) OUT arguments and the SCSI execute-command

procedure call return value.

The SCSI-Response contains the residual counts from the operation,

if any, an indication of whether the counts represent an overflow

or an underflow, and the SCSI status if the status is valid or a

response code (a non-zero return value for the execute-command

procedure call) if the status is not valid.

For a valid status that indicates that the command has been

processed, but resulted in an exception (e.g., a SCSI CHECK

CONDITION), the PDU data segment contains the associated sense

data. The use of Autosense ([SAM2]) is REQUIRED by iSCSI.

Some data segment content may also be associated (in the data

segment) with a non-zero response code.

In addition, the SCSI-Response PDU carries information required

for the proper operation of the iSCSI protocol:

- The number of Data-In PDUs that a target has sent (to enable

the initiator to check that all have arrived).

- StatSN - the Status Sequence Number on this connection.

- ExpCmdSN - the next Expected Command Sequence Number at the

target.

- MaxCmdSN - the maximum CmdSN acceptable at the target from

this initiator.

4.6.1.3. Task Management Function Request

The Task Management function request provides an initiator with a

way to explicitly control the execution of one or more SCSI Tasks

or iSCSI functions. The PDU carries a function identifier (which

task management function to perform) and enough information to

unequivocally identify the task or task-set on which to perform

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 81]

the action, even if the task(s) to act upon has not yet arrived or

has been discarded due to an error.

The referenced tag identifies an individual task if the function

refers to an individual task.

The I_T_L nexus identifies task sets. In iSCSI the I_T_L nexus is

identified by the LUN and the session identification (the session

identifies an I_T nexus).

For task sets, the CmdSN of the Task Management function request

helps identify the tasks upon which to act, namely all tasks

associated with a LUN and having a CmdSN preceding the Task

Management function request CmdSN.

For a Task Management function, the coordination between responses

to the tasks affected and the Task Management function response is

done by the target.

4.6.1.4. Task Management Function Response

The Task Management function response carries an indication of

function completion for a Task Management function request

including how it completed (response and qualifier) and additional

information for failure responses.

After the Task Management response indicates Task Management

function completion, the initiator will not receive any additional

responses from the affected tasks.

4.6.1.5. SCSI Data-out and SCSI Data-in

SCSI Data-out and SCSI Data-in are the main vehicles by which SCSI

data payload is carried between initiator and target. Data payload

is associated with a specific SCSI command through the Initiator

Task Tag. For target convenience, outgoing solicited data also

carries a Target Transfer Tag (copied from R2T) and the LUN. Each

PDU contains the payload length and the data offset relative to

the buffer address contained in the SCSI execute command procedure

call.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 82]

In each direction, the data transfer is split into "sequences". An

end-of-sequence is indicated by the F bit.

An outgoing sequence is either unsolicited (only the first

sequence can be unsolicited) or consists of all the Data-Out PDUs

sent in response to an R2T.

Input sequences enable the switching of direction for

bidirectional commands as required.

For input, the target may request positive acknowledgement of

input data. This is limited to sessions that support error

recovery and is implemented through the A bit in the SCSI Data-in

PDU header.

Data-in and Data-out PDUs also carry the DataSN to enable the

initiator and target to detect missing PDUs (discarded due to an

error).

In addition, StatSN is carried by the Data-In PDUs.

To enable a SCSI command to be processed while involving a minimum

number of messages, the last SCSI Data-in PDU passed for a command

may also contain the status if the status indicates termination

with no exceptions (no sense or response involved).

4.6.1.6. Ready To Transfer (R2T)

R2T is the mechanism by which the SCSI target "requests" the

initiator for output data. R2T specifies to the initiator the

offset of the requested data relative to the buffer address from

the execute command procedure call and the length of the solicited

data.

To help the SCSI target associate the resulting Data-out with an

R2T, the R2T carries a Target Transfer Tag that will be copied by

the initiator in the solicited SCSI Data-out PDUs. There are no

protocol specific requirements with regard to the value of these

tags, but it is assumed that together with the LUN, they will

enable the target to associate data with an R2T.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 83]

R2T also carries information required for proper operation of the

iSCSI protocol, such as:

- R2TSN (to enable an initiator to detect a missing R2T)

- StatSN

- ExpCmdSN

- MaxCmdSN

4.6.2. Requests/Responses carrying SCSI and iSCSI Payload

4.6.2.1. Asynchronous Message

Asynchronous Messages are used to carry SCSI asynchronous events

(AEN) and iSCSI asynchronous messages.

When carrying an AEN, the event details are reported as sense data

in the data segment.

4.6.3. Requests/Responses Carrying iSCSI Only Payload

4.6.3.1. Text Request and Text Response

Text requests and responses are designed as a parameter

negotiation vehicle and as a vehicle for future extension.

In the data segment Text Requests/Responses carry text information

using a simple "key=value" syntax.

Text Request/Responses may form extended sequences using the same

Initiator Task Tag. The initiator uses the F (Final) flag bit in

the text request header to indicate its readiness to terminate a

sequence. The target uses the F (Final) flag bit in the text

response header to indicate its consent to sequence termination.

Text Request and Responses also use the Target Transfer Tag to

indicate continuation of an operation or a new beginning. A target

that wishes to continue an operation will set the Target Transfer

Tag in a Text Response to a value different from the default

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 84]

0xffffffff. An initiator willing to continue will copy this value

into the Target Transfer Tag of the next Text Request. If the

initiator wants to restart the current target negotiation (start

fresh) will set the Target Transfer Tag to 0xffffffff.

Although a complete exchange is always started by the initiator,

specific parameter negotiations may be initiated by the initiator

or target.

4.6.3.2. Login Request and Login Response

Login Requests and Responses are used exclusively during the Login

Phase of each connection to set up the session and connection

parameters. (The Login Phase consists of a sequence of login

requests and responses carrying the same Initiator Task Tag.)

A connection is identified by an arbitrarily selected connection-

ID (CID) that is unique within a session.

Similar to the Text Requests and Responses, Login

Requests/Responses carry key=value text information with a simple

syntax in the data segment.

The Login Phase proceeds through several stages (security

negotiation, operational parameter negotiation) that are selected

with two binary coded fields in the header — the "current stage"

(CSG) and the "next stage" (NSG) with the appearance of the latter

being signaled by the "transit" flag (T).

The first Login Phase of a session plays a special role, called

the leading login, which determines some header fields (e.g., the

version number, the maximum number of connections, and the session

identification).

The CmdSN initial value is also set by the leading login.

StatSN for each connection is initiated by the connection login.

A login request may indicate an implied logout (cleanup) of the

connection to be logged in (a connection restart) by using the

same Connection ID (CID) as an existing connection as well as the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 85]

same session identifying elements of the session to which the old

connection was associated.

4.6.3.3. Logout Request and Response

Logout Requests and Responses are used for the orderly closing of

connections for recovery or maintenance. The logout request may be

issued following a target prompt (through an asynchronous message)

or at an initiators initiative. When issued on the connection to

be logged out no other request may follow it.

The Logout response indicates that the connection or session

cleanup is completed and no other responses will arrive on the

connection (if received on the logging out connection). In

addition, the Logout Response indicates how long the target will

continue to hold resources for recovery (e.g., command execution

that continues on a new connection) in the Time2Retain field and

how long the initiator must wait before proceeding with recovery

in the Time2Wait field.

4.6.3.4. SNACK Request

With the SNACK Request, the initiator requests retransmission of

numbered-responses or data from the target. A single SNACK request

covers a contiguous set of missing items, called a run, of a given

type of items. The type is indicated in a type field in the PDU

header. The run is composed of an initial item (StatSN, DataSN,

R2TSN) and the number of missed Status, Data, or R2T PDUs. For

long data-in sequences, the target may request (at predefined

minimum intervals) a positive acknowledgement for the data sent. A

SNACK request with a type field that indicates ACK and the number

of Data-In PDUs acknowledged conveys this positive

acknowledgement.

4.6.3.5. Reject

Reject enables the target to report an iSCSI error condition

(e.g., protocol, unsupported option) that uses a Reason field in

the PDU header and includes the complete header of the bad PDU in

the Reject PDU data segment.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 86]

4.6.3.6. NOP-Out Request and NOP-In Response

This request/response pair may be used by an initiator and target

as a "ping" mechanism to verify that a connection/session is still

active and all of its components are operational. Such a ping may

be triggered by the initiator or target. The triggering party

indicates that it wants a reply by setting a value different from

the default 0xffffffff in the corresponding Initiator/Target

Transfer Tag.

NOP-In/NOP-Out may also be used "unidirectional" to convey to the

initiator/target command, status or data counter values when there

is no other "carrier" and there is a need to update the

initiator/target.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 87]

5. SCSI Mode Parameters for iSCSI

There are no iSCSI specific mode pages.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 88]

6. Login and Full Feature Phase Negotiation

iSCSI parameters are negotiated at session or connection

establishment by using Login Requests and Responses (see Section

4.2.4) and during Full Feature Phase (Section 4.2.5) by using Text

Requests and Responses. In both cases the mechanism used is an

exchange of iSCSI-text-key=value pairs. For brevity, iSCSI-text-

keys are called just keys in the rest of this document.

Keys are either declarative or require negotiation and the key

description indicates if the key is declarative or requires

negotiation.

For the declarative keys the declaring party sets a value for the

key. The key specification indicates if the key can be declared by

the initiator, target or both.

For the keys that require negotiation, one of the parties (the

proposing party) proposes a value or set of values by including

the key=value in the data part of a Login or Text Request or

Response. The other party (the accepting party) makes a selection

based on the value or list of values proposed and includes the

selected value in a key=value in the data part of the following

Login or Text Response or Request. For most of the keys, both the

initiator and target can be proposing parties.

The login process proceeds in two stages - the security

negotiation stage and the operational parameter negotiation stage.

Both stages are optional but at least one of them has to be

present to enable setting some mandatory parameters.

If present, the security negotiation stage precedes the

operational parameter negotiation stage.

Progression from stage to stage is controlled by the T

(Transition) bit in the Login Request/Response PDU header. Through

the T bit set to 1, the initiator indicates that it would like to

transition. The target agrees to the transition (and selects the

next stage) when ready. A field in the Login PDU header indicates

the current stage (CSG) and during transition, another field

indicates the next stage (NSG) proposed (initiator) and selected

(target).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 89]

The Text negotiation process is used to negotiate or declare

operational parameters. The negotiation process is controlled by

the F (final) bit in the PDU header. During text negotiations, the

F bit is used by the initiator to indicate that it is ready to

finish the negotiation and by the Target to acquiesce the end of

negotiation.

Since some key=value pairs may not fit entirely in a single PDU,

the C (continuation) bit is used (both in Login and Text) to

indicate that "more follows".

The text negotiation uses an additional mechanism by which a

target may deliver larger amounts of data to an enquiring

initiator. The target sets a Target Task Tag to be used as a

bookmark which when returned by the initiator, means "go on". If

reset to a "neutral value", it means "forget about the rest".

This Section details types of keys and values used, the syntax

rules for parameter formation, and the negotiation schemes to be

used with different types of parameters.

6.1. Text Format

The initiator and target send a set of key=value pairs encoded in

UTF-8 Unicode. All the text keys and text values specified in this

document are to be presented and interpreted in the case in which

they appear in this document. They are case sensitive.

The following character symbols are used in this document for text

items (the hexadecimal values represent Unicode code points):

(a-z, A-Z)) (0x61-0x7a, 0x41-0x5a) - letters

(0-9) (0x30-0x39) - digits

" " (0x20) - space

"." (0x2e) - dot

"-" (0x2d) - minus

"+" (0x2b) - plus

"@" (0x40) - commercial at

"_" (0x5f) - underscore

"=" (0x3d) - equal

":" (0x3a) - colon

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 90]

"/" (0x2f) - solidus or slash

"[" (0x5b) - left bracket

"]" (0x5d) - right bracket

null (0x00) - null separator

"," (0x2c) - comma

"~" (0x7e) - tilde

Key=value pairs may span PDU boundaries. An initiator or target

that sends partial key=value text within a PDU indicates that more

text follows by setting the C bit in the Text or Login Request or

Text or Login Response to 1. Data segments in a series of PDUs

that have the C bit set to 1 and end with a PDU that have the C

bit set to 0, or include a single PDU that has the C bit set to 0

have to be considered as forming a single logical-text-data-

segment (LTDS).

Every key=value pair, including the last or only pair in a LTDS,

MUST be followed by one null (0x00) delimiter.

A key-name is whatever precedes the first = in the key=value pair.

The term key is used frequently in this document in place of key-

name.

A value is whatever follows the first = in the key=value pair up

to the end of the key=value pair, but not including the null

delimiter.

The following definitions will be used in the rest of this

document:

- standard-label: A string of one or more characters that

consist of letters, digits, dot, minus, plus, commercial at,

or underscore. A standard-label MUST begin with a capital

letter and must not exceed 63 characters.

- key-name: A standard-label.

- text-value: A string of zero or more characters that consist

of letters, digits, dot, minus, plus, commercial at,

underscore, slash, left bracket, right bracket, or colon.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 91]

- iSCSI-name-value: A string of one or more characters that

consist of minus, dot, colon, or any character allowed by

the output of the iSCSI string-prep template as specified in

[RFC3722] (see also Section 4.2.7.2).

- iSCSI-local-name-value: A UTF-8 string; no null characters

are allowed in the string. This encoding is to be used for

localized (internationalized) aliases.

- boolean-value: The string "Yes" or "No".

- hex-constant: A hexadecimal constant encoded as a string

that starts with "0x" or "0X" followed by one or more digits

or the letters a, b, c, d, e, f, A, B, C, D, E, or F. Hex-

constants are used to encode numerical values or binary

strings. When used to encode numerical values, the excessive

use of leading 0 digits is discouraged. The string following

0X (or 0x) represents a base16 number that starts with the

most significant base16 digit, followed by all other digits

in decreasing order of significance and ending with the

least-significant base16 digit. When used to encode binary

strings, hexadecimal constants have an implicit byte-length

that includes four bits for every hexadecimal digit of the

constant, including leading zeroes. For example, a hex-

constant of n hexadecimal digits has a byte-length of (the

integer part of) (n+1)/2.

- decimal-constant: An unsigned decimal number with the digit

0 or a string of one or more digits that start with a non-

zero digit. Decimal-constants are used to encode numerical

values or binary strings. Decimal constants can only be used

to encode binary strings if the string length is explicitly

specified. There is no implicit length for decimal strings.

Decimal-constant MUST NOT be used for parameter values if

the values can be equal or greater than 2**64 (numerical) or

for binary strings that can be longer than 64 bits.

- base64-constant: base64 constant encoded as a string that

starts with "0b" or "0B" followed by 1 or more digits or

letters or plus or slash or equal. The encoding is done

according to [RFC4648].

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 92]

- numerical-value: An unsigned integer always less than 2**64

encoded as a decimal-constant or a hex-constant. Unsigned

integer arithmetic applies to numerical-values.

- large-numerical-value: An unsigned integer that can be

larger than or equal to 2**64 encoded as a hex constant, or

base64-constant. Unsigned integer arithmetic applies to

large-numeric-values.

- numeric-range: Two numerical-values separated by a tilde

where the value to the right of tilde must not be lower than

the value to the left.

- regular-binary-value: A binary string not longer than 64

bits encoded as a decimal constant, hex constant, or base64-

constant. The length of the string is either specified by

the key definition or is the implicit byte-length of the

encoded string.

- large-binary-value: A binary string longer than 64 bits

encoded as a hex-constant or base64-constant. The length of

the string is either specified by the key definition or is

the implicit byte-length of the encoded string.

- binary-value: A regular-binary-value or a large-binary-

value. Operations on binary values are key specific.

- simple-value: Text-value, iSCSI-name-value, boolean-value,

numeric-value, a numeric-range, or a binary-value.

- list-of-values: A sequence of text-values separated by a

comma.

If not otherwise specified, the maximum length of a simple-value

(not its encoded representation) is 255 bytes not including the

delimiter (comma or zero byte).

Any iSCSI target or initiator MUST support receiving at least 8192

bytes of key=value data in a negotiation sequence. When proposing

or accepting authentication methods that explicitly require

support for very long authentication items, the initiator and

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 93]

target MUST support receiving of at least 64 kilobytes of

key=value data.

6.2. Text Mode Negotiation

During login, and thereafter, some session or connection

parameters are either declared or negotiated through an exchange

of textual information.

The initiator starts the negotiation and/or declaration through a

Text or Login request and indicates when it is ready for

completion (by setting the F bit to 1 and keeping it to 1 in a

Text Request or the T bit in the Login Request). As negotiation

text may span PDU boundaries, a Text or Login Request or Text or

Login Response PDU that have the C bit set to 1 MUST NOT have the

F/T bit set to 1.

A target receiving a Text or Login Request with the C bit set to 1

MUST answer with a Text or Login Response with no data segment

(DataSegmentLength 0). An initiator receiving a Text or Login

Response with the C bit set to 1 MUST answer with a Text or Login

Request with no data segment (DataSegmentLength 0).

A target or initiator SHOULD NOT use a Text or Login Response or

Text or Login Request with no data segment (DataSegmentLength 0)

unless explicitly required by a general or a key-specific

negotiation rule.

There MUST NOT be more than one outstanding Text Request, or Text

Response PDU on an iSCSI connection. An outstanding PDU in this

context is one that has not been acknowledged by the remote iSCSI

side.

The format of a declaration is:

Declarer-> <key>=<valuex>

The general format of text negotiation is:

Proposer-> <key>=<valuex>

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 94]

Acceptor-> <key>={<valuey>|NotUnderstood|Irrelevant|Reject}

Thus a declaration is a one-way textual exchange (unless the key

is not understood by the receiver) while a negotiation is a two-

way exchange.

The proposer or declarer can either be the initiator or the

target, and the acceptor can either be the target or initiator,

respectively. Targets are not limited to respond to key=value

pairs as proposed by the initiator. The target may propose

key=value pairs of its own.

All negotiations are explicit (i.e., the result MUST only be based

on newly exchanged or declared values). There are no implicit

proposals. If a proposal is not made, then a reply cannot be

expected. Conservative design also requires that default values

should not be relied upon when use of some other value has serious

consequences.

The value proposed or declared can be a numerical-value, a

numerical-range defined by lower and upper value with both

integers separated by tilde, a binary value, a text-value, an

iSCSI-name-value, an iSCSI-local-name-value, a boolean-value (Yes

or No), or a list of comma separated text-values. A range, a

large-numerical-value, an iSCSI-name-value and an iSCSI-local-

name-value MAY ONLY be used if it is explicitly allowed. An

accepted value can be a numerical-value, a large-numerical-value,

a text-value, or a boolean-value.

If a specific key is not relevant for the current negotiation, the

acceptor may answer with the constant "Irrelevant" for all types

of negotiation. However the negotiation is not considered as

failed if the answer is "Irrelevant". The "Irrelevant" answer is

meant for those cases in which several keys are presented by a

proposing party but the selection made by the acceptor for one of

the keys makes other keys irrelevant. The following example

illustrates the use of "Irrelevant":

I->T InitialR2T=No,ImmediateData=Yes,FirstBurstLength=4192

T->I InitialR2T=Yes,ImmediateData=No,FirstBurstLength=Irrelevant

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 95]

I->T X-rdname-vkey1=(bla,alb,None), X-rdname-vkey2=(bla,alb)

T->I X-rdname-vkey1=None, X-rdname-vkey2=Irrelevant

Any key not understood by the acceptor may be ignored by the

acceptor without affecting the basic function. However, the answer

for a key not understood MUST be key=NotUnderstood. Note that

NotUnderstood is a valid answer for both declarative and

negotiated keys. The general iSCSI philosophy is that

comprehension precedes processing for any iSCSI key. A proposer

of an iSCSI key, negotiated or declarative, in a text key exchange

MUST thus be able to properly handle a NotUnderstood response.

The proper way to handle a NotUnderstood response depends on where

the key is specified and whether the key is declarative vs.

negotiated. An iSCSI implementation MUST comprehend all text keys

defined in this document. Returning a NotUnderstood response on

any of these text keys therefore MUST be considered a protocol

error and handled accordingly. For all other "later" keys, i.e.

text keys defined in later specifications, a NotUnderstood answer

concludes the negotiation for a negotiated key whereas for a

declarative key, a NotUnderstood answer simply informs the

declarer of a lack of comprehension by the receiver.

In either case, a NotUnderstood answer always requires that the

protocol behavior associated with that key not be used within the

scope of the key (connection/session) by either side.

The constants "None", "Reject", "Irrelevant", and "NotUnderstood"

are reserved and MUST ONLY be used as described here. Violation of

this rule is a protocol error (in particular the use of "Reject",

"Irrelevant", and "NotUnderstood" as proposed values).

Reject or Irrelevant are legitimate negotiation options where

allowed but their excessive use is discouraged. A negotiation is

considered complete when the acceptor has sent the key value pair

even if the value is "Reject", "Irrelevant", or "NotUnderstood”.

Sending the key again would be a re-negotiation and is forbidden

for many keys.

If the acceptor sends "Reject" as an answer the negotiated key is

left at its current value (or default if no value was set). If the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 96]

current value is not acceptable to the proposer on the connection

or to the session it is sent, the proposer MAY choose to terminate

the connection or session.

All keys in this document MUST be supported by iSCSI initiators

and targets when used as specified here. If used as specified,

these keys MUST NOT be answered with NotUnderstood.

Implementers may introduce new private keys by prefixing them with

X- followed by their (reversed) domain name, or with new public

keys registered with IANA. For example, the entity owning the

domain example.com can issue:

X-com.example.bar.foo.do_something=3

Each new public key in the course of standardization MUST define

the acceptable responses to the key, including NotUnderstood as

appropriate. Unlike [RFC3720], note that this document prohibits

the X# prefix for new public keys. Based on iSCSI implementation

experience, we know that there is no longer a need for a standard

name prefix for keys that allow NotUnderstood response. Note that

NotUnderstood will generally have to be allowed for new public

keys for backwards compatibility, as well as for private X- keys.

Thus the name prefix "X#" in new public key names does not carry

any significance. New public key names MUST NOT begin with "X#"

prefix to avoid confusion.

Implementers MAY also introduce new values, but ONLY for new keys

or authentication methods (see Section 12), or digests (see

Section 13.1).

Whenever parameter action or acceptance are dependent on other

parameters, the dependency rules and parameter sequence must be

specified with the parameters.

In the Login Phase (see Section 6.3), every stage is a separate

negotiation. In the FullFeaturePhase, a Text Request Response

sequence is a negotiation. Negotiations MUST be handled as atomic

operations. For example, all negotiated values go into effect

after the negotiation concludes in agreement or are ignored if the

negotiation fails.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 97]

Some parameters may be subject to integrity rules (e.g.,

parameter-x must not exceed parameter-y or parameter-u not 1

implies parameter-v be Yes). Whenever required, integrity rules

are specified with the keys. Checking for compliance with the

integrity rule must only be performed after all the parameters are

available (the existent and the newly negotiated). An iSCSI target

MUST perform integrity checking before the new parameters take

effect. An initiator MAY perform integrity checking.

An iSCSI initiator or target MAY terminate a negotiation that does

not terminate within an implementation-specific reasonable time or

number of exchanges, but SHOULD allow at least six (6) exchanges.

6.2.1. List negotiations

In list negotiation, the originator sends a list of values (which

may include "None") in its order of preference.

The responding party MUST respond with the same key and the first

value that it supports (and is allowed to use for the specific

originator) selected from the originator list.

The constant "None" MUST always be used to indicate a missing

function. However, "None" is only a valid selection if it is

explicitly proposed. When "None" is proposed as a selection item

in a negotiation for a key, it indicates to the responder that not

supporting any functionality related to that key is legal, and if

"None" is the negotiation result for such a key, it means that

key-specific semantics are not operational for the negotiation

scope (connection or session) of that key.

If an acceptor does not understand any particular value in a list,

it MUST ignore it. If an acceptor does not support, does not

understand, or is not allowed to use any of the proposed options

with a specific originator, it may use the constant "Reject" or

terminate the negotiation. The selection of a value not proposed

MUST be handled by the originator as a protocol error.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 98]

6.2.2. Simple-value Negotiations

For simple-value negotiations, the accepting party MUST answer

with the same key. The value it selects becomes the negotiation

result.

Proposing a value not admissible (e.g., not within the specified

bounds) MAY be answered with the constant "Reject", otherwise the

acceptor MUST select an admissible value.

The selection, by the acceptor, of a value not admissible under

the selection rules is considered a protocol error. The selection

rules are key-specific.

For a numerical range the value selected MUST be an integer within

the proposed range or "Reject" (if the range is unacceptable).

For Boolean negotiations (i.e., keys taking the values Yes or No),

the accepting party MUST answer with the same key and the result

of the negotiation when the received value does not determine that

result by itself. The last value transmitted becomes the

negotiation result. The rules for selecting the value to answer

with are expressed as Boolean functions of the value received, and

the value that the accepting party would have selected if given a

choice.

Specifically, the two cases in which answers are OPTIONAL are:

- The Boolean function is "AND" and the value "No" is

received. The outcome of the negotiation is "No".

- The Boolean function is "OR" and the value "Yes" is

received. The outcome of the negotiation is "Yes".

Responses are REQUIRED in all other cases, and the value chosen

and sent by the acceptor becomes the outcome of the negotiation.

6.3. Login Phase

The Login Phase establishes an iSCSI connection between an

initiator and a target; it creates also a new session or

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 99]

associates the connection to an existing session. The Login Phase

sets the iSCSI protocol parameters, security parameters, and

authenticates the initiator and target to each other.

The Login Phase is only implemented via Login request and

responses. The whole Login Phase is considered as a single task

and has a single Initiator Task Tag (similar to the linked SCSI

commands).

There MUST NOT be more than one outstanding Login Request, or

Login Response on an iSCSI connection. An outstanding PDU in this

context is one that has not been acknowledged by the remote iSCSI

side.

The default MaxRecvDataSegmentLength is used during Login.

The Login Phase sequence of requests and responses proceeds as

follows:

- Login initial request

- Login partial response (optional)

- More Login requests and responses (optional)

- Login Final-Response (mandatory)

The initial login request of any connection MUST include the

InitiatorName key=value pair. The initial login request of the

first connection of a session MAY also include the SessionType

key=value pair. For any connection within a session whose type is

not "Discovery", the first login request MUST also include the

TargetName key=value pair.

The Login Final-response accepts or rejects the Login request.

The Login Phase MAY include a SecurityNegotiation stage and a

LoginOperationalNegotiation stage and MUST include at least one of

them, but the included stage MAY be empty except for the mandatory

names.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 100]

The login requests and responses contain a field (CSG) that

indicates the current negotiation stage (SecurityNegotiation or

LoginOperationalNegotiation). If both stages are used, the

SecurityNegotiation MUST precede the LoginOperationalNegotiation.

Some operational parameters can be negotiated outside the login

through Text requests and responses.

Authentication-related security keys (Section 12) MUST be

completely negotiated within the Login Phase. The use of

underlying IPsec security is specified in Section 9.3, in

[RFC3723], and in [IPSEC-IPS}. iSCSI support for security within

the protocol only consists of authentication in the Login Phase.

In some environments, a target or an initiator is not interested

in authenticating its counterpart. It is possible to bypass

authentication through the Login request and response.

The initiator and target MAY want to negotiate iSCSI

authentication parameters. Once this negotiation is completed, the

channel is considered secure.

Most of the negotiation keys are only allowed in a specific stage.

The SecurityNegotiation keys appear in Section 12 and the

LoginOperationalNegotiation keys appear in Section 13. Only a

limited set of keys (marked as Any-Stage in Section 13) may be

used in any of the two stages.

Any given Login request or response belongs to a specific stage;

this determines the negotiation keys allowed with the request or

response. It is considered to be a protocol error to send a key

not allowed in the current stage.

Stage transition is performed through a command exchange

(request/response) that carries the T bit and the same CSG code.

During this exchange, the next stage is selected by the target

through the "next stage" code (NSG). The selected NSG MUST NOT

exceed the value stated by the initiator. The initiator can

request a transition whenever it is ready, but a target can only

respond with a transition after one is proposed by the initiator.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 101]

In a negotiation sequence, the T bit settings in one pair of login

request-responses have no bearing on the T bit settings of the

next pair. An initiator that has a T bit set to 1 in one pair and

is answered with a T bit setting of 0 may issue the next request

with T bit set to 0.

When a transition is requested by the initiator and acknowledged

by the target, both the initiator and target switch to the

selected stage.

Targets MUST NOT submit parameters that require an additional

initiator login request in a login response with the T bit set to

1.

Stage transitions during login (including entering and exit) are

only possible as outlined in the following table:

+---+

|From To -> | Security | Operational | FullFeature |

| | | | | |

| V | | | |

+---+

| (start) | yes | yes | no |

+---+

| Security | no | yes | yes |

+---+

| Operational | no | no | yes |

+---+

The Login Final-Response that accepts a Login Request can only

come as a response to a Login request with the T bit set to 1, and

both the request and response MUST indicate FullFeaturePhase as

the next phase via the NSG field.

Neither the initiator nor the target should attempt to declare or

negotiate a parameter more than once during login except for

responses to specific keys that explicitly allow repeated key

declarations (e.g., TargetAddress). An attempt to

renegotiate/redeclare parameters not specifically allowed MUST be

detected by the initiator and target. If such an attempt is

detected by the target, the target MUST respond with Login reject

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 102]

(initiator error); if detected by the initiator, the initiator

MUST drop the connection.

6.3.1. Login Phase Start

The Login Phase starts with a login request from the initiator to

the target. The initial login request includes:

-Protocol version supported by the initiator.

-iSCSI Initiator Name and iSCSI Target Name

-ISID, TSIH, and connection Ids

-Negotiation stage that the initiator is ready to enter.

A login may create a new session or it may add a connection to an

existing session. Between a given iSCSI Initiator Node (selected

only by an InitiatorName) and a given iSCSI target defined by an

iSCSI TargetName and a Target Portal Group Tag, the login results

are defined by the following table:

+--+

|ISID | TSIH | CID | Target action |

+--+

|new | non-zero | any | fail the login |

| | | | ("session does not exist") |

+--+

|new | zero | any | instantiate a new session |

+--+

|existing| zero | any | do session reinstatement |

| | | | (see Section 6.3.5) |

+--+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 103]

|existing| non-zero | new | add a new connection to |

| | existing | | the session |

+--+

|existing| non-zero |existing| do connection reinstatement|

| | existing | | (see Section 7.1.4.3) |

+--+

|existing| non-zero | any | fail the login |

| | new | | ("session does not exist") |

+--+

Determination of "existing" or "new" are made by the target.

Optionally, the login request may include:

-Security parameters

OR

-iSCSI operational parameters

AND/OR

-The next negotiation stage that the initiator is ready to

enter.

The target can answer the login in the following ways:

-Login Response with Login reject. This is an immediate

rejection from the target that causes the connection to

terminate and the session to terminate if this is the first

(or only) connection of a new session. The T bit and the CSG

and NSG fields are reserved.

-Login Response with Login accept as a final response (T bit

set to 1 and the NSG in both request and response are set to

FullFeaturePhase). The response includes the protocol

version supported by the target and the session ID, and may

include iSCSI operational or security parameters (that

depend on the current stage).

-Login Response with Login Accept as a partial response (NSG

not set to FullFeaturePhase in both request and response)

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 104]

that indicates the start of a negotiation sequence. The

response includes the protocol version supported by the

target and either security or iSCSI parameters (when no

security mechanism is chosen) supported by the target.

If the initiator decides to forego the SecurityNegotiation stage,

it issues the Login with the CSG set to

LoginOperationalNegotiation and the target may reply with a Login

Response that indicates that it is unwilling to accept the

connection (see Section 11.13) without SecurityNegotiation and

will terminate the connection with a response of Authentication

failure (see Section 11.13.5).

If the initiator is willing to negotiate iSCSI security, but is

unwilling to make the initial parameter proposal and may accept a

connection without iSCSI security, it issues the Login with the T

bit set to 1, the CSG set to SecurityNegotiation, and NSG set to

LoginOperationalNegotiation. If the target is also ready to skip

security, the login response only contains the

TargetPortalGroupTag key (see Section 13.9), the T bit set to 1,

the CSG set to SecurityNegotiation, and NSG set to

LoginOperationalNegotiation.

An initiator that chooses to operate without iSCSI security and

with all the operational parameters taking the default values

issues the Login with the T bit set to 1, the CSG set to

LoginOperationalNegotiation, and NSG set to FullFeaturePhase. If

the target is also ready to forego security and can finish its

LoginOperationalNegotiation, the Login response has T bit set to

1, the CSG set to LoginOperationalNegotiation, and NSG set to

FullFeaturePhase in the next stage.

During the Login Phase the iSCSI target MUST return the

TargetPortalGroupTag key with the first Login Response PDU with

which it is allowed to do so (i.e., the first Login Response

issued after the first Login Request with the C bit set to 0) for

all session types. The TargetPortalGroupTag key value indicates

the iSCSI portal group servicing the Login Request PDU. If the

reconfiguration of iSCSI portal groups is a concern in a given

environment, the iSCSI initiator should use this key to ascertain

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 105]

that it had indeed initiated the Login Phase with the intended

target portal group.

6.3.2. iSCSI Security Negotiation

The security exchange sets the security mechanism and

authenticates the initiator user and the target to each other. The

exchange proceeds according to the authentication method chosen in

the negotiation phase and is conducted using the login requests’

and responses’ key=value parameters.

An initiator directed negotiation proceeds as follows:

-The initiator sends a login request with an ordered list of

the options it supports (authentication algorithm). The

options are listed in the initiator's order of preference.

The initiator MAY also send private or public extension

options.

-The target MUST reply with the first option in the list it

supports and is allowed to use for the specific initiator

unless it does not support any in which case it MUST answer

with "Reject" (see Section 6.2). The parameters are encoded

in UTF8 as key=value. For security parameters, see Section

12.

-When the initiator considers that it is ready to conclude the

SecurityNegotiation stage, it sets the T bit to 1 and the

NSG to what it would like the next stage to be. The target

will then set the T bit to 1 and set NSG to the next stage

in the Login response when it finishes sending its security

keys. The next stage selected will be the one the target

selected. If the next stage is FullFeaturePhase, the target

MUST respond with a Login Response with the TSIH value.

If the security negotiation fails at the target, then the target

MUST send the appropriate Login Response PDU. If the security

negotiation fails at the initiator, the initiator SHOULD close the

connection.

It should be noted that the negotiation might also be directed by

the target if the initiator does support security, but is not

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 106]

ready to direct the negotiation (propose options) – see Appendix B

for an example.

6.3.3. Operational Parameter Negotiation During the Login Phase

Operational parameter negotiation during the login MAY be done:

- Starting with the first Login request if the initiator does

not propose any security/ integrity option.

- Starting immediately after the security negotiation if the

initiator and target perform such a negotiation.

Operational parameter negotiation MAY involve several Login

request-response exchanges started and terminated by the

initiator. The initiator MUST indicate its intent to terminate the

negotiation by setting the T bit to 1; the target sets the T bit

to 1 on the last response.

Even when the initiator indicates its intent to switch stage by

setting the T bit to 1 in a Login request, the target MAY respond

with a Login response with the T bit set to 0. In that case, the

initiator SHOULD continue to set the T bit to 1 in subsequent

Login requests (even empty) that it sends, until target sends a

Login response with the T bit set to 1 or sends a key that

requires initiator to set the T bit to 0.

Some session specific parameters can only be specified during the

Login Phase of the first connection of a session (i.e., begun by a

login request that contains a zero-valued TSIH) - the leading

Login Phase (e.g., the maximum number of connections that can be

used for this session).

A session is operational once it has at least one connection in

FullFeaturePhase. New or replacement connections can only be added

to a session after the session is operational.

For operational parameters, see Section 13.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 107]

6.3.4. Connection Reinstatement

Connection reinstatement is the process of an initiator logging in

with a ISID-TSIH-CID combination that is possibly active from the

target’s perspective, which causes the implicit logging out of the

connection corresponding to the CID and reinstating a new Full

Feature Phase iSCSI connection in its place (with the same CID).

Thus, the TSIH in the Login Request PDU MUST be non-zero and CID

does not change during a connection reinstatement. The Login

request performs the logout function of the old connection if an

explicit logout was not performed earlier. In sessions with a

single connection, this may imply the opening of a second

connection with the sole purpose of cleaning up the first. Targets

MUST support opening a second connection even when they do not

support multiple connections in Full Feature Phase if

ErrorRecoveryLevel is 2 and SHOULD support opening a second

connection if ErrorRecoveryLevel is less than 2.

If the operational ErrorRecoveryLevel is 2, connection

reinstatement enables future task reassignment. If the operational

ErrorRecoveryLevel is less than 2, connection reinstatement is the

replacement of the old CID without enabling task reassignment. In

this case, all the tasks that were active on the old CID must be

immediately terminated without further notice to the initiator.

The initiator connection state MUST be CLEANUP_WAIT (Section

8.1.3) when the initiator attempts a connection reinstatement.

In practical terms, in addition to the implicit logout of the old

connection, reinstatement is equivalent to a new connection login.

6.3.5. Session Reinstatement, Closure, and Timeout

Session reinstatement is the process of the initiator logging in

with an ISID that is possibly active from the target’s

perspective. Thus implicitly logging out the session that

corresponds to the ISID and reinstating a new iSCSI session in its

place (with the same ISID). Therefore, the TSIH in the Login PDU

MUST be zero to signal session reinstatement. Session

reinstatement causes all the tasks that were active on the old

session to be immediately terminated by the target without further

notice to the initiator.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 108]

The initiator session state MUST be FAILED (Section 8.3) when the

initiator attempts a session reinstatement.

Session closure is an event defined to be one of the following:

- A successful "session close" logout.

- A successful "connection close" logout for the last Full

Feature Phase connection when no other connection in the

session is waiting for cleanup (Section 8.2) and no tasks in

the session are waiting for reassignment.

Session timeout is an event defined to occur when the last

connection state timeout expires and no tasks are waiting for

reassignment. This takes the session to the FREE state (N6

transition in the session state diagram).

6.3.5.1. Loss of Nexus Notification

The iSCSI layer provides the SCSI layer with the "I_T nexus loss"

notification when any one of the following events happens:

Successful completion of session reinstatement.

Session closure event.

Session timeout event.

Certain SCSI object clearing actions may result due to the

notification in the SCSI end nodes, as documented in Appendix E.

6.3.6. Session Continuation and Failure

Session continuation is the process by which the state of a

preexisting session continues to be used by connection

reinstatement (Section 6.3.4), or by adding a connection with a

new CID. Either of these actions associates the new transport

connection with the session state.

Session failure is an event where the last Full Feature Phase

connection reaches the CLEANUP_WAIT state (Section 8.2), or

completes a successful recovery logout thus causing all active

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 109]

tasks (that are formerly allegiant to the connection) to start

waiting for task reassignment.

6.4. Operational Parameter Negotiation Outside the Login Phase

Some operational parameters MAY be negotiated outside (after) the

Login Phase.

Parameter negotiation in Full Feature Phase is done through Text

requests and responses. Operational parameter negotiation MAY

involve several Text request-response exchanges, which the

initiator always starts, terminates, and uses the same Initiator

Task Tag. The initiator MUST indicate its intent to finish the

negotiation by setting the F bit to 1; the target sets the F bit

to 1 on the last response.

If the target responds to a Text request with the F bit set to 1

with a Text response with the F bit set to 0, the initiator should

keep sending the Text request (even empty) with the F bit set to

1, while it still wants to finish the negotiation, until it

receives the Text response with the F bit set to 1. Responding to

a Text request with the F bit set to 1 with an empty (no key=value

pairs) response with the F bit set to 0 is discouraged.

Even when the initiator indicates its intent to finish the

negotiation by setting the F bit to 1 in a Text request, the

target MAY respond with a Text response with the F bit set to 0.

In that case, the initiator SHOULD continue to set the F bit to 1

in subsequent Text requests (even empty) that it sends, until

target sends the final Text response with the F bit set to 1. Note

that in the same case of Text request with the F bit set to 1,

target SHOULD NOT respond with an empty (no key=value pairs) Text

response with the F bit set to 0, because such a response may

cause the initiator to abandon negotiation.

Targets MUST NOT submit parameters that require an additional

initiator Text request in a Text response with the F bit set to 1.

In a negotiation sequence, the F bit settings in one pair of Text

request-responses have no bearing on the F bit settings of the

next pair. An initiator that has the F bit set to 1 in a request

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 110]

and is being answered with an F bit setting of 0 may issue the

next request with the F bit set to 0.

Whenever the target responds with the F bit set to 0, it MUST set

the Target Transfer Tag to a value other than the default

0xffffffff.

An initiator MAY reset an operational parameter negotiation by

issuing a Text request with the Target Transfer Tag set to the

value 0xffffffff after receiving a response with the Target

Transfer Tag set to a value other than 0xffffffff. A target may

reset an operational parameter negotiation by answering a Text

request with a Reject PDU.

Neither the initiator nor the target should attempt to declare or

negotiate a parameter more than once during any negotiation

sequence, except for responses to specific keys that explicitly

allow repeated key declarations (e.g., TargetAddress). If detected

by the target, this MUST result in a Reject PDU with a reason of

"protocol error". The initiator MUST reset the negotiation as

outlined above.

Parameters negotiated by a text exchange negotiation sequence only

become effective after the negotiation sequence is completed.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 111]

7. iSCSI Error Handling and Recovery

7.1. Overview

7.1.1. Background

The following two considerations prompted the design of much of

the error recovery functionality in iSCSI:

An iSCSI PDU may fail the digest check and be dropped, despite

being received by the TCP layer. The iSCSI layer must

optionally be allowed to recover such dropped PDUs.

A TCP connection may fail at any time during the data

transfer. All the active tasks must optionally be allowed

to be continued on a different TCP connection within the

same session.

Implementations have considerable flexibility in deciding what

degree of error recovery to support, when to use it and by which

mechanisms to achieve the required behavior. Only the externally

visible actions of the error recovery mechanisms must be

standardized to ensure interoperability.

This Section describes a general model for recovery in support of

interoperability. See Appendix D for further detail on how the

described model may be implemented. Compliant implementations do

not have to match the implementation details of this model as

presented, but the external behavior of such implementations must

correspond to the externally observable characteristics of the

presented model.

7.1.2. Goals

The major design goals of the iSCSI error recovery scheme are as

follows:

 Allow iSCSI implementations to meet different requirements by

defining a collection of error recovery mechanisms that

implementations may choose from.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 112]

Ensure interoperability between any two implementations

supporting different sets of error recovery capabilities.

 Define the error recovery mechanisms to ensure command

ordering even in the face of errors, for initiators that

demand ordering.

Do not make additions in the fast path, but allow moderate

complexity in the error recovery path.

 Prevent both the initiator and target from attempting to

recover the same set of PDUs at the same time. For example,

there must be a clear "error recovery functionality

distribution" between the initiator and target.

7.1.3. Protocol Features and State Expectations

The initiator mechanisms defined in connection with error recovery

are:

a) NOP-OUT to probe sequence numbers of the target (Section
11.18)

b) Command retry (Section 7.2.1)
c) Recovery R2T support (Section 7.8)
d) Requesting retransmission of status/data/R2T using the

SNACK facility (Section 11.16)

e) Acknowledging the receipt of the data (Section 11.16)
f) Reassigning the connection allegiance of a task to a

different TCP connection (Section 7.2.2)

g) Terminating the entire iSCSI session to start afresh
(Section 7.1.4.4)

The target mechanisms defined in connection with error recovery

are:

a) NOP-IN to probe sequence numbers of the initiator (Section
11.19)

b) Requesting retransmission of data using the recovery R2T
feature (Section 7)

c) SNACK support (Section 11.16)

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 113]

d) Requesting that parts of read data be acknowledged (Section
11.7.2)

e) Allegiance reassignment support (Section 7.2.2)
f) Terminating the entire iSCSI session to force the initiator

to start over (Section 7.1.4.4)

For any outstanding SCSI command, it is assumed that iSCSI, in

conjunction with SCSI at the initiator, is able to keep enough

information to be able to rebuild the command PDU, and that

outgoing data is available (in host memory) for retransmission

while the command is outstanding. It is also assumed that at the

target, incoming data (read data) MAY be kept for recovery or it

can be reread from a device server.

It is further assumed that a target will keep the "status & sense"

for a command it has executed if it supports status

retransmission.

A target that agrees to support data retransmission is expected to

be prepared to retransmit the outgoing data (i.e., Data-In) on

request until either the status for the completed command is

acknowledged, or the data in question has been separately

acknowledged.

7.1.4. Recovery Classes

iSCSI enables the following classes of recovery (in the order of

increasing scope of affected iSCSI tasks):

- Within a command (i.e., without requiring command restart).

- Within a connection (i.e., without requiring the connection

to be rebuilt, but perhaps requiring command restart).

- Connection recovery (i.e., perhaps requiring connections to

be rebuilt and commands to be reissued).

- Session recovery.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 114]

The recovery scenarios detailed in the rest of this Section are

representative rather than exclusive. In every case, they detail

the lowest class recovery that MAY be attempted. The implementer

is left to decide under which circumstances to escalate to the

next recovery class and/or what recovery classes to implement.

Both the iSCSI target and initiator MAY escalate the error

handling to an error recovery class, which impacts a larger number

of iSCSI tasks in any of the cases identified in the following

discussion.

In all classes, the implementer has the choice of deferring errors

to the SCSI initiator (with an appropriate response code), in

which case the task, if any, has to be removed from the target and

all the side-effects, such as ACA, must be considered.

Use of within-connection and within-command recovery classes MUST

NOT be attempted before the connection is in Full Feature Phase.

In the detailed description of the recovery classes, the mandating

terms (MUST, SHOULD, MAY, etc.) indicate normative actions to be

executed if the recovery class is supported (see Section 7.1.5 for

the related negotiation semantics) and used.

7.1.4.1. Recovery Within-command

At the target, the following cases lend themselves to within-

command recovery:

a) Lost data PDU - realized through one of the following:
b) Data digest error - dealt with as specified in Section 7.8,

using the option of a recovery R2T.

c) Sequence reception timeout (no data or partial-data-and-no-F-
bit) - considered an implicit sequence error and dealt with

as specified in Section 7.9, using the option of a recovery

R2T.

d) Header digest error, which manifests as a sequence reception
timeout or a sequence error - dealt with as specified in

Section 7.9, using the option of a recovery R2T.

At the initiator, the following cases lend themselves to within-

command recovery:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 115]

a) Lost data PDU or lost R2T - realized through one of the
following:

b) Data digest error - dealt with as specified in Section 7.8,
using the option of a SNACK.

c) Sequence reception timeout (no status) or response reception
timeout - dealt with as specified in Section 7.9, using the

option of a SNACK.

d) Header digest error, which manifests as a sequence reception
timeout or a sequence error - dealt with as specified in

Section 7.9, using the option of a SNACK.

To avoid a race with the target, which may already have a recovery

R2T or a termination response on its way, an initiator SHOULD NOT

originate a SNACK for an R2T based on its internal timeouts (if

any). Recovery in this case is better left to the target.

The timeout values used by the initiator and target are outside

the scope of this document. Sequence reception timeout is

generally a large enough value to allow the data sequence transfer

to be complete.

7.1.4.2. Recovery Within-connection

At the initiator, the following cases lend themselves to within-

connection recovery:

a) Requests not acknowledged for a long time. Requests are
acknowledged explicitly through ExpCmdSN or implicitly by

receiving data and/or status. The initiator MAY retry non-

acknowledged commands as specified in Section 7.2.

b) Lost iSCSI numbered Response. It is recognized by either
identifying a data digest error on a Response PDU or a Data-

In PDU carrying the status, or by receiving a Response PDU

with a higher StatSN than expected. In the first case, digest

error handling is done as specified in Section 7.8 using the

option of a SNACK. In the second case, sequence error

handling is done as specified in Section 7.9, using the

option of a SNACK.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 116]

At the target, the following cases lend themselves to within-

connection recovery:

- Status/Response not acknowledged for a long time. The target

MAY issue a NOP-IN (with a valid Target Transfer Tag or

otherwise) that carries the next status sequence number it

is going to use in the StatSN field. This helps the

initiator detect any missing StatSN(s) and issue a SNACK for

the status.

The timeout values used by the initiator and the target are

outside the scope of this document.

7.1.4.3. Connection Recovery

At an iSCSI initiator, the following cases lend themselves to

connection recovery:

a) TCP connection failure: The initiator MUST close the
connection. It then MUST either implicitly or explicitly

logout the failed connection with the reason code "remove the

connection for recovery" and reassign connection allegiance

for all commands still in progress associated with the failed

connection on one or more connections (some or all of which

MAY be newly established connections) using the "Task

reassign" task management function (see Section 11.5.1). For

an initiator, a command is in progress as long as it has not

received a response or a Data-In PDU including status.

Note: The logout function is mandatory. However, a new

connection establishment is only mandatory if the failed

connection was the last or only connection in the session.

b) Receiving an Asynchronous Message that indicates one or all
connections in a session has been dropped. The initiator

MUST handle it as a TCP connection failure for the

connection(s) referred to in the Message.

At an iSCSI target, the following cases lend themselves to

connection recovery:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 117]

- TCP connection failure. The target MUST close the connection

and, if more than one connection is available, the target

SHOULD send an Asynchronous Message that indicates it has

dropped the connection. Then, the target will wait for the

initiator to continue recovery.

7.1.4.4. Session Recovery

Session recovery should be performed when all other recovery

attempts have failed. Very simple initiators and targets MAY

perform session recovery on all iSCSI errors and rely on recovery

on the SCSI layer and above.

Session recovery implies the closing of all TCP connections,

internally aborting all executing and queued tasks for the given

initiator at the target, terminating all outstanding SCSI commands

with an appropriate SCSI service response at the initiator, and

restarting a session on a new set of connection(s) (TCP connection

establishment and login on all new connections).

For possible clearing effects of session recovery on SCSI and

iSCSI objects, refer to Appendix E.

7.1.5. Error Recovery Hierarchy

The error recovery classes described so far are organized into a

hierarchy for ease in understanding and to limit the

implementation complexity. With few and well defined recovery

levels interoperability is easier to achieve. The attributes of

this hierarchy are as follows:

a) Each level is a superset of the capabilities of the

previous level. For example, Level 1 support implies

supporting all capabilities of Level 0 and more.

b) As a corollary, supporting a higher error recovery level
means increased sophistication and possibly an increase

in resource requirements.

c) Supporting error recovery level "n" is advertised and
negotiated by each iSCSI entity by exchanging the text

key "ErrorRecoveryLevel=n". The lower of the two

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 118]

exchanged values is the operational ErrorRecoveryLevel

for the session.

The following diagram represents the error recovery hierarchy.

 +

 / \

 / 2 \ <-- Connection recovery

 +-----+

 / 1 \ <-- Digest failure recovery

 +---------+

 / 0 \ <-- Session failure recovery

 +-------------+

The following table lists the error recovery capabilities expected

from the implementations that support each error recovery level.

+-------------------+--+

|ErrorRecoveryLevel | Associated Error recovery capabilities |

+-------------------+--+

| 0 | Session recovery class |

| | (Session Recovery) |

+-------------------+--+

| 1 | Digest failure recovery (See Note below.) |

| | plus the capabilities of ER Level 0 |

+-------------------+--+

| 2 | Connection recovery class |

| | (Connection Recovery) |

| | plus the capabilities of ER Level 1 |

+-------------------+--+

Note: Digest failure recovery is comprised of two recovery

classes: Within-Connection recovery class (Recovery Within-

connection) and Within-Command recovery class (Recovery Within-

command).

When a defined value of ErrorRecoveryLevel is proposed by an

originator in a text negotiation, the originator MUST support the

functionality defined for the proposed value and additionally,

functionality corresponding to any defined value numerically less

than the proposed. When a defined value of ErrorRecoveryLevel is

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 119]

returned by a responder in a text negotiation, the responder MUST

support the functionality corresponding to the ErrorRecoveryLevel

it is accepting.

When either party attempts to use error recovery functionality

beyond what is negotiated, the recovery attempts MAY fail unless

an apriori agreement outside the scope of this document exists

between the two parties to provide such support.

Implementations MUST support error recovery level "0", while the

rest are OPTIONAL to implement. In implementation terms, the

above striation means that the following incremental

sophistication with each level is required.

+-------------------+--+

|Level transition | Incremental requirement |

+-------------------+--+

| 0->1 | PDU retransmissions on the same connection|

+-------------------+--+

| 1->2 | Retransmission across connections and |

| | allegiance reassignment |

+-------------------+--+

7.2. Retry and Reassign in Recovery

This Section summarizes two important and somewhat related iSCSI

protocol features used in error recovery.

7.2.1. Usage of Retry

By resending the same iSCSI command PDU ("retry") in the absence

of a command acknowledgement (by way of an ExpCmdSN update) or a

response, an initiator attempts to "plug" (what it thinks are) the

discontinuities in CmdSN ordering on the target end. Discarded

command PDUs, due to digest errors, may have created these

discontinuities.

Retry MUST NOT be used for reasons other than plugging command

sequence gaps, and in particular, cannot be used for requesting

PDU retransmissions from a target. Any such PDU retransmission

requests for a currently allegiant command in progress may be made

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 120]

using the SNACK mechanism described in Section 11.16, although the

usage of SNACK is OPTIONAL.

If initiators, as part of plugging command sequence gaps as

described above, inadvertently issue retries for allegiant

commands already in progress (i.e., targets did not see the

discontinuities in CmdSN ordering), the duplicate commands are

silently ignored by targets as specified in Section 4.2.2.1.

When an iSCSI command is retried, the command PDU MUST carry the

original Initiator Task Tag and the original operational

attributes (e.g., flags, function names, LUN, CDB etc.) as well as

the original CmdSN. The command being retried MUST be sent on the

same connection as the original command unless the original

connection was already successfully logged out.

7.2.2. Allegiance Reassignment

By issuing a "task reassign" task management request (Section

11.5.1), the initiator signals its intent to continue an already

active command (but with no current connection allegiance) as part

of connection recovery. This means that a new connection

allegiance is requested for the command, which seeks to associate

it to the connection on which the task management request is being

issued. Before the allegiance reassignment is attempted for a

task, an implicit or explicit Logout with the reason code "remove

the connection for recovery" (see Section 11.14.1) MUST be

successfully completed for the previous connection to which the

task was allegiant.

In reassigning connection allegiance for a command, the targets

SHOULD continue the command from its current state. For example,

when reassigning read commands, the target SHOULD take advantage

of the ExpDataSN field provided by the Task Management function

request (which must be set to zero if there was no data transfer)

and bring the read command to completion by sending the remaining

data and sending (or resending) the status. ExpDataSN

acknowledges all data sent up to, but not including, the Data-In

PDU and or R2T with DataSN (or R2TSN) equal to ExpDataSN. However,

targets may choose to send/receive all unacknowledged data or all

of the data on a reassignment of connection allegiance if unable

to recover or maintain accurate state. Initiators MUST NOT

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 121]

subsequently request data retransmission through Data SNACK for

PDUs numbered less than ExpDataSN (i.e., prior to the acknowledged

sequence number). For all types of commands, a reassignment

request implies that the task is still considered in progress by

the initiator and the target must conclude the task appropriately

if the target returns the "Function Complete" response to the

reassignment request. This might possibly involve retransmission

of data/R2T/status PDUs as necessary, but MUST involve the

(re)transmission of the status PDU.

It is OPTIONAL for targets to support the allegiance reassignment.

This capability is negotiated via the ErrorRecoveryLevel text key

during the login time. When a target does not support allegiance

reassignment, it MUST respond with a Task Management response code

of "Allegiance reassignment not supported". If allegiance

reassignment is supported by the target, but the task is still

allegiant to a different connection, or a successful recovery

Logout of the previously allegiant connection was not performed,

the target MUST respond with a Task Management response code of

"Task still allegiant".

If allegiance reassignment is supported by the target, the Task

Management response to the reassignment request MUST be issued

before the reassignment becomes effective.

If a SCSI Command that involves data input is reassigned, any

SNACK Tag it holds for a final response from the original

connection is deleted and the default value of 0 MUST be used

instead.

7.3. Usage Of Reject PDU in Recovery

Targets MUST NOT implicitly terminate an active task by sending a

Reject PDU for any PDU exchanged during the life of the task. If

the target decides to terminate the task, a Response PDU (SCSI,

Text, Task, etc.) must be returned by the target to conclude the

task. If the task had never been active before the Reject (i.e.,

the Reject is on the command PDU), targets should not send any

further responses because the command itself is being discarded.

The above rule means that the initiator can eventually expect a

response on receiving Rejects, if the received Reject is for a PDU

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 122]

other than the command PDU itself. The non-command Rejects only

have diagnostic value in logging the errors, and they can be used

for retransmission decisions by the initiators.

The CmdSN of the rejected command PDU (if it is a non-immediate

command) MUST NOT be considered received by the target (i.e., a

command sequence gap must be assumed for the CmdSN), even though

the CmdSN of the rejected command PDU may be reliably ascertained.

Upon receiving the Reject, the initiator MUST plug the CmdSN gap

in order to continue to use the session. The gap may be plugged

either by transmitting a command PDU with the same CmdSN, or by

aborting the task (see SCS on how an abort may plug a CmdSN gap).

When a data PDU is rejected and its DataSN can be ascertained, a

target MUST advance ExpDataSN for the current data burst if a

recovery R2T is being generated. The target MAY advance its

ExpDataSN if it does not attempt to recover the lost data PDU.

7.4. Error Recovery Considerations for Discovery Sessions

7.4.1. ErrorRecoveryLevel for Discovery Sessions

The negotiation of the key ErrorRecoveryLevel is not required for

Discovery sessions -- i.e., for sessions that negotiated

"SessionType=Discovery" -- because the default value of 0 is

necessary and sufficient for Discovery sessions. It is however

possible that some legacy iSCSI implementations might attempt to

negotiate the ErrorRecoveryLevel key on Discovery sessions. When

such a negotiation attempt is made by the remote side, a compliant

iSCSI implementation MUST propose a value of 0 (zero) in response.

The operational ErrorRecoveryLevel for Discovery sessions thus

MUST

be 0. This naturally follows from the functionality constraints

that Section 4.3 imposes on Discovery sessions.

7.4.2. Reinstatement Semantics for Discovery Sessions

Discovery sessions are intended to be relatively short-lived.

Initiators are not expected to establish multiple Discovery

sessions to the same iSCSI Network Portal. An initiator may use

the same iSCSI Initiator Name and ISID when establishing different

unique sessions with different targets and/or different portal

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 123]

groups. This behavior is discussed in Section 10.1.1 and is, in

fact, encouraged as conservative reuse of ISIDs.

The ISID RULE in Section 4.4.3 states that there must not be more

than one session with a matching 4-tuple: <InitiatorName, ISID,

TargetName, TargetPortalGroupTag>. While the spirit of the ISID

RULE applies to Discovery sessions the same as it does for Normal

sessions, note that some Discovery sessions differ from the Normal

sessions in two important aspects:

a) Because Appendix C allows a Discovery session to be
established without specifying a TargetName key in the

Login Request PDU (let us call such a session an "Unnamed"

Discovery session), there is no Target Node context to

enforce the ISID RULE.

b) Portal Groups are defined only in the context of a Target
Node. When the TargetName key is NULL-valued (i.e., not

specified), the TargetPortalGroupTag thus cannot be

ascertained to enforce the ISID RULE.

The following two sections describe each of the two scenarios --

Named Discovery sessions and Unnamed Discovery sessions.

7.4.2.1. Unnamed Discovery Sessions

For Unnamed Discovery sessions, neither the TargetName nor the

TargetPortalGroupTag is available to the targets in order to

enforce the ISID RULE. So the following rule applies.

UNNAMED ISID RULE: Targets MUST enforce the uniqueness of the

following 4-tuple for Unnamed Discovery sessions: <InitiatorName,

ISID, NULL, TargetAddress>. The following semantics are implied by

this uniqueness requirement.

Targets SHOULD allow concurrent establishment of one Discovery

session with each of its Network Portals by the same initiator

port with a given iSCSI Node Name and an ISID. Each of the

concurrent Discovery sessions, if established by the same

initiator port to other Network Portals, MUST be treated as

independent sessions -- i.e., one session MUST NOT reinstate the

other.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 124]

A new Unnamed Discovery session that has a matching

<InitiatorName, ISID, NULL, TargetAddress> to an existing

Discovery session MUST reinstate the existing Unnamed Discovery

session. Note thus that only an Unnamed Discovery session may

reinstate an Unnamed Discovery session.

7.4.2.2. Named Discovery Session

For a Named Discovery session, the TargetName key is specified by

the initiator and thus the target can unambiguously ascertain the

TargetPortalGroupTag as well. Since all the four elements of the

4-tuple are known, the ISID RULE MUST be enforced by targets with

no changes from Section 4.4.3 semantics. A new session with a

matching <InitiatorName, ISID, TargetName, TargetPortalGroupTag>

thus will reinstate an existing session. Note in this case that

any new iSCSI session (Discovery or Normal) with the matching 4-

tuple may reinstate an existing Named Discovery iSCSI session.

7.4.3. Target PDUs During Discovery

Targets SHOULD NOT send any responses other than a Text Response

and Logout Response on a Discovery session, once in Full Feature

Phase.

Implementation Note: A target may simply drop the connection in a

Discovery session when it would have requested a Logout via an

Async Message on Normal sessions.

7.5. Connection Timeout Management

iSCSI defines two session-global timeout values (in seconds) -

Time2Wait and Time2Retain - that are applicable when an iSCSI Full

Feature Phase connection is taken out of service either

intentionally or by an exception. Time2Wait is the initial

"respite time" before attempting an explicit/implicit Logout for

the CID in question or task reassignment for the affected tasks

(if any). Time2Retain is the maximum time after the initial

respite interval that the task and/or connection state(s) is/are

guaranteed to be maintained on the target to cater to a possible

recovery attempt. Recovery attempts for the connection and/or

task(s) SHOULD NOT be made before Time2Wait seconds, but MUST be

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 125]

completed within Time2Retain seconds after that initial Time2Wait

waiting period.

7.5.1. Timeouts on Transport Exception Events

A transport connection shutdown or a transport reset without any

preceding iSCSI protocol interactions informing the end-points of

the fact causes a Full Feature Phase iSCSI connection to be

abruptly terminated. The timeout values to be used in this case

are the negotiated values of DefaultTime2Wait (Section 13.15) and

DefaultTime2Retain (Section 13.16) text keys for the session.

7.5.2. Timeouts on Planned Decommissioning

Any planned decommissioning of a Full Feature Phase iSCSI

connection is preceded by either a Logout Response PDU, or an

Async Message PDU. The Time2Wait and Time2Retain field values

(Section 11.15) in a Logout Response PDU, and the Parameter2 and

Parameter3 fields of an Async Message (AsyncEvent types "drop the

connection" or "drop all the connections"; Section 11.9.1) specify

the timeout values to be used in each of these cases.

These timeout values are only applicable for the affected

connection, and the tasks active on that connection. These

timeout values have no bearing on initiator timers (if any) that

are already running on connections or tasks associated with that

session.

7.6. Implicit Termination of Tasks

A target implicitly terminates the active tasks due to iSCSI

protocol dynamics in the following cases:

a) When a connection is implicitly or explicitly logged out
with the reason code of "Close the connection" and there

are active tasks allegiant to that connection.

b) When a connection fails and eventually the connection
state times out (state transition M1 in Section 8.2.2)

and there are active tasks allegiant to that connection.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 126]

c) When a successful Logout with the reason code of "remove
the connection for recovery" is performed while there are

active tasks allegiant to that connection, and those

tasks eventually time out after the Time2Wait and

Time2Retain periods without allegiance reassignment.

d) When a connection is implicitly or explicitly logged out
with the reason code of "Close the session" and there are

active tasks in that session.

If the tasks terminated in the above cases a), b), c) and d)are

SCSI tasks, they must be internally terminated as if with CHECK

CONDITION status. This status is only meaningful for appropriately

handling the internal SCSI state and SCSI side effects with

respect to ordering because this status is never communicated back

as a terminating status to the initiator. However additional

actions may have to be taken at SCSI level depending on the SCSI

context as defined by the SCSI standards (e.g., queued commands

and ACA, UA for the next command on the I_T nexus in cases a), b),

and c) etc. - see [SAM2] and [SPC3]).

7.7. Format Errors

The following two explicit violations of PDU layout rules are

format errors:

a) Illegal contents of any PDU header field except the
Opcode (legal values are specified in Section 11).

b) Inconsistent field contents (consistent field contents
are specified in Section 11).

Format errors indicate a major implementation flaw in one of the

parties.

When a target or an initiator receives an iSCSI PDU with a format

error, it MUST immediately terminate all transport connections in

the session either with a connection close or with a connection

reset and escalate the format error to session recovery (see

Section 7.1.4.4).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 127]

All initiator-detected PDU construction errors MUST be considered

as format errors. Some examples of such errors are:

- NOP-In with a valid TTT but an invalid LUN

- NOP-In with a valid ITT (i.e., a NOP-In response) and also a

valid TTT

- SCSI Response PDU with Status=CHECK CONDITION, but

DataSegmentLength = 0

7.8. Digest Errors

The discussion of the legal choices in handling digest errors

below excludes session recovery as an explicit option, but either

party detecting a digest error may choose to escalate the error to

session recovery.

When a target or an initiator receives any iSCSI PDU, with a

header digest error, it MUST either discard the header and all

data up to the beginning of a later PDU or close the connection.

Because the digest error indicates that the length field of the

header may have been corrupted, the location of the beginning of a

later PDU needs to be reliably ascertained by other means such as

the operation of a sync and steering layer.

When a target receives any iSCSI PDU with a payload digest error,

it MUST answer with a Reject PDU with a reason code of Data-

Digest-Error and discard the PDU.

- If the discarded PDU is a solicited or unsolicited iSCSI

data PDU (for immediate data in a command PDU, non-data PDU

rule below applies), the target MUST do one of the

following:

i) Request retransmission with a recovery R2T.

ii) Terminate the task with a response PDU with a CHECK

CONDITION Status and an iSCSI Condition of "protocol

service CRC error" (Section 11.4.7.2). If the target

chooses to implement this option, it MUST wait to

receive all the data (signaled by a Data PDU with the

final bit set for all outstanding R2Ts) before sending

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 128]

the response PDU. A task management command (such as an

abort task) from the initiator during this wait may

also conclude the task.

- No further action is necessary for targets if the discarded

PDU is a non-data PDU. In case of immediate data being

present on a discarded command, the immediate data is

implicitly recovered when the task is retried (see Section

7.2.1) followed by the entire data transfer for the task.

When an initiator receives any iSCSI PDU with a payload digest

error, it MUST discard the PDU.

- If the discarded PDU is an iSCSI data PDU, the initiator

MUST do one of the following:

a) Request the desired data PDU through SNACK. In
response to the SNACK, the target MUST either resend

the data PDU or reject the SNACK with a Reject PDU

with a reason code of "SNACK reject" in which case:

b) If the status has not already been sent for the
command, the target MUST terminate the command with a

CHECK CONDITION Status and an iSCSI Condition of

"SNACK rejected" (Section 11.4.7.2).

c) If the status was already sent, no further action is
necessary for the target. The initiator in this case

MUST wait for the status to be received and then

discard it, so as to internally signal the completion

with CHECK CONDITION Status and an iSCSI Condition of

"protocol service CRC error" (Section 11.4.7.2).

d) Abort the task and terminate the command with an
error.

- If the discarded PDU is a response PDU or an unsolicited PDU

(e.g. Async, Reject), the initiator MUST do one of the

following:

a) Request PDU retransmission with a status SNACK.
b) Logout the connection for recovery and continue the

tasks on a different connection instance as described

in Section 7.2.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 129]

c) Logout to close the connection (abort all the
commands associated with the connection).

Note that an unsolicited PDU carries the next StatSN value on

an iSCSI connection, thereby advancing the StatSN. When an

initiator discards one of these PDUs due to a payload digest

error, the entire PDU including the header MUST be discarded.

Consequently, the initiator MUST treat the exception like a

loss of any other solicited response PDU.

7.9. Sequence Errors

When an initiator receives an iSCSI R2T/data PDU with an out of

order R2TSN/DataSN or a SCSI response PDU with an ExpDataSN that

implies missing data PDU(s), it means that the initiator must have

detected a header or payload digest error on one or more earlier

R2T/data PDUs. The initiator MUST address these implied digest

errors as described in Section 7.8. When a target receives a data

PDU with an out of order DataSN, it means that the target must

have hit a header or payload digest error on at least one of the

earlier data PDUs. The target MUST address these implied digest

errors as described in Section 7.8.

When an initiator receives an iSCSI status PDU with an out of

order StatSN that implies missing responses, it MUST address the

one or more missing status PDUs as described in Section 7.8. As a

side effect of receiving the missing responses, the initiator may

discover missing data PDUs. If the initiator wants to recover the

missing data for a command, it MUST NOT acknowledge the received

responses that start from the StatSN of the relevant command,

until it has completed receiving all the data PDUs of the command.

When an initiator receives duplicate R2TSNs (due to proactive

retransmission of R2Ts by the target) or duplicate DataSNs (due to

proactive SNACKs by the initiator), it MUST discard the

duplicates.

7.10. Message Error Checking

In the iSCSI implementations till date, there has been some

uncertainty on the extent to which incoming messages have to be

checked for protocol errors, beyond what is strictly required for

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 130]

processing the inbound message. This Section addresses this

question.

Unless this document requires it, an iSCSI implementation is not

required to do an exhaustive protocol conformance check on an

incoming iSCSI PDU. The iSCSI implementation especially is not

required to double-check the remote iSCSI implementation’s

conformance to protocol requirements.

7.11. SCSI Timeouts

An iSCSI initiator MAY attempt to plug a command sequence gap on

the target end (in the absence of an acknowledgement of the

command by way of ExpCmdSN) before the ULP timeout by retrying the

unacknowledged command, as described in Section 7.2.

On a ULP timeout for a command (that carried a CmdSN of n), if the

iSCSI initiator intends to continue the session it MUST abort the

command by either using an appropriate Task Management function

request for the specific command, or a "close the connection"

Logout. When using an ABORT TASK, if the ExpCmdSN is still less

than (n+1), the target may see the abort request while missing the

original command itself due to one of the following reasons:

- Original command was dropped due to digest error.

- Connection on which the original command was sent was

successfully logged out. On logout, the unacknowledged

commands issued on the connection being logged out are

discarded.

If the abort request is received and the original command is

missing, targets MUST consider the original command with that

RefCmdSN to be received and issue a Task Management response with

the response code: "Function Complete". This response concludes

the task on both ends. If the abort request is received and the

target can determine (based on the Referenced Task Tag) that the

command was received and executed and also that the response was

sent prior to the abort, then the target MUST respond with the

response code of "Task Does Not Exist".

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 131]

7.12. Negotiation Failures

Text request and response sequences, when used to set/negotiate

operational parameters, constitute the negotiation/parameter

setting. A negotiation failure is considered to be one or more of

the following:

- None of the choices, or the stated value, is acceptable to

one of the sides in the negotiation.

- The text request timed out and possibly terminated.

- The text request was answered with a Reject PDU.

The following two rules should be used to address negotiation

failures:

a) During Login, any failure in negotiation MUST be
considered a login process failure and the Login Phase

MUST be terminated, and with it, the connection. If the

target detects the failure, it must terminate the login

with the appropriate login response code.

b) A failure in negotiation, while in the Full Feature
Phase, will terminate the entire negotiation sequence

that may consist of a series of text requests that use

the same Initiator Task Tag. The operational parameters

of the session or the connection MUST continue to be the

values agreed upon during an earlier successful

negotiation (i.e., any partial results of this

unsuccessful negotiation MUST NOT take effect and MUST be

discarded).

7.13. Protocol Errors

Mapping framed messages over a "stream" connection, such as TCP,

makes the proposed mechanisms vulnerable to simple software

framing errors. On the other hand, the introduction of framing

mechanisms to limit the effects of these errors may be onerous on

performance for simple implementations. Command Sequence Numbers

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 132]

and the above mechanisms for connection drop and reestablishment

help handle this type of mapping errors.

All violations of iSCSI PDU exchange sequences specified in this

draft are also protocol errors. This category of errors can only

be

addressed by fixing the implementations; iSCSI defines Reject and

response codes to enable this.

7.14. Connection Failures

iSCSI can keep a session in operation if it is able to

keep/establish at least one TCP connection between the initiator

and the target in a timely fashion. Targets and/or initiators may

recognize a failing connection by either transport level means

(TCP), a gap in the command sequence number, a response stream

that is not filled for a long time, or by a failing iSCSI NOP

(acting as a ping). The latter MAY be used periodically to

increase the speed and likelihood of detecting connection

failures. As an example for transport level means, initiators and

targets MAY also use the keep-alive option, see [RFC1122], on the

TCP connection to enable early link failure detection on otherwise

idle links.

On connection failure, the initiator and target MUST do one of the

following:

a) Attempt connection recovery within the session
(Connection Recovery).

b) Logout the connection with the reason code "closes the
connection" (Section 10.14.5), re-issue missing commands,

and implicitly terminate all active commands. This option

requires support for the within-connection recovery class

(Recovery Within-connection).

c) Perform session recovery (Session Recovery).

Either side may choose to escalate to session recovery (via the

initiator dropping all the connections, or via an Async Message

that announces the similar intent from a target), and the other

side MUST give it precedence. On a connection failure, a target

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 133]

MUST terminate and/or discard all of the active immediate commands

regardless of which of the above options is used (i.e., immediate

commands are not recoverable across connection failures).

7.15. Session Errors

If all of the connections of a session fail and cannot be

reestablished in a short time, or if initiators detect protocol

errors repeatedly, an initiator may choose to terminate a session

and establish a new session.

In this case, the initiator takes the following actions:

- Resets or closes all the transport connections.

- Terminates all outstanding requests with an appropriate

response before initiating a new session. If the same I_T

nexus is intended to be reestablished, the initiator MUST

employ session reinstatement (see Section 6.3.5).

When the session timeout (the connection state timeout for the

last failed connection) happens on the target, it takes the

following actions:

- Resets or closes the TCP connections (closes the session).

- Terminates all active tasks that were allegiant to the

connection(s) that constituted the session.

A target MUST also be prepared to handle a session reinstatement

request from the initiator that may be addressing session errors.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 134]

8. State Transitions

iSCSI connections and iSCSI sessions go through several well-

defined states from the time they are created to the time they are

cleared.

The connection state transitions are described in two separate but

dependent state diagrams for ease in understanding. The first

diagram, "standard connection state diagram", describes the

connection state transitions when the iSCSI connection is not

waiting for, or undergoing, a cleanup by way of an explicit or

implicit Logout. The second diagram, "connection cleanup state

diagram", describes the connection state transitions while

performing the iSCSI connection cleanup.

The "session state diagram" describes the state transitions an

iSCSI session would go through during its lifetime, and it depends

on the states of possibly multiple iSCSI connections that

participate in the session.

States and transitions are described in text, tables and diagrams.

The diagrams are used for illustration. The text and the tables

are the governing specification.

8.1. Standard Connection State Diagrams

8.1.1. State Descriptions for Initiators and Targets

State descriptions for the standard connection state diagram are

as follows:

-S1: FREE

 -initiator: State on instantiation, or after successful
connection closure.

 -target: State on instantiation, or after successful
connection closure.

-S2: XPT_WAIT

 -initiator: Waiting for a response to its transport
connection establishment request.

 -target: Illegal
-S3: XPT_UP

 -initiator: Illegal
 -target: Waiting for the Login process to commence.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 135]

-S4: IN_LOGIN

 -initiator: Waiting for the Login process to conclude,
possibly involving several PDU exchanges.

 -target: Waiting for the Login process to conclude,
possibly involving several PDU exchanges.

-S5: LOGGED_IN

 -initiator: In Full Feature Phase, waiting for all
internal, iSCSI, and transport events.

 -target: In Full Feature Phase, waiting for all internal,
iSCSI, and transport events.

-S6: IN_LOGOUT

 -initiator: Waiting for a Logout response.
 -target: Waiting for an internal event signaling completion

of logout processing.

-S7: LOGOUT_REQUESTED

 -initiator: Waiting for an internal event signaling
readiness to proceed with Logout.

 -target: Waiting for the Logout process to start after
having requested a Logout via an Async Message.

-S8: CLEANUP_WAIT

 -initiator: Waiting for the context and/or resources to
initiate the cleanup processing for this CSM.

 -target: Waiting for the cleanup process to start for this
CSM.

8.1.2. State Transition Descriptions for Initiators and Targets

-T1:

 -initiator: Transport connect request was made (e.g., TCP
SYN sent).

 -target: Illegal
-T2:

 -initiator: Transport connection request timed out, a
transport reset was received, or an internal event of

receiving a Logout response (success) on another connection

for a "close the session" Logout request was received.

 -target:Illegal
-T3:

 -initiator: Illegal
 -target: Received a valid transport connection request that

establishes the transport connection.

-T4:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 136]

 -initiator: Transport connection established, thus
prompting the initiator to start the iSCSI Login.

 -target: Initial iSCSI Login request was received.
-T5:

 -initiator: The final iSCSI Login response with a Status-
Class of zero was received.

 -target: The final iSCSI Login request to conclude the
Login Phase was received, thus prompting the target to send

the final iSCSI Login response with a Status-Class of zero.

-T6:

 -initiator: Illegal
 -target: Timed out waiting for an iSCSI Login, transport

disconnect indication was received, transport reset was

received, or an internal event indicating a transport

timeout was received. In all these cases, the connection is

to be closed.

-T7:

 -initiator - one of the following events caused the
transition:

a) The final iSCSI Login response was received with a
non-zero Status-Class.

b) Login timed out.
c) A transport disconnect indication was received.
d) A transport reset was received.
e) An internal event indicating a transport timeout was

received.

f) An internal event of receiving a Logout response
(success) on another connection for a "close the

session" Logout request was received.

 In all these cases, the transport connection is closed.

 -target - one of the following events caused the

transition:

a) The final iSCSI Login request to conclude the Login
Phase was received, prompting the target to send the

final iSCSI Login response with a non-zero Status-

Class.

b) Login timed out.
c) Transport disconnect indication was received.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 137]

d) Transport reset was received.
e) An internal event indicating a transport timeout was

received.

f) On another connection, a "close the session" Logout
request was received.

 In all these cases, the connection is to be closed.

-T8:

 -initiator: An internal event of receiving a Logout
response (success) on another connection for a "close the

session" Logout request was received, thus closing this

connection requiring no further cleanup.

 -target: An internal event of sending a Logout response
(success) on another connection for a "close the session"

Logout request was received, or an internal event of a

successful connection/session reinstatement is received,

thus prompting the target to close this connection cleanly.

-T9, T10:

 -initiator: An internal event that indicates the readiness
to start the Logout process was received, thus prompting an

iSCSI Logout to be sent by the initiator.

 -target: An iSCSI Logout request was received.
-T11, T12:

 -initiator: Async PDU with AsyncEvent "Request Logout" was
received.

 -target: An internal event that requires the
decommissioning of the connection is received, thus causing

an Async PDU with an AsyncEvent "Request Logout" to be

sent.

-T13:

 -initiator: An iSCSI Logout response (success) was
received, or an internal event of receiving a Logout

response (success) on another connection for a "close the

session" Logout request was received.

 -target: An internal event was received that indicates
successful processing of the Logout, which prompts an iSCSI

Logout response (success) to be sent; an internal event of

sending a Logout response (success) on another connection

for a "close the session" Logout request was received; or

an internal event of a successful connection/session

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 138]

reinstatement is received. In all these cases, the

transport connection is closed.

-T14:

 -initiator: Async PDU with AsyncEvent "Request Logout" was
received again.

 -target: Illegal
-T15, T16:

 -initiator: One or more of the following events caused this
transition:

a) Internal event that indicates a transport connection

timeout was received thus prompting transport RESET

or transport connection closure.

b) A transport RESET.
c) A transport disconnect indication.
d) Async PDU with AsyncEvent "Drop connection" (for

this CID).

e) Async PDU with AsyncEvent "Drop all connections".
 -target: One or more of the following events caused this

transition:

a) Internal event that indicates a transport connection
timeout was received, thus prompting transport RESET

or transport connection closure.

b) An internal event of a failed connection/session
reinstatement is received.

c) A transport RESET.
d) A transport disconnect indication.
e) Internal emergency cleanup event was received which

prompts an Async PDU with AsyncEvent "Drop

connection" (for this CID), or event "Drop all

connections".

-T17:

 -initiator: One or more of the following events caused this
transition:

a) Logout response, (failure i.e., a non-zero status)
was received, or Logout timed out.

b) Any of the events specified for T15 and T16.
 -target: One or more of the following events caused this

transition:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 139]

a) Internal event that indicates a failure of the
Logout processing was received, which prompts a

Logout response (failure, i.e., a non-zero status)

to be sent.

b) Any of the events specified for T15 and T16.
-T18:

 -initiator: An internal event of receiving a Logout
response (success) on another connection for a "close the

session" Logout request was received.

 -target: An internal event of sending a Logout response

(success) on another connection for a "close the session"

Logout request was received, or an internal event of a

successful connection/session reinstatement is received.

In both these cases, the connection is closed.

The CLEANUP_WAIT state (S8) implies that there are possible iSCSI

tasks that have not reached conclusion and are still considered

busy.

8.1.3. Standard Connection State Diagram for an Initiator

Symbolic names for States:

 S1: FREE

 S2: XPT_WAIT

 S4: IN_LOGIN

 S5: LOGGED_IN

 S6: IN_LOGOUT

 S7: LOGOUT_REQUESTED

 S8: CLEANUP_WAIT

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 140]

States S5, S6, and S7 constitute the Full Feature Phase operation

of the connection.

The state diagram is as follows:

 -------<-------------+

 +--------->/ S1 \<----+ |

 T13| +->\ /<-+ \ |

 | / ---+--- \ \ |

 | / | T2 \ | |

 | T8 | |T1 | | |

 | | | / |T7 |

 | | | / | |

 | | | / | |

 | | V / / |

 | | ------- / / |

 | | / S2 \ / |

 | | \ / / |

 | | ---+--- / |

 | | |T4 / |

 | | V / | T18

 | | ------- / |

 | | / S4 \ |

 | | \ / |

 | | ---+--- | T15

 | | |T5 +--------+---------+

 | | | /T16+-----+------+ |

 | | | / -+-----+--+ | |

 | | | / / S7 \ |T12| |

 | | | / +->\ /<-+ V V

 | | | / / -+----- -------

 | | | / /T11 |T10 / S8 \

 | | V / / V +----+ \ /

 | | ---+-+- ----+-- | -------

 | | / S5 \T9 / S6 \<+ ^

 | +-----\ /--->\ / T14 |

 | ------- --+----+------+T17

 +---------------------------+

The following state transition table represents the above diagram.

Each row represents the starting state for a given transition,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 141]

which after taking a transition marked in a table cell would end

in the state represented by the column of the cell. For example,

from state S1, the connection takes the T1 transition to arrive at

state S2. The fields marked "-" correspond to undefined

transitions.

 +----+---+---+---+---+----+---+

 |S1 |S2 |S4 |S5 |S6 |S7 |S8 |

---+----+---+---+---+---+----+---+

 S1| - |T1 | - | - | - | - | - |

---+----+---+---+---+---+----+---+

 S2|T2 |- |T4 | - | - | - | - |

---+----+---+---+---+---+----+---+

 S4|T7 |- |- |T5 | - | - | - |

---+----+---+---+---+---+----+---+

 S5|T8 |- |- | - |T9 |T11 |T15|

---+----+---+---+---+---+----+---+

 S6|T13 |- |- | - |T14|- |T17|

---+----+---+---+---+---+----+---+

 S7|T18 |- |- | - |T10|T12 |T16|

---+----+---+---+---+---+----+---+

 S8| - |- |- | - | - | - | - |

---+----+---+---+---+---+----+---+

8.1.4. Standard Connection State Diagram for a Target

Symbolic names for States:

 S1: FREE

 S3: XPT_UP

 S4: IN_LOGIN

 S5: LOGGED_IN

 S6: IN_LOGOUT

 S7: LOGOUT_REQUESTED

 S8: CLEANUP_WAIT

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 142]

States S5, S6, and S7 constitute the Full Feature Phase operation

of the connection.

The state diagram is as follows:

 -------<-------------+

 +--------->/ S1 \<----+ |

 T13| +->\ /<-+ \ |

 | / ---+--- \ \ |

 | / | T6 \ | |

 | T8 | |T3 | | |

 | | | / |T7 |

 | | | / | |

 | | | / | |

 | | V / / |

 | | ------- / / |

 | | / S3 \ / |

 | | \ / / | T18

 | | ---+--- / |

 | | |T4 / |

 | | V / |

 | | ------- / |

 | | / S4 \ |

 | | \ / |

 | | ---+--- T15 |

 | | |T5 +--------+---------+

 | | | /T16+-----+------+ |

 | | | / -+-----+---+ | |

 | | | / / S7 \ |T12| |

 | | | / +->\ /<-+ V V

 | | | / / -+----- -------

 | | | / /T11 |T10 / S8 \

 | | V / / V \ /

 | | ---+-+- ------- -------

 | | / S5 \T9 / S6 \ ^

 | +-----\ /--->\ / |

 | ------- --+----+--------+T17

 +---------------------------+

The following state transition table represents the above diagram,

and follows the conventions described for the initiator diagram.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 143]

 +----+---+---+---+---+----+---+

 |S1 |S3 |S4 |S5 |S6 |S7 |S8 |

---+----+---+---+---+---+----+---+

 S1| - |T3 | - | - | - | - | - |

---+----+---+---+---+---+----+---+

 S3|T6 |- |T4 | - | - | - | - |

---+----+---+---+---+---+----+---+

 S4|T7 |- |- |T5 | - | - | - |

---+----+---+---+---+---+----+---+

 S5|T8 |- |- | - |T9 |T11 |T15|

---+----+---+---+---+---+----+---+

 S6|T13 |- |- | - |- |- |T17|

---+----+---+---+---+---+----+---+

 S7|T18 |- |- | - |T10|T12 |T16|

---+----+---+---+---+---+----+---+

 S8| - |- |- | - | - | - | - |

---+----+---+---+---+---+----+---+

8.2. Connection Cleanup State Diagram for Initiators and Targets

Symbolic names for states:

R1: CLEANUP_WAIT (same as S8)

R2: IN_CLEANUP

R3: FREE (same as S1)

Whenever a connection state machine in cleanup (let’s call it CSM-

C) enters the CLEANUP_WAIT state (S8), it must go through the

state transitions described in the connection cleanup state

diagram either a) using a separate full-feature phase connection

(let’s call it CSM-E, for explicit) in the LOGGED_IN state in the

same session, or b) using a new transport connection (let’s call

it CSM-I, for implicit) in the FREE state that is to be added to

the same session. In the CSM-E case, an explicit logout for the

CID that corresponds to CSM-C (either as a connection or session

logout) needs to be performed to complete the cleanup. In the CSM-

I case, an implicit logout for the CID that corresponds to CSM-C

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 144]

needs to be performed by way of connection reinstatement (Section

6.3.4) for that CID. In either case, the protocol exchanges on

CSM-E or CSM-I determine the state transitions for CSM-C.

Therefore, this cleanup state diagram is only applicable to the

instance of the connection in cleanup (i.e., CSM-C). In the case

of an implicit logout for example, CSM-C reaches FREE (R3) at the

time CSM-I reaches LOGGED_IN. In the case of an explicit logout,

CSM-C reaches FREE (R3) when CSM-E receives a successful logout

response while continuing to be in the LOGGED_IN state.

An initiator must initiate an explicit or implicit connection

logout for a connection in the CLEANUP_WAIT state, if the

initiator intends to continue using the associated iSCSI session.

The following state diagram applies to both initiators and

targets.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 145]

 / R1 \

 +--\ /<-+

 / ---+--- \

 / | \ M3

 M1 | |M2 |

 | | /

 | | /

 | | /

 | V /

 | ------- /

 | / R2 \

 | \ /

 | -------

 | |

 | |M4

 | |

 | |

 | |

 | V

 | -------

 | / R3 \

 +---->\ /

The following state transition table represents the above diagram,

and follows the same conventions as in earlier sections.

 +----+----+----+

 |R1 |R2 |R3 |

-----+----+----+----+

 R1 | - |M2 |M1 |

-----+----+----+----+

 R2 |M3 | - |M4 |

-----+----+----+----+

 R3 | - | - | - |

-----+----+----+----+

8.2.1. State Descriptions for Initiators and Targets

-R1: CLEANUP_WAIT (Same as S8)

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 146]

 -initiator: Waiting for the internal event to initiate the
cleanup processing for CSM-C.

 -target: Waiting for the cleanup process to start for CSM-
C.

-R2: IN_CLEANUP

 -initiator: Waiting for the connection cleanup process to
conclude for CSM-C.

 -target: Waiting for the connection cleanup process to
conclude for CSM-C.

-R3: FREE (Same as S1)

 -initiator: End state for CSM-C.
 -target: End state for CSM-C.

8.2.2. State Transition Descriptions for Initiators and Targets

-M1: One or more of the following events was received:

 -initiator:
 -An internal event that indicates connection state

timeout.

 -An internal event of receiving a successful Logout
response on a different connection for a "close the

session" Logout.

 -target:
 -An internal event that indicates connection state

timeout.

 -An internal event of sending a Logout response
(success) on a different connection for a "close the

session" Logout request.

-M2: An implicit/explicit logout process was initiated by the

initiator.

 -In CSM-I usage:
 -initiator: An internal event requesting the connection

(or session) reinstatement was received, thus prompting

a connection (or session) reinstatement Login to be

sent transitioning CSM-I to state IN_LOGIN.

 -target: A connection/session reinstatement Login was
received while in state XPT_UP.

 -In CSM-E usage:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 147]

 -initiator: An internal event that indicates that an
explicit logout was sent for this CID in state

LOGGED_IN.

 -target: An explicit logout was received for this CID
in state LOGGED_IN.

-M3: Logout failure detected

 -In CSM-I usage:
 -initiator: CSM-I failed to reach LOGGED_IN and arrived

into FREE instead.

 -target: CSM-I failed to reach LOGGED_IN and arrived
into FREE instead.

 -In CSM-E usage:
 -initiator: CSM-E either moved out of LOGGED_IN, or

Logout timed out and/or aborted, or Logout response

(failure) was received.

 -target: CSM-E either moved out of LOGGED_IN, Logout
timed out and/or aborted, or an internal event that

indicates a failed Logout processing was received. A

Logout response (failure) was sent in the last case.

-M4: Successful implicit/explicit logout was performed.

 - In CSM-I usage:
 -initiator: CSM-I reached state LOGGED_IN, or an

internal event of receiving a Logout response (success)

on another connection for a "close the session" Logout

request was received.

 -target: CSM-I reached state LOGGED_IN, or an internal
event of sending a Logout response (success) on a

different connection for a "close the session" Logout

request was received.

 - In CSM-E usage:
 -initiator: CSM-E stayed in LOGGED_IN and received a

Logout response (success), or an internal event of

receiving a Logout response (success) on another

connection for a "close the session" Logout request was

received.

 -target: CSM-E stayed in LOGGED_IN and an internal
event indicating a successful Logout processing was

received, or an internal event of sending a Logout

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 148]

response (success) on a different connection for a

"close the session" Logout request was received.

8.3. Session State Diagrams

8.3.1. Session State Diagram for an Initiator

Symbolic Names for States:

Q1: FREE

Q3: LOGGED_IN

Q4: FAILED

State Q3 represents the Full Feature Phase operation of the

session.

The state diagram is as follows:

 / Q1 \

 +------>\ /<-+

 / ---+--- |

 / | |N3

 N6 | |N1 |

 | | |

 | N4 | |

 | +--------+ | /

 | | | | /

 | | | | /

 | | V V /

 -+--+-- -----+-

 / Q4 \ N5 / Q3 \

 \ /<---\ /

 ------- -------

The state transition table is as follows:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 149]

 +----+----+----+

 |Q1 |Q3 |Q4 |

-----+----+----+----+

 Q1 | - |N1 | - |

-----+----+----+----+

 Q3 |N3 | - |N5 |

-----+----+----+----+

 Q4 |N6 |N4 | - |

-----+----+----+----+

8.3.2. Session State Diagram for a Target

Symbolic Names for States:

Q1: FREE

Q2: ACTIVE

Q3: LOGGED_IN

Q4: FAILED

Q5: IN_CONTINUE

State Q3 represents the Full Feature Phase operation of the

session.

The state diagram is as follows:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 150]

 +------------------>/ Q1 \

 / +-------------->\ /<-+

 | | ---+--- |

 | | ^ | |N3

 N6 | |N11 N9| V N1 |

 | | +------ |

 | | / Q2 \ |

 | | \ / |

 | --+---- +--+--- |

 | / Q5 \ | |

 | \ / N10 | |

 | +-+---+------------+ |N2 /

 | ^ | | | /

 |N7| |N8 | | /

 | | | | V /

 -+--+-V V----+-

 / Q4 \ N5 / Q3 \

 \ /<-------------\ /

 ------- -------

The state transition table is as follows:

 +----+----+----+----+----+

 |Q1 |Q2 |Q3 |Q4 |Q5 |

-----+----+----+----+----+----+

 Q1 | - |N1 | - | - | - |

-----+----+----+----+----+----+

 Q2 |N9 | - |N2 | - | - |

-----+----+----+----+----+----+

 Q3 |N3 | - | - |N5 | - |

-----+----+----+----+----+----+

 Q4 |N6 | - | - | - |N7 |

-----+----+----+----+----+----+

 Q5 |N11 | - |N10 |N8 | - |

-----+----+----+----+----+----+

8.3.3. State Descriptions for Initiators and Targets

-Q1: FREE

 -initiator: State on instantiation or after cleanup.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 151]

 -target: State on instantiation or after cleanup.
-Q2: ACTIVE

 -initiator: Illegal.
 -target: The first iSCSI connection in the session

transitioned to IN_LOGIN, waiting for it to complete the

login process.

-Q3: LOGGED_IN

 -initiator: Waiting for all session events.
 -target: Waiting for all session events.

-Q4: FAILED

 -initiator: Waiting for session recovery or session

continuation.

 -target: Waiting for session recovery or session
continuation.

-Q5: IN_CONTINUE

 -initiator: Illegal.
 -target: Waiting for session continuation attempt to reach

a conclusion.

8.3.4. State Transition Descriptions for Initiators and Targets

-N1:

 -initiator: At least one transport connection reached the
LOGGED_IN state.

 -target: The first iSCSI connection in the session had
reached the IN_LOGIN state.

-N2:

 -initiator: Illegal.
 -target: At least one iSCSI connection reached the

LOGGED_IN state.

-N3:

 -initiator: Graceful closing of the session via session

closure (Section 6.3.6).

 -target: Graceful closing of the session via session
closure (Section 6.3.6) or a successful session

reinstatement cleanly closed the session.

-N4:

 -initiator: A session continuation attempt succeeded.
 -target: Illegal.

-N5:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 152]

 -initiator: Session failure (Section 6.3.6) occurred.
 -target: Session failure (Section 6.3.6) occurred.

-N6:

 -initiator: Session state timeout occurred, or a session
reinstatement cleared this session instance. This results

in the freeing of all associated resources and the session

state is discarded.

 -target: Session state timeout occurred, or a session
reinstatement cleared this session instance. This results

in the freeing of all associated resources and the session

state is discarded.

-N7:

 -initiator: Illegal.
 -target: A session continuation attempt is initiated.

-N8:

 -initiator: Illegal.
 -target: The last session continuation attempt failed.

-N9:

 -initiator: Illegal.
 -target: Login attempt on the leading connection failed.

-N10:

 -initiator: Illegal.
 -target: A session continuation attempt succeeded.

-N11:

 -initiator: Illegal.
 -target: A successful session reinstatement cleanly closed

the session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 153]

9. Security Considerations

Historically, native storage systems have not had to consider

security because their environments offered minimal security

risks. That is, these environments consisted of storage devices

either directly attached to hosts or connected via a Storage Area

Network (SAN) distinctly separate from the communications network.

The use of storage protocols, such as SCSI, over IP-networks

requires that security concerns be addressed. iSCSI

implementations must provide means of protection against active

attacks (e.g., pretending to be another identity, message

insertion, deletion, modification, and replaying) and passive

attacks (e.g.,eavesdropping, gaining advantage by analyzing the

data sent over the line).

Although technically possible, iSCSI SHOULD NOT be configured

without security, specifically in-band authentication, see Section

9.2. iSCSI configured without security should be confined to

closed environments that have very limited and well controlled

security risks. [RFC3723] specifies the mechanisms that must be

used in order to mitigate risks fully described in that document.

The following Section describes the security mechanisms provided

by an iSCSI implementation.

9.1. iSCSI Security Mechanisms

The entities involved in iSCSI security are the initiator, target,

and the IP communication end points. iSCSI scenarios in which

multiple initiators or targets share a single communication end

point are expected. To accommodate such scenarios, iSCSI uses two

separate security mechanisms: In-band authentication between the

initiator and the target at the iSCSI connection level (carried

out by exchange of iSCSI Login PDUs), and packet protection

(integrity, authentication, and confidentiality) by IPsec at the

IP level. The two security mechanisms complement each other. The

in-band authentication provides end-to-end trust (at login time)

between the iSCSI initiator and the target while IPsec provides a

secure channel between the IP communication end points. iSCSI can

be used to access sensitive information for which significant

security protection is appropriate. As further specified in the

rest of this security considerations section, both iSCSI security

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 154]

mechanisms are mandatory to implement (MUST). Use of in-band

authentication is strongly recommended (SHOULD). In contrast, use

of IPsec is optional (MAY) as the security risks that it addresses

may only be present over a subset of the networks used by an iSCSI

connection or a session; a specific example is that when an iSCSI

session spans data centers, IPsec VPN gateways at the data center

boundaries to protect the WAN connectivity between data centers

may be appropriate in combination with in-band iSCSI

authentication.

Further details on typical iSCSI scenarios and the relation

between the initiators, targets, and the communication end points

can be found in [RFC3723].

9.2. In-band Initiator-Target Authentication

During login, the target MAY authenticate the initiator and the

initiator MAY authenticate the target. The authentication is

performed on every new iSCSI connection by an exchange of iSCSI

Login PDUs using a negotiated authentication method.

The authentication method cannot assume an underlying IPsec

protection, because IPsec is optional to use. An attacker should

gain as little advantage as possible by inspecting the

authentication phase PDUs. Therefore, a method using clear text

(or equivalent) passwords MUST NOT be used; on the other hand,

identity protection is not strictly required.

The authentication mechanism protects against an unauthorized

login to storage resources by using a false identity (spoofing).

Once the authentication phase is completed, if the underlying

IPsec is not used, all PDUs are sent and received in clear. The

authentication mechanism alone (without underlying IPsec) should

only be used when there is no risk of eavesdropping, message

insertion, deletion, modification, and replaying.

Section 11 defines several authentication methods and the exact

steps that must be followed in each of them, including the iSCSI-

text-keys and their allowed values in each step. Whenever an iSCSI

initiator gets a response whose keys, or their values, are not

according to the step definition, it MUST abort the connection.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 155]

Whenever an iSCSI target gets a response whose keys, or their

values, are not according to the step definition, it MUST answer

with a Login reject with the "Initiator Error" or "Missing

Parameter" status. These statuses are not intended for

cryptographically incorrect values such as the CHAP response, for

which "Authentication Failure" status MUST be specified. The

importance of this rule can be illustrated in CHAP with target

authentication (see Section 12.1.3) where the initiator would have

been able to conduct a reflection attack by omitting his response

key (CHAP_R) using the same CHAP challenge as the target and

reflecting the target's response back to the target. In CHAP, this

is prevented because the target must answer the missing CHAP_R key

with a Login reject with the "Missing Parameter" status.

For some of the authentication methods, a key specifies the

identity of the iSCSI initiator or target for authentication

purposes. The value associated with that key MAY be different from

the iSCSI Name and SHOULD be configurable. (CHAP_N, see Section

12.1.3 and SRP_U, see Section 12.1.2). For this reason, iSCSI

implementations SHOULD manage authentication in a way that

impersonation across iSCSI Names via these authentication

identities is not possible. Specifically, implementations SHOULD

allow configuration of an authentication identity for a Name if

different, and authentication credentials for that identity.

During the login time, implementations SHOULD verify the Name-to-

identity relationship in addition to authenticating the identity

through the negotiated authentication method.

When an iSCSI session has multiple TCP connections, either

concurrently or sequentially, the authentication method and

identities should not vary among the connections. Therefore, all

connections in an iSCSI session SHOULD use the same authentication

method, iSCSI Name and authentication identity (for authentication

methods that use an authentication identity). Implementations

SHOULD check this and cause an authentication failure on a new

connection that uses a different authentication method, iSCSI

Name or authentication identity from those already used in the

session. In addition, implementations SHOULD NOT support both

authenticated and unauthenticated TCP connections in the same

iSCSI session, added either concurrently or sequentially to the

session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 156]

9.2.1. CHAP Considerations

Compliant iSCSI initiators and targets MUST implement the CHAP

authentication method [RFC1994] (according to Section 12.1.3

including the target authentication option).

When CHAP is performed over a non-encrypted channel, it is

vulnerable to an off-line dictionary attack. Implementations MUST

support use of up to 128 bit random CHAP secrets, including the

means to generate such secrets and to accept them from an external

generation source. Implementations MUST NOT provide secret

generation (or expansion) means other than random generation.

An administrative entity of an environment in which CHAP is used

with a secret that has less than 96 random bits MUST enforce IPsec

encryption (according to the implementation requirements in

Confidentiality) to protect the connection. Moreover, in this case

IKE authentication with group pre-shared cryptographic keys SHOULD

NOT be used unless it is not essential to protect group members

against off-line dictionary attacks by other members.

CHAP secrets MUST be an integral number of bytes (octets). A

compliant implementation SHOULD NOT continue with the login step

in which it should send a CHAP response (CHAP_R, Section 12.1.3)

unless it can verify that the CHAP secret is at least 96 bits, or

that IPsec encryption is being used to protect the connection.

Any CHAP secret used for initiator authentication MUST NOT be

configured for authentication of any target, and any CHAP secret

used for target authentication MUST NOT be configured for

authentication of any initiator. If the CHAP response received by

one end of an iSCSI connection is the same as the CHAP response

that the receiving endpoint would have generated for the same CHAP

challenge, the response MUST be treated as an authentication

failure and cause the connection to close (this ensures that the

same CHAP secret is not used for authentication in both

directions). Also, if an iSCSI implementation can function as

both initiator and target, different CHAP secrets and identities

MUST be configured for these two roles. The following is an

example of the attacks prevented by the above requirements:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 157]

a) Rogue wants to impersonate Storage to Alice, and knows
that a single secret is used for both directions of

Storage-Alice authentication.

b) Rogue convinces Alice to open two connections to Rogue,
and Rogue identifies itself as Storage on both

connections.

c) Rogue issues a CHAP challenge on connection 1, waits for
Alice to respond, and then reflects Alice's challenge as

the initial challenge to Alice on connection 2.

d) If Alice doesn't check for the reflection across
connections, Alice's response on connection 2 enables

Rogue to impersonate Storage on connection 1, even though

Rogue does not know the Alice-Storage CHAP secret.

Originators MUST NOT reuse the CHAP challenge sent by the

Responder for the other direction of a bidirectional

authentication. Responders MUST check for this condition and close

the iSCSI TCP connection if it occurs.

The same CHAP secret SHOULD NOT be configured for authentication

of multiple initiators or multiple targets, as this enables any of

them to impersonate any other one of them, and compromising one of

them enables the attacker to impersonate any of them. It is

recommended that iSCSI implementations check for use of identical

CHAP secrets by different peers when this check is feasible, and

take appropriate measures to warn users and/or administrators when

this is detected.

When an iSCSI initiator or target authenticates itself to

counterparts in multiple administrative domains, it SHOULD use a

different CHAP secret for each administrative domain to avoid

propagating security compromises across domains.

Within a single administrative domain:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 158]

- A single CHAP secret MAY be used for authentication of an

initiator to multiple targets.

- A single CHAP secret MAY be used for an authentication of a

target to multiple initiators when the initiators use an

external server (e.g., RADIUS, [RFC2865]) to verify the

target's CHAP responses and do not know the target's CHAP

secret.

If an external response verification server (e.g., RADIUS) is not

used, employing a single CHAP secret for authentication of a

target to multiple initiators requires that all such initiators

know that target secret. Any of these initiators can impersonate

the target to any other such initiator, and compromise of such an

initiator enables an attacker to impersonate the target to all

such initiators. Targets SHOULD use separate CHAP secrets for

authentication to each initiator when such risks are of concern;

in this situation it may be useful to configure a separate logical

iSCSI target with its own iSCSI Node Name for each initiator or

group of initiators among which such separation is desired.

 The above requirements strengthen the security properties of CHAP

authentication for iSCSI by comparison to the basic CHAP

authentication mechanism [RFC1994]. It is very important to

adhere to these requirements, especially the requirements for

strong (large randomly generated) CHAP secrets, as iSCSI

implementations and deployments that fail to use strong CHAP

secrets are likely to be highly vulnerable to off-line dictionary

attacks on CHAP secrets.

Replacement of CHAP with a better authentication mechanism is

anticipated in a future version of iSCSI. The FC-SP-2 standard

[FC-SP-2] has specified the EAP-GPSK authentication mechanism

[RFC5433] as an alternative to (and possible future replacement

for) Fibre Channel's similar usage of strengthened CHAP. Another

possible replacement for CHAP is a secure password mechanism,

e.g., an updated version of iSCSI's current SRP authentication

mechanism.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 159]

9.2.2. SRP Considerations

The strength of the SRP authentication method (specified in

[RFC2945]) is dependent on the characteristics of the group being

used (i.e., the prime modulus N and generator g). As described in

[RFC2945], N is required to be a Sophie-German prime (of the form

N = 2q + 1, where q is also prime) and the generator g is a

primitive root of GF(n). In iSCSI authentication, the prime

modulus N MUST be at least 768 bits.

The list of allowed SRP groups is provided in [RFC3723].

9.2.3. Kerberos Considerations

iSCSI uses raw Kerberos V5 [RFC4120] for authenticating a client

(iSCSI initiator) principal to a service (iSCSI target) principal.

Note that iSCSI does not use the Generic Security Services

Application Programming Interface (GSS-API) [RFC2743] nor the

Kerberos V5 GSS-API security mechanism [RFC4121]. This means that

iSCSI implementations supporting the KRB5 AuthMethod (Section

12.1) are directly involved in the Kerberos protocol. When

Kerberos V5 is used for authentication, the following actions MUST

be performed as specified in [RFC4120]:

Target MUST validate the KRB_AP_REQ to ensure that the

initiator can be trusted

When mutual authentication is selected, the initiator MUST

validate KRB_AP_REP to determine the outcome of mutual

authentication

As Kerberos V5 is capable of providing mutual authentication,

implementations SHOULD support mutual authentication by default

for login authentication.

Note however that Kerberos authentication only assures that the

server (iSCSI target) can be trusted by the Kerberos client

(initiator) and vice-versa; an initiator should employ

appropriately secured service discovery techniques (e.g. iSNS,

Section 4.2.7) to ensure that it is talking to the intended target

principal.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 160]

iSCSI does not use Kerberos v5 for either integrity or

confidentiality protection of the iSCSI protocol. iSCSI uses IPsec

for those purposes as specified in Section 9.3.

9.3. IPsec

iSCSI uses the IPsec mechanism for packet protection

(cryptographic integrity, authentication, and confidentiality) at

the IP level between the iSCSI communicating end points. The

following sections describe the IPsec protocols that must be

implemented for data integrity and authentication,

confidentiality, and cryptographic key management.

An iSCSI initiator or target may provide the required IPsec

support fully integrated or in conjunction with an IPsec front-end

device. In the latter case, the compliance requirements with

regard to IPsec support apply to the "combined device". Only the

"combined device" is to be considered an iSCSI device.

Detailed considerations and recommendations for using IPsec for

iSCSI are provided in [RFC3723] as updated by [IPSEC-IPS]. The

IPsec requirements are reproduced here for convenience and are

intended to match those in [IPSEC-IPS]; in the event of a

discrepancy, the requirements in [IPSEC-IPS] apply.

9.3.1. Data Integrity and Authentication

Data authentication and integrity is provided by a cryptographic

keyed Message Authentication Code in every sent packet. This code

protects against message insertion, deletion, and modification.

Protection against message replay is realized by using a sequence

counter.

An iSCSI-compliant initiator or target MUST provide data integrity

and authentication by implementing IPsec v2 [RFC2401] with ESPv2

[RFC2406] in tunnel mode, SHOULD provide data integrity and

authentication by implementing IPsec v3 [RFC4301] with ESPv3

[RFC4303] in tunnel mode, and MAY provide data integrity and

authentication by implementing either IPsec v2 or v3 with the

appropriate version of ESP in transport mode. The IPsec

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 161]

implementation MUST fulfill the following iSCSI-specific

requirements:

- HMAC-SHA1 MUST be implemented in the specific form of HMAC-

SHA-1-96 [RFC2404].

- AES CBC MAC with XCBC extensions using 128-bit keys SHOULD

be implemented [RFC3566].

- Implementations that support IKEv2 [RFC5996] SHOULD also

implement AES GMAC [RFC4543] using 128-bit keys.

The ESP anti-replay service MUST also be implemented.

At the high speeds iSCSI is expected to operate, a single IPsec SA

could rapidly cycle through the ESP 32-bit sequence number space.

In view of this, an iSCSI implementation that is capable of

operating at speeds of 1 Gbps and that implements both IKEv2

[RFC5996] and ESPv3 [RFC4303] MUST also implement extended (64-

bit) sequence numbers for ESPv3 and SHOULD use ESPv3 extended

sequence numbers for all security associations that use ESPv3 to

protect iSCSI connections.

9.3.2. Confidentiality

Confidentiality is provided by encrypting the data in every

packet. When confidentiality is used it MUST be accompanied by

data integrity and authentication to provide comprehensive

protection against eavesdropping, message insertion, deletion,

modification, and replaying.

An iSCSI-compliant initiator or target MUST provide

confidentiality by implementing IPsec v2 [RFC2401] with ESPv2

[RFC2406] in tunnel mode, SHOULD provide confidentiality by

implementing IPsec v3 [RFC4301] with ESPv3 [RFC4303] in tunnel

mode and MAY provide confidentiality by implementing either IPsec

v2 or v3 with the appropriate version of ESP in transport mode,

with the following iSCSI specific requirements that apply to IPsec

v2 and IPsec v3:

- 3DES in CBC mode MAY be implemented [RFC2451].

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 162]

- AES in CBC mode with 128-bit keys MUST be implemented

[RFC3602]; other key sizes MAY be supported.

- AES in Counter mode MAY be implemented [RFC3686].

- Implementations that support IKEv2 [RFC5996] SHOULD also

implement AES GCM with 128-bit keys [RFC4106]]; other key

sizes MAY be supported.

DES in CBC mode MUST NOT be used due to its inherent weakness.

The NULL encryption algorithm MUST also be implemented.

9.3.3. Policy, Security Associations, and Cryptographic Key
Management

A compliant iSCSI implementation MUST meet the cryptographic key

management requirements of the IPsec protocol suite.

Authentication, security association negotiation, and

cryptographic key management MUST be provided by implementing IKE

[RFC2409] using the IPsec DOI [RFC2407], and SHOULD be provided by

implementing IKEv2 [RFC5996], with the following iSCSI-specific

requirements:

a) Peer authentication using a pre-shared cryptographic key MUST
be supported. Certificate-based peer authentication using

digital signatures MAY be supported. For IKEv1 ([RFC2409]),

peer authentication using the public key encryption methods

outlined in IKE sections 5.2 and 5.3 of [RFC2409] SHOULD NOT

be used.

b) When digital signatures are used to achieve authentication,
an IKE negotiator SHOULD use IKE Certificate Request

Payload(s) to specify the certificate authority. IKE

negotiators SHOULD check the pertinent Certificate Revocation

List (CRL) before accepting a PKI certificate for use in IKE

authentication procedures. These checks may not be needed in

environments where a small number of certificates are

statically configured as trust anchors.

c) Conformant iSCSI implementations of IKEv1 MUST support Main
Mode and SHOULD support Aggressive Mode. Main Mode with pre-

shared key authentication method SHOULD NOT be used when

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 163]

either the initiator or the target uses dynamically assigned

addresses. While in many cases pre-shared keys offer good

security, situations in which dynamically assigned addresses

are used force the use of a group pre-shared key, which

creates vulnerability to a man-in-the-middle attack.

d) In the IKEv1 Phase 2 Quick Mode, exchanges for creating the
Phase 2 SA, the Identification Payload MUST be present.

e) The following identification type requirements apply to
IKEv1. ID_IPV4_ADDR, ID_IPV6_ADDR (if the protocol stack

supports IPv6) and ID_FQDN Identification Types MUST be

supported; ID_USER_FQDN SHOULD be supported. The IP Subnet,

IP Address Range, ID_DER_ASN1_DN, and ID_DER_ASN1_GN

Identification Types SHOULD NOT be used. The ID_KEY_ID

Identification Type MUST NOT be used.

f) If IKEv2 is supported, the following identification
requirements apply. ID_IPV4_ADDR, ID_IPV6_ADDR (if the

protocol stack supports IPv6) and ID_FQDN Identification

Types MUST be supported; ID_RFC822_ADDR SHOULD be supported.

The ID_DER_ASN1_DN, and ID_DER_ASN1_GN Identification Types

SHOULD NOT be used. The ID_KEY_ID Identification Type MUST

NOT be used.

The reasons for the "MUST NOT" and "SHOULD NOT" requirements for

identification type requirements in preceding bullets e) and f)

are:

- IP Subnet and IP Address Range are too broad to usefully

identify an iSCSI endpoint.

- The DN and GN types are X.500 identities; it is usually

better to use an identity from subjectAltName in a PKI

certificate.

- ID_KEY_ID is not interoperable as specified.

Manual cryptographic keying MUST NOT be used because it does not

provide the necessary re-keying support.

When DH groups are used, a DH group of at least 2048 bits SHOULD

be offered as a part of all proposals to create IPsec Security

Associations to protect iSCSI traffic, with both IKEv1 and IKEv2.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 164]

When IPsec is used, the receipt of an IKEv1 Phase 2 delete message

or an IKEv2 INFORMATIONAL exchange that deletes the SA SHOULD NOT

be interpreted as a reason for tearing down the iSCSI TCP

connection. If additional traffic is sent on it, a new IKE SA will

be created to protect it.

The method used by the initiator to determine whether the target

should be connected using IPsec is regarded as an issue of IPsec

policy administration, and thus not defined in the iSCSI standard.

The method used by an initiator that supports both IPsec v2 and v3

to determine which versions of IPsec are supported by the target

is also regarded as an issue of IPsec policy administration, and

thus not defined in the iSCSI standard. If both IPsec v2 and v3

are supported by both the initiator and target, use of IPsec v3 is

recommended.

If an iSCSI target is discovered via a SendTargets request in a

discovery session not using IPsec, the initiator should assume

that it does not need IPsec to establish a session to that target.

If an iSCSI target is discovered using a discovery session that

does use IPsec, the initiator SHOULD use IPsec when establishing a

session to that target.

9.4. Security Considerations for the X#NodeArchitecture Key

The security considerations in this Section are specific to the

X#NodeArchitecture discussed in Section 13.26.

This extension key transmits specific implementation details about

the node that sends it; such details may be considered sensitive

in some environments. For example, if a certain software or

firmware version is known to contain security weaknesses,

announcing the presence of that version via this key may not be

desirable. The countermeasures for this security concern are:

a) sending less detailed information in the key values,
b) not sending the extension key, or
c) using IPsec ([RFC4303]) to provide confidentiality for the

iSCSI connection on which the key is sent

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 165]

To support the first and second countermeasures, all

implementations of this extension key MUST provide an

administrative mechanism to disable sending the key. In addition,

all implementations SHOULD provide an administrative mechanism to

configure a verbosity level of the key value, thereby controlling

the amount of information sent.

For example, a lower verbosity might enable transmission of node

architecture component names only, but no version numbers. The

choice of which countermeasure is most appropriate depends on the

environment. However, sending less detailed information in the key

values may be an acceptable countermeasure in many environments,

since it provides a compromise between sending too much

information and the other more complete countermeasures of not

sending the key at all or using IPsec.

In addition to security considerations involving transmission of

the key contents, any logging method(s) used for the key values

MUST keep the information secure from intruders. For all

implementations, the requirements to address this security concern

are:

a) Display of the log MUST only be possible with administrative
rights to the node.

b) Options to disable logging to disk and to keep logs for a
fixed duration SHOULD be provided.

Finally, it is important to note that different nodes may have

different levels of risk, and these differences may affect the

implementation. The components of risk include assets, threats,

and vulnerabilities. Consider the following example iSCSI nodes,

which demonstrate differences in assets and vulnerabilities of the

nodes, and as a result, differences in implementation:

a) One iSCSI target based on a special-purpose operating
system: Since the iSCSI target controls access to the

data storage containing company assets, the asset level

is seen as very high. Also, because of the special-

purpose operating system, in which vulnerabilities are

less well-known, the vulnerability level is viewed as

low.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 166]

b) Multiple iSCSI initiators in a blade farm, each running a
general purpose operating system: The asset level of each

node is viewed as low, since blades are replaceable and

low cost. However, the vulnerability level is viewed as

high, since there may be many well-known vulnerabilities

to that general-purpose operating system. For this

target, an appropriate implementation might be logging of

received key values, but no transmission of the key. For

this initiator, an appropriate implementation might be

transmission of the key, but no logging of received key

values.

9.5. SCSI Access Control Considerations

iSCSI is a SCSI transport protocol and as such does not apply any

access controls on SCSI-level operations such as SCSI task

management functions (e.g. LU Reset, see Section 11.5.1). SCSI-

level access controls (e.g. ACCESS CONTROL OUT, see [SPC3]) have

to be appropriately deployed in practice to address SCSI-level

security considerations, in addition to security at iSCSI

connection and packet protection mechanisms that were already

discussed in preceding Sections.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 167]

10. Notes to Implementers

This Section notes some of the performance and reliability

considerations of the iSCSI protocol. This protocol was designed

to allow efficient silicon and software implementations. The iSCSI

task tag mechanism was designed to enable Direct Data Placement

(DDP - a DMA form) at the iSCSI level or lower.

The guiding assumption made throughout the design of this protocol

is that targets are resource constrained relative to initiators.

Implementers are also advised to consider the implementation

consequences of the iSCSI to SCSI mapping model as outlined in

Section 4.4.3.

10.1. Multiple Network Adapters

The iSCSI protocol allows multiple connections, not all of which

need to go over the same network adapter. If multiple network

connections are to be utilized with hardware support, the iSCSI

protocol command-data-status allegiance to one TCP connection

ensures that there is no need to replicate information across

network adapters or otherwise require them to cooperate.

However, some task management commands may require some loose form

of cooperation or replication at least on the target.

10.1.1. Conservative Reuse of ISIDs

Historically, the SCSI model (and implementations and applications

based on that model) has assumed that SCSI ports are static,

physical entities. Recent extensions to the SCSI model have taken

advantage of persistent worldwide unique names for these ports. In

iSCSI however, the SCSI initiator ports are the endpoints of

dynamically created sessions, so the presumptions of "static and

physical" do not apply. In any case, the model clauses

(particularly, Section 4.4.1) provide for persistent, reusable

names for the iSCSI-type SCSI initiator ports even though there

does not need to be any physical entity bound to these names.

To both minimize the disruption of legacy applications and to

better facilitate the SCSI features that rely on persistent names

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 168]

for SCSI ports, iSCSI implementations SHOULD attempt to provide a

stable presentation of SCSI Initiator Ports (both to the upper OS-

layers and to the targets to which they connect). This can be

achieved in an initiator implementation by conservatively reusing

ISIDs. In other words, the same ISID should be used in the Login

process to multiple target portal groups (of the same iSCSI Target

or different iSCSI Targets). The ISID RULE (Section 4.4.3) only

prohibits reuse to the same target portal group. It does not

"preclude" reuse to other target portal groups.

The principle of conservative reuse "encourages" reuse to other

target portal groups. When a SCSI target device sees the same

(InitiatorName, ISID) pair in different sessions to different

target portal groups, it can identify the underlying SCSI

Initiator Port on each session as the same SCSI port. In effect,

it can recognize multiple paths from the same source.

10.1.2. iSCSI Name, ISID, and TPGT Use

The designers of the iSCSI protocol are aware that legacy SCSI

transports rely on initiator identity to assign access to storage

resources. Although newer techniques are available and simplify

access control, support for configuration and authentication

schemes that are based on initiator identity is deemed important

in order to support legacy systems and administration software.

iSCSI thus supports the notion that it should be possible to

assign access to storage resources based on "initiator device"

identity.

When there are multiple hardware or software components

coordinated as a single iSCSI Node, there must be some (logical)

entity that represents the iSCSI Node that makes the iSCSI Node

Name available to all components involved in session creation and

login. Similarly, this entity that represents the iSCSI Node must

be able to coordinate session identifier resources (ISID for

initiators) to enforce both the ISID and TSIH RULES (see Section

4.4.3).

For targets, because of the closed environment, implementation of

this entity should be straightforward. However, vendors of iSCSI

hardware (e.g., NICs or HBAs) intended for targets, SHOULD provide

mechanisms for configuration of the iSCSI Node Name across the

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 169]

portal groups instantiated by multiple instances of these

components within a target.

However, complex targets making use of multiple Target Portal

Group Tags may reconfigure them to achieve various quality goals.

The initiators have two mechanisms at their disposal to discover

and/or check reconfiguring targets - the discovery session type

and a key returned by the target during login to confirm the TPGT.

An initiator should attempt to "rediscover" the target

configuration anytime a session is terminated unexpectedly.

For initiators, in the long term, it is expected that operating

system vendors will take on the role of this entity and provide

standard APIs that can inform components of their iSCSI Node Name

and can configure and/or coordinate ISID allocation, use, and

reuse.

Recognizing that such initiator APIs are not available today,

other implementations of the role of this entity are possible. For

example, a human may instantiate the (common) Node name as part of

the installation process of each iSCSI component involved in

session creation and login. This may be done either by pointing

the component to a vendor-specific location for this datum or to a

system-wide location. The structure of the ISID namespace (see

Section 11.12.5 and [RFC3721]) facilitates implementation of the

ISID coordination by allowing each component vendor to

independently (of other vendor's components) coordinate

allocation, use, and reuse of its own partition of the ISID

namespace in a vendor-specific manner. Partitioning of the ISID

namespace within initiator portal groups managed by that vendor

allows each such initiator portal group to act independently of

all other portal groups when selecting an ISID for a login; this

facilitates enforcement of the ISID RULE (see Section 4.4.3) at

the initiator.

A vendor of iSCSI hardware (e.g., NICs or HBAs) intended for use

in initiators MUST implement a mechanism for configuring the iSCSI

Node Name. Vendors, and administrators must ensure that iSCSI Node

Names are unique worldwide. It is therefore important that when

one chooses to reuse the iSCSI Node Name of a disabled unit, not

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 170]

to re-assign that name to the original unit unless its worldwide

uniqueness can be ascertained again.

In addition, a vendor of iSCSI hardware must implement a mechanism

to configure and/or coordinate ISIDs for all sessions managed by

multiple instances of that hardware within a given iSCSI Node.

Such configuration might be either permanently pre-assigned at the

factory (in a necessarily globally unique way), statically

assigned (e.g., partitioned across all the NICs at initialization

in a locally unique way), or dynamically assigned (e.g., on-line

allocator, also in a locally unique way). In the latter two cases,

the configuration may be via public APIs (perhaps driven by an

independent vendor's software, such as the OS vendor) or via

private APIs driven by the vendor's own software.

The process of name assignment and coordination has to be as

encompassing and automated as possible as years of legacy usage

have shown it to be highly error-prone. It is to be mentioned

that SCSI has today alternative schemes of access control that can

be used by all transports and their security is not dependent on

strict naming coordination.

10.2. Autosense and Auto Contingent Allegiance (ACA)

Autosense refers to the automatic return of sense data to the

initiator in case a command did not complete successfully. iSCSI

initiators and targets MUST support and use autosense.

ACA helps preserve ordered command execution in the presence of

errors. As there can be many commands in-flight between an

initiator and a target, SCSI initiator functionality in some

operating systems depends on ACA to enforce ordered command

execution during error recovery, and hence iSCSI initiator

implementations for those operating systems need to support ACA.

In order to support error recovery for these operating systems and

iSCSI initiators, iSCSI targets SHOULD support ACA.

10.3. iSCSI Timeouts

iSCSI recovery actions are often dependent on iSCSI time-outs

being recognized and acted upon before SCSI time-outs. Determining

the right time-outs to use for various iSCSI actions (command

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 171]

acknowledgements expected, status acknowledgements, etc.) is very

much dependent on infrastructure (hardware, links, TCP/IP stack,

iSCSI driver). As a guide, the implementer may use an average Nop-

Out/Nop-In turnaround delay multiplied by a "safety factor" (e.g.,

4) as a good estimate for the basic delay of the iSCSI stack for a

given connection. The safety factor should account for the network

load variability. For connection teardown the implementer may

want to consider also TCP common practice for the given

infrastructure.

Text negotiations MAY also be subject to either time-limits or

limits in the number of exchanges. Those SHOULD be generous enough

to avoid affecting interoperability (e.g., allowing each key to be

negotiated on a separate exchange).

The relation between iSCSI timeouts and SCSI timeouts should also

be considered. SCSI timeouts should be longer than iSCSI timeouts

plus the time required for iSCSI recovery whenever iSCSI recovery

is planned. Alternatively, an implementer may choose to interlock

iSCSI timeouts and recovery with SCSI timeouts so that SCSI

recovery will become active only where iSCSI is not planned to, or

failed to, recover.

The implementer may also want to consider the interaction between

various iSCSI exception events - such as a digest failure - and

subsequent timeouts. When iSCSI error recovery is active, a digest

failure is likely to result in discovering a missing command or

data PDU. In these cases, an implementer may want to lower the

timeout values to enable faster initiation for recovery

procedures.

10.4. Command Retry and Cleaning Old Command Instances

To avoid having old, retried command instances appear in a valid

command window after a command sequence number wrap around, the

protocol requires (see Section 4.2.2.1) that on every connection

on which a retry has been issued, a non-immediate command be

issued and acknowledged within a 2**31-1 commands interval from

the CmdSN of the retried command. This requirement can be

fulfilled by an implementation in several ways.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 172]

The simplest technique to use is to send a (non-retry) non-

immediate SCSI command (or a NOP if no SCSI command is available

for a while) after every command retry on the connection on which

the retry was attempted. As errors are deemed rare events, this

technique is probably the most effective, as it does not involve

additional checks at the initiator when issuing commands.

10.5. Synch and Steering Layer and Performance

While a synch and steering layer is optional, an initiator/target

that does not have it working against a target/initiator that

demands synch and steering may experience performance degradation

caused by packet reordering and loss. Providing a synch and

steering mechanism is recommended for all high-speed

implementations.

10.6. Considerations for State-dependent Devices and Long-lasting
SCSI Operations

Sequential access devices operate on the principle that the

position of the device is based on the last command processed. As

such, command processing order and knowledge of whether or not the

previous command was processed is of the utmost importance to

maintain data integrity. For example, inadvertent retries of SCSI

commands when it is not known if the previous SCSI command was

processed is a potential data integrity risk.

For a sequential access device, consider the scenario in which a

SCSI SPACE command to backspace one filemark is issued and then

re-issued due to no status received for the command. If the first

SPACE command was actually processed, the re-issued SPACE command,

if processed, will cause the position to change. Thus, a

subsequent write operation will write data to the wrong position

and any previous data at that position will be overwritten.

For a medium changer device, consider the scenario in which an

EXCHANGE MEDIUM command (the SOURCE ADDRESS and DESTINATION

ADDRESS are the same thus performing a swap) is issued and then

re-issued due to no status received for the command. If the first

EXCHANGE MEDIUM command was actually processed, the re-issued

EXCHANGE MEDIUM command, if processed, will perform the swap

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 173]

again. The net effect is no swap was performed thus leaving a data

integrity exposure.

All commands that change the state of the device (as in SPACE

commands for sequential access devices, and EXCHANGE MEDIUM for

medium changer device), MUST be issued as non-immediate commands

for deterministic and in order delivery to iSCSI targets.

For many of those state changing commands, the execution model

also assumes that the command is executed exactly once. Devices

implementing READ POSITION and LOCATE provide a means for SCSI

level command recovery and new tape-class devices should support

those commands. In their absence a retry at SCSI level is

difficult and error recovery at iSCSI level is advisable.

Devices operating on long latency delivery subsystems and

performing long lasting SCSI operations may need mechanisms that

enable connection replacement while commands are running (e.g.,

during an extended copy operation).

10.6.1. Determining the Proper ErrorRecoveryLevel

The implementation and use of a specific ErrorRecoveryLevel should

be determined based on the deployment scenarios of a given iSCSI

implementation. Generally, the following factors must be

considered before deciding on the proper level of recovery:

a) Application resilience to I/O failures.
b) Required level of availability in the face of transport

connection failures.

c) Probability of transport layer "checksum escape" (message
error undetected by TCP checksum – see [RFC3385] for

related discussion). This in turn decides the iSCSI

digest failure frequency, and thus the criticality of

iSCSI-level error recovery. The details of estimating

this probability are outside the scope of this document.

A consideration of the above factors for SCSI tape devices as an

example suggests that implementations SHOULD use

ErrorRecoveryLevel=1 when transport connection failure is not a

concern and SCSI level recovery is unavailable, and

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 174]

ErrorRecoveryLevel=2 when the connection failure is also of high

likelihood during a backup/retrieval.

For extended copy operations, implementations SHOULD use

ErrorRecoveryLevel=2 whenever there is a relatively high

likelihood of connection failure.

10.7. Multi-task Abort Implementation Considerations

Multi-task abort operations are typically issued in emergencies -

such as clearing a device lock-up, HA failover/failback etc. In

these circumstances, it is desirable to rapidly go through the

error handling process as opposed to the target waiting on

multiple third-party initiators who may not even be functional

anymore - especially if this emergency is triggered because of one

such initiator failure. Therefore, both iSCSI target and

initiator implementations SHOULD support FastAbort multi-task

abort semantics (Section 4.2.3.4).

Note that both in standard semantics (Section 4.2.3.3) and

FastAbort semantics (Section 4.2.3.4), there may be outstanding

data transfers even after the TMF completion is reported on the

issuing session. In the case of iSCSI/iSER [iSER], these would be

tagged data transfers for STags not owned by any active tasks.

Whether or not real buffers support these data transfers is

implementation-dependent. However, the data transfers logically

MUST be silently discarded by the target iSCSI layer in all cases.

A target MAY, on an implementation-defined internal timeout, also

choose to drop the connections on which it did not receive the

expected Data-Out sequences (Section 4.2.3.3) or NOP-Out

acknowledgements (Section 4.2.3.4) so as to reclaim the associated

buffer, STag, and TTT resources as appropriate.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 175]

11. iSCSI PDU Formats

All multi-byte integers that are specified in formats defined in

this document are to be represented in network byte order (i.e.,

big endian). Any field that appears in this document assumes that

the most significant byte is the lowest numbered byte and the most

significant bit (within byte or field) is the lowest numbered bit

unless specified otherwise.

Any compliant sender MUST set all bits not defined and all

reserved fields to zero unless specified otherwise. Any compliant

receiver MUST ignore any bit not defined and all reserved fields

unless specified otherwise. Receipt of reserved code values in

defined fields MUST be reported as a protocol error.

Reserved fields are marked by the word "reserved", some

abbreviation of "reserved", or by "." for individual bits when no

other form of marking is technically feasible.

11.1. iSCSI PDU Length and Padding

iSCSI PDUs are padded to the closest integer number of four byte

words. The padding bytes SHOULD be sent as 0.

11.2. PDU Template, Header, and Opcodes

All iSCSI PDUs have one or more header segments and, optionally, a

data segment. After the entire header segment group a header-

digest MAY follow. The data segment MAY also be followed by a

data-digest.

The Basic Header Segment (BHS) is the first segment in all of the

iSCSI PDUs. The BHS is a fixed-length 48-byte header segment. It

MAY be followed by Additional Header Segments (AHS), a Header-

Digest, a Data Segment, and/or a Data-Digest.

The overall structure of an iSCSI PDU is as follows:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 176]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0/ Basic Header Segment (BHS) /

 +/ /

 +---------------+---------------+---------------+--------------+

48/ Additional Header Segment 1 (AHS) (optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 / Additional Header Segment 2 (AHS) (optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 +---------------+---------------+---------------+--------------+

 / Additional Header Segment n (AHS) (optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 k/ Header-Digest (optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 l/ Data Segment(optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 m/ Data-Digest (optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

All PDU segments and digests are padded to the closest integer

number of four byte words. For example, all PDU segments and

digests start at a four byte word boundary and the padding ranges

from 0 to 3 bytes. The padding bytes SHOULD be sent as 0.

iSCSI response PDUs do not have AH Segments.

11.2.1. Basic Header Segment (BHS)

The BHS is 48 bytes long. The Opcode and DataSegmentLength fields

appear in all iSCSI PDUs. In addition, when used, the Initiator

Task Tag and Logical Unit Number always appear in the same

location in the header.

The format of the BHS is:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 177]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|I| Opcode |F| Opcode-specific fields |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Opcode-specific fields |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20/ Opcode-specific fields /

 +/ /

 +---------------+---------------+---------------+--------------+

48

11.2.1.1. I

For request PDUs, the I bit set to 1 is an immediate delivery

marker.

11.2.1.2. Opcode

The Opcode indicates the type of iSCSI PDU the header

encapsulates.

The Opcodes are divided into two categories: initiator opcodes and

target opcodes. Initiator opcodes are in PDUs sent by the

initiator (request PDUs). Target opcodes are in PDUs sent by the

target (response PDUs).

Initiators MUST NOT use target opcodes and targets MUST NOT use

initiator opcodes.

Initiator opcodes defined in this specification are:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 178]

0x00 NOP-Out

0x01 SCSI Command (encapsulates a SCSI Command Descriptor

Block)

0x02 SCSI Task Management function request

0x03 Login Request

0x04 Text Request

0x05 SCSI Data-out (for WRITE operations)

0x06 Logout Request

0x10 SNACK Request

0x1c-0x1e Vendor specific codes

Target opcodes are:

0x20 NOP-In

0x21 SCSI Response - contains SCSI status and possibly sense

information or other response information.

0x22 SCSI Task Management function response

0x23 Login Response

0x24 Text Response

0x25 SCSI Data-in - for READ operations.

0x26 Logout Response

0x31 Ready To Transfer (R2T) - sent by target when it is ready

to receive data.

0x32 Asynchronous Message - sent by target to indicate certain

special conditions.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 179]

0x3c-0x3e Vendor specific codes

0x3f Reject

All other opcodes are reserved.

11.2.1.3. Final (F) bit

When set to 1 it indicates the final (or only) PDU of a sequence.

11.2.1.4. Opcode-specific Fields

These fields have different meanings for different opcode types.

11.2.1.5. TotalAHSLength

Total length of all AHS header segments in units of four byte

words including padding, if any.

The TotalAHSLength is only used in PDUs that have an AHS and MUST

be 0 in all other PDUs.

11.2.1.6. DataSegmentLength

This is the data segment payload length in bytes (excluding

padding). The DataSegmentLength MUST be 0 whenever the PDU has no

data segment.

11.2.1.7. LUN

Some opcodes operate on a specific Logical Unit. The Logical Unit

Number (LUN) field identifies which Logical Unit. If the opcode

does not relate to a Logical Unit, this field is either ignored or

may be used in an opcode specific way. The LUN field is 64-bits

and should be formatted in accordance with [SAM2]. For example,

LUN[0] from [SAM2] is BHS byte 8 and so on up to LUN[7] from

[SAM2], which is BHS byte 15.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 180]

11.2.1.8. Initiator Task Tag

The initiator assigns a Task Tag to each iSCSI task it issues.

While a task exists, this tag MUST uniquely identify the task

session-wide. SCSI may also use the initiator task tag as part of

the SCSI task identifier when the timespan during which an iSCSI

initiator task tag must be unique extends over the timespan during

which a SCSI task tag must be unique. However, the iSCSI Initiator

Task Tag must exist and be unique even for untagged SCSI commands.

An ITT value of 0xffffffff is reserved and MUST NOT be assigned

for a task by the initiator. The only instance in which it may be

seen on the wire is in a target-initiated NOP-In PDU (Section

11.19) and in the initiator response to that PDU, if necessary.

11.2.2. Additional Header Segment (AHS)

The general format of an AHS is:

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0| AHSLength | AHSType | AHS-Specific |

 +---------------+---------------+---------------+--------------+

 4/ AHS-Specific /

 +/ /

 +---------------+---------------+---------------+--------------+

 x

11.2.2.1. AHSType

The AHSType field is coded as follows:

bit 0-1 - Reserved

bit 2-7 - AHS code

 0 - Reserved

 1 - Extended CDB

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 181]

 2 - Expected Bidirectional Read Data Length

 3 - 63 Reserved

11.2.2.2. AHSLength

This field contains the effective length in bytes of the AHS

excluding AHSType and AHSLength and padding, if any. The AHS is

padded to the smallest integer number of 4 byte words (i.e., from

0 up to 3 padding bytes).

11.2.2.3. Extended CDB AHS

The format of the Extended CDB AHS is:

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0| AHSLength (CDBLength-15) | 0x01 | Reserved |

 +---------------+---------------+---------------+--------------+

 4/ ExtendedCDB...+padding /

 +/ /

 +---------------+---------------+---------------+--------------+

 x

This type of AHS MUST NOT be used if the CDBLength is less than

17.

The length includes the reserved byte 3.

11.2.2.4. Bidirectional Expected Read-Data Length AHS

The format of the Bidirectional Read Expected Data Transfer Length

AHS is:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 182]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0| AHSLength (0x0005) | 0x02 | Reserved |

 +---------------+---------------+---------------+--------------+

 4| Expected Read-Data Length |

 +---------------+---------------+---------------+--------------+

 8

11.2.3. Header Digest and Data Digest

Optional header and data digests protect the integrity of the

header and data, respectively. The digests, if present, are

located, respectively, after the header and PDU-specific data, and

cover respectively the header and the PDU data, each including

the padding bytes, if any.

The existence and type of digests are negotiated during the Login

Phase.

The separation of the header and data digests is useful in iSCSI

routing applications, in which only the header changes when a

message is forwarded. In this case, only the header digest should

be recalculated.

Digests are not included in data or header length fields.

A zero-length Data Segment also implies a zero-length data-digest.

11.2.4. Data Segment

The (optional) Data Segment contains PDU associated data. Its

payload effective length is provided in the BHS field -

DataSegmentLength. The Data Segment is also padded to an integer

number of 4 byte words.

11.3. SCSI Command

The format of the SCSI Command PDU is:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 183]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|I| 0x01 |F|R|W|. .|ATTR | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| Logical Unit Number (LUN) |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Expected Data Transfer Length |

 +---------------+---------------+---------------+--------------+

24| CmdSN |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32/ SCSI Command Descriptor Block (CDB) /

 +/ /

 +---------------+---------------+---------------+--------------+

48/ AHS (Optional) /

 +---------------+---------------+---------------+--------------+

 x/ Header Digest (Optional) /

 +---------------+---------------+---------------+--------------+

 y/ (DataSegment, Command Data) (Optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 z/ Data Digest (Optional) /

 +---------------+---------------+---------------+--------------+

11.3.1. Flags and Task Attributes (byte 1)

The flags for a SCSI Command are:

bit 0 (F) is set to 1 when no unsolicited SCSI Data-Out PDUs

follow this PDU. When F=1 for a write and if Expected Data

Transfer Length is larger than the DataSegmentLength, the

target may solicit additional data through R2T.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 184]

bit 1 (R) is set to 1 when the command is expected to input

data.

bit 2 (W) is set to 1 when the command is expected to output

data.

bit 3-4 Reserved.

bit 5-7 contains Task Attributes.

Task Attributes (ATTR) have one of the following integer values

(see [SAM2] for details):

0 - Untagged

1 - Simple

2 - Ordered

3 - Head of Queue

4 - ACA

5-7 - Reserved

At least one of the W and F bits MUST be set to 1.

Either or both of R and W MAY be 1 when either the Expected Data

Transfer Length and/or Bidirectional Read Expected Data Transfer

Length are 0, but they MUST NOT both be 0 when the Expected Data

Transfer Length and/or Bidirectional Read Expected Data Transfer

Length are not 0 (i.e., when some data transfer is expected the

transfer direction is indicated by the R and/or W bit).

11.3.2. CmdSN - Command Sequence Number

Enables ordered delivery across multiple connections in a single

session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 185]

11.3.3. ExpStatSN

Command responses up to ExpStatSN-1 (mod 2**32) have been received

(acknowledges status) on the connection.

11.3.4. Expected Data Transfer Length

For unidirectional operations, the Expected Data Transfer Length

field contains the number of bytes of data involved in this SCSI

operation. For a unidirectional write operation (W flag set to 1

and R flag set to 0), the initiator uses this field to specify the

number of bytes of data it expects to transfer for this operation.

For a unidirectional read operation (W flag set to 0 and R flag

set to 1), the initiator uses this field to specify the number of

bytes of data it expects the target to transfer to the initiator.

It corresponds to the SAM2 byte count.

For bidirectional operations (both R and W flags are set to 1),

this field contains the number of data bytes involved in the write

transfer. For bidirectional operations, an additional header

segment MUST be present in the header sequence that indicates the

Bidirectional Read Expected Data Transfer Length. The Expected

Data Transfer Length field and the Bidirectional Read Expected

Data Transfer Length field correspond to the SAM2 byte count.

If the Expected Data Transfer Length for a write and the length of

the immediate data part that follows the command (if any) are the

same, then no more data PDUs are expected to follow. In this

case, the F bit MUST be set to 1.

If the Expected Data Transfer Length is higher than the

FirstBurstLength (the negotiated maximum amount of unsolicited

data the target will accept), the initiator MUST send the maximum

amount of unsolicited data OR ONLY the immediate data, if any.

Upon completion of a data transfer, the target informs the

initiator (through residual counts) of how many bytes were

actually processed (sent and/or received) by the target.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 186]

11.3.5. CDB - SCSI Command Descriptor Block

There are 16 bytes in the CDB field to accommodate the commonly

used CDBs. Whenever the CDB is larger than 16 bytes, an Extended

CDB AHS MUST be used to contain the CDB spillover.

11.3.6. Data Segment - Command Data

Some SCSI commands require additional parameter data to accompany

the SCSI command. This data may be placed beyond the boundary of

the iSCSI header in a data segment. Alternatively, user data

(e.g., from a WRITE operation) can be placed in the data segment

(both cases are referred to as immediate data). These data are

governed by the rules for solicited vs. unsolicited data outlined

in Section 4.2.5.2.

11.4. SCSI Response

The format of the SCSI Response PDU is:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 187]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x21 |1|. .|o|u|O|U|.| Response | Status |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| SNACK Tag or Reserved |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| ExpDataSN or Reserved |

 +---------------+---------------+---------------+--------------+

40| Bidirectional Read Residual Count or Reserved |

 +---------------+---------------+---------------+--------------+

44| Residual Count or Reserved |

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / Data Segment (Optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

11.4.1. Flags (byte 1)

bit 1-2 Reserved.

bit 3 - (o) set for Bidirectional Read Residual Overflow. In

this case, the Bidirectional Read Residual Count indicates

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 188]

the number of bytes that were not transferred to the

initiator because the initiator's Expected Bidirectional

Read Data Transfer Length was not sufficient.

bit 4 - (u) set for Bidirectional Read Residual Underflow. In

this case, the Bidirectional Read Residual Count indicates

the number of bytes that were not transferred to the

initiator out of the number of bytes expected to be

transferred.

bit 5 - (O) set for Residual Overflow. In this case, the

Residual Count indicates the number of bytes that were not

transferred because the initiator's Expected Data Transfer

Length was not sufficient. For a bidirectional operation,

the Residual Count contains the residual for the write

operation.

bit 6 - (U) set for Residual Underflow. In this case, the

Residual Count indicates the number of bytes that were not

transferred out of the number of bytes that were expected to

be transferred. For a bidirectional operation, the Residual

Count contains the residual for the write operation.

bit 7 - (0) Reserved.

Bits O and U and bits o and u are mutually exclusive (i.e., having

both o and u or O and U set to 1 is a protocol error).

For a response other than "Command Completed at Target", bits 3-6

MUST be 0.

11.4.2. Status

The Status field is used to report the SCSI status of the command

(as specified in [SAM2]) and is only valid if the Response Code is

Command Completed at target.

Some of the status codes defined in [SAM2] are:

0x00 GOOD

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 189]

0x02 CHECK CONDITION

0x08 BUSY

0x18 RESERVATION CONFLICT

0x28 TASK SET FULL

0x30 ACA ACTIVE

0x40 TASK ABORTED

See [SAM2] for the complete list and definitions.

If a SCSI device error is detected while data from the initiator

is still expected (the command PDU did not contain all the data

and the target has not received a Data PDU with the final bit

Set), the target MUST wait until it receives a Data PDU with the F

bit set in the last expected sequence before sending the Response

PDU.

11.4.3. Response

This field contains the iSCSI service response.

iSCSI service response codes defined in this specification are:

0x00 - Command Completed at Target

0x01 - Target Failure

0x80-0xff - Vendor specific

All other response codes are reserved.

The Response is used to report a Service Response. The mapping of

the response code into a SCSI service response code value, if

needed, is outside the scope of this document. However, in

symbolic terms response value 0x00 maps to the SCSI service

response (see [SAM2] and [SPC3]) of TASK COMPLETE or LINKED

COMMAND COMPLETE. All other Response values map to the SCSI

service response of SERVICE DELIVERY OR TARGET FAILURE.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 190]

If a SCSI Response PDU does not arrive before the session is

terminated, the SCSI service response is SERVICE DELIVERY OR

TARGET FAILURE.

A non-zero response field indicates a failure to execute the

command in which case the Status and Flag fields are undefined and

MUST be ignored on reception.

11.4.4. SNACK Tag

This field contains a copy of the SNACK Tag of the last SNACK Tag

accepted by the target on the same connection and for the command

for which the response is issued. Otherwise it is reserved and

should be set to 0.

After issuing a R-Data SNACK the initiator must discard any SCSI

status unless contained in an SCSI Response PDU carrying the same

SNACK Tag as the last issued R-Data SNACK for the SCSI command on

the current connection.

For a detailed discussion on R-Data SNACK see 11.16.3.

11.4.5. Residual Count

11.4.5.1. Field Semantics

The Residual Count field MUST be valid in the case where either

the U bit or the O bit is set. If neither bit is set, the Residual

Count field MUST be ignored on reception and SHOULD be set to 0

when sending. Targets may set the residual count and initiators

may use it when the response code is "completed at target" (even

if the status returned is not GOOD). If the O bit is set, the

Residual Count indicates the number of bytes that were not

transferred because the initiator's Expected Data Transfer Length

was not sufficient. If the U bit is set, the Residual Count

indicates the number of bytes that were not transferred out of the

number of bytes expected to be transferred.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 191]

11.4.5.2. Residuals Concepts Overview

SCSI-Presented Data Transfer Length (SPDTL) is the term this

document uses (see Section 2.1 for definition) to represent the

aggregate data length that the target SCSI layer attempts to

transfer using the local iSCSI layer for a task. Expected Data

Transfer Length (EDTL) is the iSCSI term that represents the

length of data that the iSCSI layer expects to transfer for a

task. EDTL is specified in the SCSI Command PDU.

When SPDTL = EDTL for a task, the target iSCSI layer completes the

task with no residuals. Whenever SPDTL differs from EDTL for a

task, that task is said to have a residual.

If SPDTL > EDTL for a task, iSCSI Overflow MUST be signaled in the

SCSI Response PDU as specified in Section 11.4.5.1. The Residual

Count MUST be set to the numerical value of (SPDTL - EDTL).

If SPDTL < EDTL for a task, iSCSI Underflow MUST be signaled in

the SCSI Response PDU as specified in Section 11.4.5.1. The

Residual Count MUST be set to the numerical value of (EDTL -

SPDTL).

Note that the Overflow and Underflow scenarios are independent of

Data-In and Data-Out. Either scenario is logically possible in

either direction of data transfer.

11.4.5.3. SCSI REPORT LUNS and Residual Overflow

This Section discusses the residual overflow issues citing the

example of the SCSI REPORT LUNS command. Note however that there

are several SCSI commands (e.g., INQUIRY) with ALLOCATION LENGTH

fields following the same underlying rules. The semantics in the

rest of the Section apply to all such SCSI commands.

The specification of the SCSI REPORT LUNS command requires that

the SCSI target limit the amount of data transferred to a maximum

size (ALLOCATION LENGTH) provided by the initiator in the REPORT

LUNS CDB.

If the Expected Data Transfer Length (EDTL) in the iSCSI header of

the SCSI Command PDU for a REPORT LUNS command is set to at least

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 192]

as large as that ALLOCATION LENGTH, the SCSI layer truncation

prevents an iSCSI Residual Overflow from occurring. A SCSI

initiator can detect that such truncation has occurred via other

information at the SCSI layer. The rest of the Section elaborates

this required behavior.

The SCSI REPORT LUNS command requests a target SCSI layer to

return a logical unit inventory (LUN list) to the initiator SCSI

layer (see Section 6.21 of [SPC3]). The size of this LUN list may

not be known to the initiator SCSI layer when it issues the REPORT

LUNS command; to avoid transferring more LUN list data than the

initiator is prepared for, the REPORT LUNS CDB contains an

ALLOCATION LENGTH field to specify the maximum amount of data to

be transferred to the initiator for this command. If the initiator

SCSI layer has underestimated the number of logical units at the

target, it is possible that the complete logical unit inventory

does not fit in the specified ALLOCATION LENGTH. In this

situation, Section 4.3.3.6 in [SPC3] requires that the target SCSI

layer "shall terminate transfers to the Data-In Buffer" when the

number of bytes specified by the ALLOCATION LENGTH field have been

transferred.

Therefore, in response to a REPORT LUNS command, the SCSI layer at

the target presents at most ALLOCATION LENGTH bytes of data

(logical unit inventory) to iSCSI for transfer to the initiator.

For a REPORT LUNS command, if the iSCSI EDTL is at least as large

as the ALLOCATION LENGTH, the SCSI truncation ensures that the

EDTL will accommodate all of the data to be transferred. If all of

the logical unit inventory data presented to the iSCSI layer --

i.e., the data remaining after any SCSI truncation -- is

transferred to the initiator by the iSCSI layer, an iSCSI Residual

Overflow has not occurred and the iSCSI (O) bit MUST NOT be set in

the SCSI Response or final SCSI Data-Out PDU. Note that this

behavior is implied by the combination of Section 11.4.5.1 along

with the specification of the REPORT LUNS command in [SPC3].

However, if the iSCSI EDTL is larger than the ALLOCATION LENGTH in

this scenario, note that the iSCSI Underflow MUST be signaled in

the SCSI Response PDU. An iSCSI Underflow MUST also be signaled

when the iSCSI EDTL is equal to the ALLOCATION LENGTH but the

logical unit inventory data presented to the iSCSI layer is

smaller than the ALLOCATION LENGTH.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 193]

The LUN LIST LENGTH field in the logical unit inventory (the first

field in the inventory) is not affected by truncation of the

inventory to fit in ALLOCATION LENGTH; this enables a SCSI

initiator to determine that the received inventory is incomplete

by noticing that the LUN LIST LENGTH in the inventory is larger

than the ALLOCATION LENGTH that was sent in the REPORT LUNS CDB. A

common initiator behavior in this situation is to re-issue the

REPORT LUNS command with a larger ALLOCATION LENGTH.

11.4.6. Bidirectional Read Residual Count

The Bidirectional Read Residual Count field MUST be valid in the

case where either the u bit or the o bit is set. If neither bit is

set, the Bidirectional Read Residual Count field is reserved.

Targets may set the Bidirectional Read Residual Count and

initiators may use it when the response code is "completed at

target". If the o bit is set, the Bidirectional Read Residual

Count indicates the number of bytes that were not transferred to

the initiator because the initiator's Expected Bidirectional Read

Transfer Length was not sufficient. If the u bit is set, the

Bidirectional Read Residual Count indicates the number of bytes

that were not transferred to the initiator out of the number of

bytes expected to be transferred.

11.4.7. Data Segment - Sense and Response Data Segment

iSCSI targets MUST support and enable autosense. If Status is

CHECK CONDITION (0x02), then the Data Segment MUST contain sense

data for the failed command.

For some iSCSI responses, the response data segment MAY contain

some response related information, (e.g., for a target failure, it

may contain a vendor specific detailed description of the

failure).

If the DataSegmentLength is not 0, the format of the Data Segment

is as follows:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 194]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|SenseLength | Sense Data |

 +---------------+---------------+---------------+--------------+

 x/ Sense Data /

 +---------------+---------------+---------------+--------------+

 y/ Response Data /

 / /

 +---------------+---------------+---------------+--------------+

11.4.7.1. SenseLength

Length of Sense Data.

11.4.7.2. Sense Data

The Sense Data contains detailed information about a check

condition and [SPC3] specifies the format and content of the Sense

Data.

Certain iSCSI conditions result in the command being terminated at

the target (response Command Completed at Target) with a SCSI

Check Condition Status as outlined in the next table:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 195]

+--------------------------+----------+--------------------------+

| iSCSI Condition |Sense | Additional Sense Code & |

| |Key | Qualifier |

+--------------------------+----------+--------------------------+

| Unexpected unsolicited |Aborted | ASC = 0x0c ASCQ = 0x0c |

| data |Command-0B| Write Error |

+--------------------------+----------+--------------------------+

| Incorrect amount of data |Aborted | ASC = 0x0c ASCQ = 0x0d |

| |Command-0B| Write Error |

+--------------------------+----------+--------------------------+

| Protocol Service CRC |Aborted | ASC = 0x47 ASCQ = 0x05 |

| error |Command-0B| CRC Error Detected |

+--------------------------+----------+--------------------------+

| SNACK rejected |Aborted | ASC = 0x11 ASCQ = 0x13 |

| |Command-0B| Read Error |

+--------------------------+----------+--------------------------+

The target reports the "Incorrect amount of data" condition if

during data output the total data length to output is greater than

FirstBurstLength and the initiator sent unsolicited non-immediate

data but the total amount of unsolicited data is different than

FirstBurstLength. The target reports the same error when the

amount of data sent as a reply to an R2T does not match the amount

requested.

11.4.8. ExpDataSN

The number of Data-In (read) PDUs the target has sent for the

command.

This field MUST be 0 if the response code is not Command Completed

at Target or the target sent no Data-In PDUs for the command.

11.4.9. StatSN - Status Sequence Number

StatSN is a Sequence Number that the target iSCSI layer generates

per connection and that in turn, enables the initiator to

acknowledge status reception. StatSN is incremented by 1 for every

response/status sent on a connection except for responses sent as

a result of a retry or SNACK. In the case of responses sent due to

a retransmission request, the StatSN MUST be the same as the first

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 196]

time the PDU was sent unless the connection has since been

restarted.

11.4.10. ExpCmdSN - Next Expected CmdSN from this Initiator

ExpCmdSN is a Sequence Number that the target iSCSI returns to the

initiator to acknowledge command reception. It is used to update a

local variable with the same name. An ExpCmdSN equal to MaxCmdSN+1

indicates that the target cannot accept new commands.

11.4.11. MaxCmdSN - Maximum CmdSN from this Initiator

MaxCmdSN is a Sequence Number that the target iSCSI returns to the

initiator to indicate the maximum CmdSN the initiator can send. It

is used to update a local variable with the same name. If MaxCmdSN

is equal to ExpCmdSN-1, this indicates to the initiator that the

target cannot receive any additional commands. When MaxCmdSN

changes at the target while the target has no pending PDUs to

convey this information to the initiator, it MUST generate a NOP-

IN to carry the new MaxCmdSN.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 197]

11.5. Task Management Function Request

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|I| 0x02 |1| Function | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| Logical Unit Number (LUN) or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Referenced Task Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| CmdSN |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32| RefCmdSN or Reserved |

 +---------------+---------------+---------------+--------------+

36| ExpDataSN or Reserved |

 +---------------+---------------+---------------+--------------+

40/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

11.5.1. Function

The Task Management functions provide an initiator with a way to

explicitly control the execution of one or more Tasks (SCSI and

iSCSI tasks). The Task Management function codes are listed below.

For a more detailed description of SCSI task management, see

[SAM2].

1 - ABORT TASK - aborts the task identified by the

Referenced Task Tag field.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 198]

2 - ABORT TASK SET - aborts all Tasks issued via this

session on the logical unit.

3 - CLEAR ACA - clears the Auto Contingent Allegiance

condition.

4 - CLEAR TASK SET - aborts all Tasks in the appropriate

task set as defined by the TST field in the Control mode

page (see [SPC3]).

5 - LOGICAL UNIT RESET

6 - TARGET WARM RESET

7 - TARGET COLD RESET

8 - TASK REASSIGN - reassigns connection allegiance for the

task identified by the Initiator Task Tag field to this

connection, thus resuming the iSCSI exchanges for the task.

All other possible values for Function field are reserved.

For all these functions, the Task Management function response

MUST be returned as detailed in Section 11.6. All these functions

apply to the referenced tasks regardless of whether they are

proper SCSI tasks or tagged iSCSI operations. Task management

requests must act on all the commands from the same session having

a CmdSN lower than the task management CmdSN. LOGICAL UNIT RESET,

TARGET WARM RESET and TARGET COLD RESET may affect commands from

other sessions or commands from the same session regardless of

their CmdSN value.

If the task management request is marked for immediate delivery,

it must be considered immediately for execution, but the

operations involved (all or part of them) may be postponed to

allow the target to receive all relevant tasks. According to

[SAM2], for all the tasks covered by the Task Management response

(i.e., with CmdSN lower than the task management command CmdSN)

but except the Task Management response to a TASK REASSIGN,

additional responses MUST NOT be delivered to the SCSI layer after

the Task Management response. The iSCSI initiator MAY deliver to

the SCSI layer all responses received before the Task Management

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 199]

response (i.e., it is a matter of implementation if the SCSI

responses, received before the Task Management response but after

the task management request was issued, are delivered to the SCSI

layer by the iSCSI layer in the initiator). The iSCSI target MUST

ensure that no responses for the tasks covered by a task

management function are delivered to the iSCSI initiator after the

Task Management response except for a task covered by a TASK

REASSIGN.

For ABORT TASK SET and CLEAR TASK SET, the issuing initiator MUST

continue to respond to all valid target transfer tags (received

via R2T, Text Response, NOP-In, or SCSI Data-in PDUs) related to

the affected task set, even after issuing the task management

request. The issuing initiator SHOULD however terminate (i.e., by

setting the F-bit to 1) these response sequences as quickly as

possible. The target on its part MUST wait for responses on all

affected target transfer tags before acting on either of these two

task management requests. In case all or part of the response

sequence is not received (due to digest errors) for a valid TTT,

the target MAY treat it as a case of within-command error recovery

class (see Section 7.1.4.1) if it is supporting ErrorRecoveryLevel

>= 1, or alternatively may drop the connection to complete the

requested task set function.

If an ABORT TASK is issued for a task created by an immediate

command then RefCmdSN MUST be that of the Task Management request

itself (i.e. CmdSN and RefCmdSN are equal); otherwise RefCmdSN

MUST be set to the CmdSN of the task to be aborted (lower than

CmdSN).

If the connection is still active (it is not undergoing an

implicit or explicit logout), ABORT TASK MUST be issued on the

same connection to which the task to be aborted is allegiant at

the time the Task Management Request is issued. If the connection

is implicitly or explicitly logged out (i.e., no other request

will be issued on the failing connection and no other response

will be received on the failing connection), then an ABORT TASK

function request may be issued on another connection. This Task

Management request will then establish a new allegiance for the

command to be aborted as well as abort it (i.e., the task to be

aborted will not have to be retried or reassigned, and its status,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 200]

if sent but not acknowledged, will be resent followed by the Task

Management response).

At the target an ABORT TASK function MUST NOT be executed on a

Task Management request; such a request MUST result in Task

Management response of "Function rejected".

For the LOGICAL UNIT RESET function, the target MUST behave as

dictated by the Logical Unit Reset function in [SAM2].

The implementation of the TARGET WARM RESET function and the

TARGET COLD RESET function is OPTIONAL and when implemented,

should act as described below. The TARGET WARM RESET is also

subject to SCSI access controls on the requesting initiator as

defined in [SPC3]. When authorization fails at the target, the

appropriate response as described in Section 11.6.1 MUST be

returned by the target. The TARGET COLD RESET function is not

subject to SCSI access controls, but its execution privileges may

be managed by iSCSI mechanisms such as login authentication.

When executing the TARGET WARM RESET and TARGET COLD RESET

functions, the target cancels all pending operations on all

Logical Units known by the issuing initiator. Both functions are

equivalent to the Target Reset function specified by [SAM2]. They

can affect many other initiators logged in with the servicing SCSI

target port.

The target MUST treat the TARGET COLD RESET function additionally

as a power on event, thus terminating all of its TCP connections

to all initiators (all sessions are terminated). For this reason,

the Service Response (defined by [SAM2]) for this SCSI task

management function may not be reliably delivered to the issuing

initiator port.

For the TASK REASSIGN function, the target should reassign the

connection allegiance to this new connection (and thus resume

iSCSI exchanges for the task). TASK REASSIGN MUST ONLY be received

by the target after the connection on which the command was

previously executing has been successfully logged-out. The Task

Management response MUST be issued before the reassignment becomes

effective.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 201]

For additional usage semantics see Section 7.2.

At the target a TASK REASSIGN function request MUST NOT be

executed to reassign the connection allegiance of a Task

Management function request, an active text negotiation task, or a

Logout task; such a request MUST result in Task Management

response of "Function rejected".

TASK REASSIGN MUST be issued as an immediate command.

11.5.2. TotalAHSLength and DataSegmentLength

For this PDU, TotalAHSLength and DataSegmentLength MUST be 0.

11.5.3. LUN

This field is required for functions that address a specific LU

(ABORT TASK, CLEAR TASK SET, ABORT TASK SET, CLEAR ACA, LOGICAL

UNIT RESET) and is reserved in all others.

11.5.4. Referenced Task Tag

The Initiator Task Tag of the task to be aborted for the ABORT

TASK function or reassigned for the TASK REASSIGN function. For

all the other functions this field MUST be set to the reserved

value 0xffffffff.

11.5.5. RefCmdSN

If an ABORT TASK is issued for a task created by an immediate

command then RefCmdSN MUST be that of the Task Management request

itself (i.e. CmdSN and RefCmdSN are equal).

For an ABORT TASK of a task created by non-immediate command

RefCmdSN MUST be set to the CmdSN of the task identified by the

Referenced Task Tag field. Targets must use this field as

described in Section 11.6.1 when the task identified by the

Referenced Task Tag field is not with the target.

Otherwise, this field is reserved.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 202]

11.5.6. ExpDataSN

For recovery purposes, the iSCSI target and initiator maintain a

data acknowledgement reference number - the first input DataSN

number unacknowledged by the initiator. When issuing a new

command, this number is set to 0. If the function is TASK

REASSIGN, which establishes a new connection allegiance for a

previously issued Read or Bidirectional command, ExpDataSN will

contain an updated data acknowledgement reference number or the

value 0; the latter indicating that the data acknowledgement

reference number is unchanged. The initiator MUST discard any data

PDUs from the previous execution that it did not acknowledge and

the target MUST transmit all Data-in PDUs (if any) starting with

the data acknowledgement reference number. The number of

retransmitted PDUs may or may not be the same as the original

transmission depending on if there was a change in

MaxRecvDataSegmentLength in the reassignment. The target MAY also

send no more Data-In PDUs if all data has been acknowledged.

The value of ExpDataSN MUST be 0 or higher than the DataSN of the

last acknowledged Data-In PDU, but not larger than DataSN+1 of the

last Data-IN PDU sent by the target. Any other value MUST be

ignored by the target.

For other functions this field is reserved.

11.6. Task Management Function Response

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 203]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x22 |1| Reserved | Response | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +--+

 8/ Reserved /

 / /

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Reserved |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

For the functions ABORT TASK, ABORT TASK SET, CLEAR ACA, CLEAR

TASK SET, LOGICAL UNIT RESET, TARGET COLD RESET, TARGET WARM RESET

and TASK REASSIGN, the target performs the requested Task

Management function and sends a Task Management response back to

the initiator. For TASK REASSIGN, the new connection allegiance

MUST ONLY become effective at the target after the target issues

the Task Management Response.

11.6.1. Response

The target provides a Response, which may take on the following

values:

 0 - Function complete.

 1 - Task does not exist.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 204]

 2 - LUN does not exist.

 3 - Task still allegiant.

 4 - Task allegiance reassignment not supported.

 5 - Task management function not supported.

 6 - Function authorization failed.

255 - Function rejected.

All other values are reserved.

For a discussion on usage of response codes 3 and 4, see Section

7.2.2.

For the TARGET COLD RESET and TARGET WARM RESET functions, the

target cancels all pending operations across all Logical Units

known to the issuing initiator. For the TARGET COLD RESET

function, the target MUST then close all of its TCP connections to

all initiators (terminates all sessions).

The mapping of the response code into a SCSI service response code

value, if needed, is outside the scope of this document. However,

in symbolic terms, Response values 0 and 1 map to the SCSI service

response of FUNCTION COMPLETE. Response value 2 maps to SCSI

service response of INCORRECT LOGICAL UNIT NUMBER. All other

Response values map to the SCSI service response of FUNCTION

REJECTED. If a Task Management function response PDU does not

arrive before the session is terminated, the SCSI service response

is SERVICE DELIVERY OR TARGET FAILURE.

The response to ABORT TASK SET and CLEAR TASK SET MUST only be

issued by the target after all of the commands affected have been

received by the target, the corresponding task management

functions have been executed by the SCSI target, and the delivery

of all responses delivered until the task management function

completion have been confirmed (acknowledged through ExpStatSN) by

the initiator on all connections of this session. For the exact

timeline of events, refer to Section 4.2.3.3 and Section 4.2.3.4.

For the ABORT TASK function,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 205]

a) If the Referenced Task Tag identifies a valid task leading
to a successful termination, then targets must return the

"Function complete" response.

b) If the Referenced Task Tag does not identify an existing
task, but if the CmdSN indicated by the RefCmdSN field in

the Task Management function request is within the valid

CmdSN window and less than the CmdSN of the Task Management

function request itself, then targets must consider the

CmdSN received and return the "Function complete" response.

c) If the Referenced Task Tag does not identify an existing

task and if the CmdSN indicated by the RefCmdSN field in

the Task Management function request is outside the valid

CmdSN window, then targets must return the "Task does not

exist" response.

For response semantics on function types that can potentially

impact multiple active tasks on the target, see Section 4.2.3.

11.6.2. TotalAHSLength and DataSegmentLength

For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

11.7. SCSI Data-out & SCSI Data-in

The SCSI Data-out PDU for WRITE operations has the following

format:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 206]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x05 |F| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| Reserved |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32| Reserved |

 +---------------+---------------+---------------+--------------+

36| DataSN |

 +---------------+---------------+---------------+--------------+

40| Buffer Offset |

 +---------------+---------------+---------------+--------------+

44| Reserved |

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

The SCSI Data-in PDU for READ operations has the following format:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 207]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x25 |F|A|0 0 0|O|U|S| Reserved |Status or Rsvd|

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| StatSN or Reserved |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| DataSN |

 +---------------+---------------+---------------+--------------+

40| Buffer Offset |

 +---------------+---------------+---------------+--------------+

44| Residual Count |

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

Status can accompany the last Data-in PDU if the command did not

end with an exception (i.e., the status is "good status" - GOOD,

CONDITION MET or INTERMEDIATE CONDITION MET). The presence of

status (and of a residual count) is signaled though the S flag

bit. Although targets MAY choose to send even non-exception

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 208]

status in separate responses, initiators MUST support non-

exception status in Data-In PDUs.

11.7.1. F (Final) Bit

For outgoing data, this bit is 1 for the last PDU of unsolicited

data or the last PDU of a sequence that answers an R2T.

For incoming data, this bit is 1 for the last input (read) data

PDU of a sequence. Input can be split into several sequences,

each having its own F bit. Splitting the data stream into

sequences does not affect DataSN counting on Data-In PDUs. It MAY

be used as a "change direction" indication for Bidirectional

operations that need such a change.

DataSegmentLength MUST NOT exceed MaxRecvDataSegmentLength for the

direction it is sent and the total of all the DataSegmentLength of

all PDUs in a sequence MUST NOT exceed MaxBurstLength (or

FirstBurstLength for unsolicited data). However the number of

individual PDUs in a sequence (or in total) may be higher than the

MaxBurstLength (or FirstBurstLength) to MaxRecvDataSegmentLength

ratio (as PDUs may be limited in length by the sender

capabilities). Using DataSegmentLength of 0 may increase beyond

what is reasonable for the number of PDUs and should therefore be

avoided.

For Bidirectional operations, the F bit is 1 for both the end of

the input sequences and the end of the output sequences.

11.7.2. A (Acknowledge) bit

For sessions with ErrorRecoveryLevel 1 or higher, the target sets

this bit to 1 to indicate that it requests a positive

acknowledgement from the initiator for the data received. The

target should use the A bit moderately; it MAY only set the A bit

to 1 once every MaxBurstLength bytes, or on the last Data-In PDU

that concludes the entire requested read data transfer for the

task from the target's perspective, and it MUST NOT do so more

frequently. The target MUST NOT set to 1 the A bit for sessions

with ErrorRecoveryLevel=0. The initiator MUST ignore the A bit set

to 1 for sessions with ErrorRecoveryLevel=0.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 209]

On receiving a Data-In PDU with the A bit set to 1 on a session

with ErrorRecoveryLevel greater than 0, if there are no holes in

the read data until that Data-In PDU, the initiator MUST issue a

SNACK of type DataACK except when it is able to acknowledge the

status for the task immediately via ExpStatSN on other outbound

PDUs if the status for the task is also received. In the latter

case (acknowledgement through ExpStatSN), sending a SNACK of type

DataACK in response to the A bit is OPTIONAL, but if it is done,

it must not be sent after the status acknowledgement through

ExpStatSN. If the initiator has detected holes in the read data

prior to that Data-In PDU, it MUST postpone issuing the SNACK of

type DataACK until the holes are filled. An initiator also MUST

NOT acknowledge the status for the task before those holes are

filled. A status acknowledgement for a task that generated the

Data-In PDUs is considered by the target as an implicit

acknowledgement of the Data-In PDUs if such an acknowledgement was

requested by the target.

11.7.3. Flags (byte 1)

The last SCSI Data packet sent from a target to an initiator for a

SCSI command that completed successfully (with a status of GOOD,

CONDITION MET, INTERMEDIATE or INTERMEDIATE CONDITION MET) may

also optionally contain the Status for the data transfer. In this

case, Sense Data cannot be sent together with the Command Status.

If the command is completed with an error, then the response and

sense data MUST be sent in a SCSI Response PDU (i.e., MUST NOT be

sent in a SCSI Data packet). For Bidirectional commands, the

status MUST be sent in a SCSI Response PDU.

bit 2-4 - Reserved.

bit 5-6 - used the same as in a SCSI Response. These bits are

only valid when S is set to 1. For details see SNACK .

bit 7 S (status)- set to indicate that the Command Status

field contains status. If this bit is set to 1, the F bit

MUST also be set to 1.

The fields StatSN, Status, and Residual Count only have meaningful

content if the S bit is set to 1 and their values are defined in

SNACK .

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 210]

11.7.4. Target Transfer Tag and LUN

On outgoing data, the Target Transfer Tag is provided to the

target if the transfer is honoring an R2T. In this case, the

Target Transfer Tag field is a replica of the Target Transfer Tag

provided with the R2T.

On incoming data, the Target Transfer Tag and LUN MUST be provided

by the target if the A bit is set to 1; otherwise they are

reserved. The Target Transfer Tag and LUN are copied by the

initiator into the SNACK of type DataACK that it issues as a

result of receiving a SCSI Data-in PDU with the A bit set to 1.

The Target Transfer Tag values are not specified by this protocol

except that the value 0xffffffff is reserved and means that the

Target Transfer Tag is not supplied. If the Target Transfer Tag

is provided, then the LUN field MUST hold a valid value and be

consistent with whatever was specified with the command;

otherwise, the LUN field is reserved.

11.7.5. DataSN

For input (read) or bidirectional Data-In PDUs, the DataSN is the

input PDU number within the data transfer for the command

identified by the Initiator Task Tag.

R2T and Data-In PDUs, in the context of bidirectional commands,

share the numbering sequence (see Section 4.2.2.4).

For output (write) data PDUs, the DataSN is the Data-Out PDU

number within the current output sequence. The current output

sequence is either identified by the Initiator Task Tag (for

unsolicited data) or is a data sequence generated for one R2T (for

data solicited through R2T).

11.7.6. Buffer Offset

The Buffer Offset field contains the offset of this PDU payload

data within the complete data transfer. The sum of the buffer

offset and length should not exceed the expected transfer length

for the command.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 211]

The order of data PDUs within a sequence is determined by

DataPDUInOrder. When set to Yes, it means that PDUs have to be in

increasing Buffer Offset order and overlays are forbidden.

The ordering between sequences is determined by

DataSequenceInOrder. When set to Yes, it means that sequences have

to be in increasing Buffer Offset order and overlays are

forbidden.

11.7.7. DataSegmentLength

This is the data payload length of a SCSI Data-In or SCSI Data-Out

PDU. The sending of 0 length data segments should be avoided, but

initiators and targets MUST be able to properly receive 0 length

data segments.

The Data Segments of Data-in and Data-out PDUs SHOULD be filled to

the integer number of 4 byte words (real payload) unless the F bit

is set to 1.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 212]

11.8. Ready To Transfer (R2T)

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x31 |1| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| R2TSN |

 +---------------+---------------+---------------+--------------+

40| Buffer Offset |

 +---------------+---------------+---------------+--------------+

44| Desired Data Transfer Length |

 +--+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

When an initiator has submitted a SCSI Command with data that

passes from the initiator to the target (WRITE), the target may

specify which blocks of data it is ready to receive. The target

may request that the data blocks be delivered in whichever order

is convenient for the target at that particular instant. This

information is passed from the target to the initiator in the

Ready To Transfer (R2T) PDU.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 213]

In order to allow write operations without an explicit initial

R2T, the initiator and target MUST have negotiated the key

InitialR2T to No during Login.

An R2T MAY be answered with one or more SCSI Data-out PDUs with a

matching Target Transfer Tag. If an R2T is answered with a single

Data-out PDU, the Buffer Offset in the Data PDU MUST be the same

as the one specified by the R2T, and the data length of the Data

PDU MUST be the same as the Desired Data Transfer Length specified

in the R2T. If the R2T is answered with a sequence of Data PDUs,

the Buffer Offset and Length MUST be within the range of those

specified by R2T, and the last PDU MUST have the F bit set to 1.

If the last PDU (marked with the F bit) is received before the

Desired Data Transfer Length is transferred, a target MAY choose

to Reject that PDU with "Protocol error" reason code.

DataPDUInOrder governs the Data-Out PDU ordering. If

DataPDUInOrder is set to Yes, the Buffer Offsets and Lengths for

consecutive PDUs MUST form a continuous non-overlapping range and

the PDUs MUST be sent in increasing offset order.

The target may send several R2T PDUs. It, therefore, can have a

number of pending data transfers. The number of outstanding R2T

PDUs are limited by the value of the negotiated key

MaxOutstandingR2T. Within a task, outstanding R2Ts MUST be

fulfilled by the initiator in the order in which they were

received.

R2T PDUs MAY also be used to recover Data Out PDUs. Such an R2T

(Recovery-R2T) is generated by a target upon detecting the loss of

one or more Data-Out PDUs due to:

- Digest error

- Sequence error

- Sequence reception timeout

A Recovery-R2T carries the next unused R2TSN, but requests part of

or the entire data burst that an earlier R2T (with a lower R2TSN)

had already requested.

DataSequenceInOrder governs the buffer offset ordering in

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 214]

consecutive R2Ts. If DataSequenceInOrder is Yes, then consecutive

R2Ts MUST refer to continuous non-overlapping ranges except for

Recovery-R2Ts.

11.8.1. TotalAHSLength and DataSegmentLength

For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

11.8.2. R2TSN

R2TSN is the R2T PDU input PDU number within the command

identified by the Initiator Task Tag.

For bidirectional commands R2T and Data-In PDUs share the input

PDU numbering sequence (see Section 4.2.2.4).

11.8.3. StatSN

The StatSN field will contain the next StatSN. The StatSN for this

connection is not advanced after this PDU is sent.

11.8.4. Desired Data Transfer Length and Buffer Offset

The target specifies how many bytes it wants the initiator to send

because of this R2T PDU. The target may request the data from the

initiator in several chunks, not necessarily in the original order

of the data. The target, therefore, also specifies a Buffer Offset

that indicates the point at which the data transfer should begin,

relative to the beginning of the total data transfer. The Desired

Data Transfer Length MUST NOT be 0 and MUST NOT exceed

MaxBurstLength.

11.8.5. Target Transfer Tag

The target assigns its own tag to each R2T request that it sends

to the initiator. This tag can be used by the target to easily

identify the data it receives. The Target Transfer Tag and LUN are

copied in the outgoing data PDUs and are only used by the target.

There is no protocol rule about the Target Transfer Tag except

that the value 0xffffffff is reserved and MUST NOT be sent by a

target in an R2T.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 215]

11.9. Asynchronous Message

An Asynchronous Message may be sent from the target to the

initiator without correspondence to a particular command. The

target specifies the reason for the event and sense data.

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x32 |1| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| 0xffffffff |

 +---------------+---------------+---------------+--------------+

20| Reserved |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| AsyncEvent | AsyncVCode | Parameter1 or Reserved |

 +---------------+---------------+---------------+--------------+

40| Parameter2 or Reserved | Parameter3 or Reserved |

 +---------------+---------------+---------------+--------------+

44| Reserved |

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment - Sense Data and iSCSI Event Data /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 216]

Some Asynchronous Messages are strictly related to iSCSI while

others are related to SCSI [SAM2].

StatSN counts this PDU as an acknowledgeable event (StatSN is

advanced), which allows for initiator and target state

synchronization.

11.9.1. AsyncEvent

The codes used for iSCSI Asynchronous Messages (events) are:

0 (SCSI_ASYNC) - a SCSI Asynchronous Event is reported in the

sense data. Sense Data that accompanies the report, in the

data segment, identifies the condition. The sending of a

SCSI Event (Asynchronous Event Reporting in SCSI

terminology) is dependent on the target support for SCSI

asynchronous event reporting (see [SAM2]) as indicated in

the standard INQUIRY data (see [SPC3]). Its use may be

enabled by parameters in the SCSI Control mode page (see

[SPC3]).

1 (REQUEST_LOGOUT) - target requests Logout. This Async

Message MUST be sent on the same connection as the one

requesting to be logged out. The initiator MUST honor this

request by issuing a Logout as early as possible, but no

later than Parameter3 seconds. Initiator MUST send a

Logout with a reason code of "Close the connection" OR

"Close the session" to close all the connections. Once this

message is received, the initiator SHOULD NOT issue new

iSCSI commands on the connection to be logged out. The

target MAY reject any new I/O requests that it receives

after this Message with the reason code "Waiting for

Logout". If the initiator does not Logout in Parameter3

seconds, the target should send an Async PDU with iSCSI

event code "Dropped the connection" if possible, or simply

terminate the transport connection. Parameter1 and

Parameter2 are reserved.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 217]

2 (CONNECTION_DROP) - target indicates it will drop the

connection.

The Parameter1 field indicates the CID of the connection

going to be dropped.

The Parameter2 field (Time2Wait) indicates, in seconds, the

minimum time to wait before attempting to reconnect or

reassign.

The Parameter3 field (Time2Retain) indicates the maximum

time allowed to reassign commands after the initial wait (in

Parameter2).

If the initiator does not attempt to reconnect and/or

reassign the outstanding commands within the time specified

by Parameter3, or if Parameter3 is 0, the target will

terminate all outstanding commands on this connection. In

this case, no other responses should be expected from the

target for the outstanding commands on this connection.

A value of 0 for Parameter2 indicates that reconnect can be

attempted immediately.

3 (SESSION_DROP) - target indicates it will drop all the

connections of this session.

Parameter1 field is reserved.

The Parameter2 field (Time2Wait) indicates, in seconds, the

minimum time to wait before attempting to reconnect.

The Parameter3 field (Time2Retain) indicates the maximum

time allowed to reassign commands after the initial wait (in

Parameter2).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 218]

If the initiator does not attempt to reconnect and/or

reassign the outstanding commands within the time specified

by Parameter3, or if Parameter3 is 0, the session is

terminated. In this case, the target will terminate all

outstanding commands in this session; no other responses

should be expected from the target for the outstanding

commands in this session. A value of 0 for Parameter2

indicates that reconnect can be attempted immediately.

4 (RENEGOTIATE) - target requests parameter negotiation on

this connection. The initiator MUST honor this request by

issuing a Text Request (that can be empty) on the same

connection as early as possible, but no later than

Parameter3 seconds, unless a Text Request is already pending

on the connection, or by issuing a Logout Request. If the

initiator does not issue a Text Request the target may

reissue the Asynchronous Message requesting parameter

negotiation.

5 (FAST_ABORT) - all active tasks for LU with a matching LUN

field in the Async Message PDU are being terminated. The

receiving initiator iSCSI layer MUST respond to this Message

by taking the following steps in order.

- Stop Data-Out transfers on that connection for all active
TTTs for the affected LUN quoted in the Async Message

PDU.

- Acknowledge the StatSN of the Async Message PDU via a NOP-
Out PDU with ITT=0xffffffff (i.e., non-ping flavor),

while copying the LUN field from the Async Message to

NOP-Out.

This value of AsyncEvent however MUST NOT be used on an

iSCSI session unless the new TaskReporting text key defined

in Section 13.23 was negotiated to FastAbort on the session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 219]

255 - vendor-specific iSCSI Event. The AsyncVCode details the

vendor code, and data MAY accompany the report.

All other event codes are reserved.

11.9.2. AsyncVCode

AsyncVCode is a vendor specific detail code that is only valid if

the AsyncEvent field indicates a vendor specific event. Otherwise,

it is reserved.

11.9.3. LUN

The LUN field MUST be valid if AsyncEvent is 0. Otherwise, this

field is reserved.

11.9.4. Sense Data and iSCSI Event Data

For a SCSI event, this data accompanies the report in the data

segment and identifies the condition.

For an iSCSI event, additional vendor-unique data MAY accompany

the Async event. Initiators MAY ignore the data when not

understood while processing the rest of the PDU.

If the DataSegmentLength is not 0, the format of the DataSegment

is as follows:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 220]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|SenseLength | Sense Data |

 +---------------+---------------+---------------+--------------+

 x/ Sense Data /

 +---------------+---------------+---------------+--------------+

 y/ iSCSI Event Data /

 / /

 +---------------+---------------+---------------+--------------+

 z|

11.9.4.1. SenseLength

This is the length of Sense Data. When the Sense Data field is

empty (e.g., the event is not a SCSI event) SenseLength is 0.

11.10. Text Request

The Text Request is provided to allow for the exchange of

information and for future extensions. It permits the initiator to

inform a target of its capabilities or to request some special

operations.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 221]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|I| 0x04 |F|C| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| CmdSN |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment (Text) /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

An initiator MUST NOT have more than one outstanding Text Request

on a connection at any given time.

On a connection failure, an initiator must either explicitly abort

any active allegiant text negotiation task or must cause such a

task to be implicitly terminated by the target.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 222]

11.10.1. F (Final) Bit

When set to 1, indicates that this is the last or only text

request in a sequence of Text Requests; otherwise, it indicates

that more Text Requests will follow.

11.10.2. C (Continue) Bit

When set to 1, indicates that the text (set of key=value pairs) in

this Text Request is not complete (it will be continued on

subsequent Text Requests); otherwise, it indicates that this Text

Request ends a set of key=value pairs. A Text Request with the C

bit set to 1 MUST have the F bit set to 0.

11.10.3. Initiator Task Tag

The initiator assigned identifier for this Text Request. If the

command is sent as part of a sequence of text requests and

responses, the Initiator Task Tag MUST be the same for all the

requests within the sequence (similar to linked SCSI commands).

The I bit for all requests in a sequence also MUST be the same.

11.10.4. Target Transfer Tag

When the Target Transfer Tag is set to the reserved value

0xffffffff, it tells the target that this is a new request and the

target resets any internal state associated with the Initiator

Task Tag (resets the current negotiation state).

The target sets the Target Transfer Tag in a text response to a

value other than the reserved value 0xffffffff whenever it

indicates that it has more data to send or more operations to

perform that are associated with the specified Initiator Task Tag.

It MUST do so whenever it sets the F bit to 0 in the response. By

copying the Target Transfer Tag from the response to the next Text

Request, the initiator tells the target to continue the operation

for the specific Initiator Task Tag. The initiator MUST ignore the

Target Transfer Tag in the Text Response when the F bit is set to

1.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 223]

This mechanism allows the initiator and target to transfer a large

amount of textual data over a sequence of text-command/text-

response exchanges, or to perform extended negotiation sequences.

If the Target Transfer Tag is not 0xffffffff, the LUN field MUST

be sent by the target in the Text Response.

A target MAY reset its internal negotiation state if an exchange

is stalled by the initiator for a long time or if it is running

out of resources.

Long text responses are handled as in the following example:

I->T Text SendTargets=All (F=1,TTT=0xffffffff)

T->I Text <part 1> (F=0,TTT=0x12345678)

I->T Text <empty> (F=1, TTT=0x12345678)

T->I Text <part 2> (F=0, TTT=0x12345678)

I->T Text <empty> (F=1, TTT=0x12345678)

...

T->I Text <part n> (F=1, TTT=0xffffffff)

11.10.5. Text

The data lengths of a text request MUST NOT exceed the iSCSI

target MaxRecvDataSegmentLength (a per connection and per

direction negotiated parameter). The text format is specified in

Section 6.2.

Section 12 and Section 13 list some basic Text key=value pairs,

some of which can be used in Login Request/Response and some in

Text Request/Response.

A key=value pair can span Text request or response boundaries. A

key=value pair can start in one PDU and continue on the next. In

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 224]

other words the end of a PDU does not necessarily signal the end

of a key=value pair.

The target responds by sending its response back to the initiator.

The response text format is similar to the request text format.

The text response MAY refer to key=value pairs presented in an

earlier text request and the text in the request may refer to

earlier responses.

Section 6.2 details the rules for the Text Requests and Responses.

Text operations are usually meant for parameter

setting/negotiations, but can also be used to perform some long

lasting operations.

Text operations that take a long time should be placed in their

own Text request.

11.11. Text Response

The Text Response PDU contains the target's responses to the

initiator's Text request. The format of the Text field matches

that of the Text request.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 225]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x24 |F|C| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment (Text) /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

11.11.1. F (Final) Bit

When set to 1, in response to a Text Request with the Final bit

set to 1, the F bit indicates that the target has finished the

whole operation. Otherwise, if set to 0 in response to a Text

Request with the Final Bit set to 1, it indicates that the target

has more work to do (invites a follow-on text request). A Text

Response with the F bit set to 1 in response to a Text Request

with the F bit set to 0 is a protocol error.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 226]

A Text Response with the F bit set to 1 MUST NOT contain key=value

pairs that may require additional answers from the initiator.

A Text Response with the F bit set to 1 MUST have a Target

Transfer Tag field set to the reserved value of 0xffffffff.

A Text Response with the F bit set to 0 MUST have a Target

Transfer Tag field set to a value other than the reserved

0xffffffff.

11.11.2. C (Continue) Bit

When set to 1, indicates that the text (set of key=value pairs) in

this Text Response is not complete (it will be continued on

subsequent Text Responses); otherwise, it indicates that this Text

Response ends a set of key=value pairs. A Text Response with the C

bit set to 1 MUST have the F bit set to 0.

11.11.3. Initiator Task Tag

The Initiator Task Tag matches the tag used in the initial Text

Request.

11.11.4. Target Transfer Tag

When a target has more work to do (e.g., cannot transfer all the

remaining text data in a single Text Response or has to continue

the negotiation) and has enough resources to proceed, it MUST set

the Target Transfer Tag to a value other than the reserved value

of 0xffffffff. Otherwise, the Target Transfer Tag MUST be set to

0xffffffff.

When the Target Transfer Tag is not 0xffffffff, the LUN field may

be significant.

The initiator MUST copy the Target Transfer Tag and LUN in its

next request to indicate that it wants the rest of the data.

When the target receives a Text Request with the Target Transfer

Tag set to the reserved value of 0xffffffff, it resets its

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 227]

internal information (resets state) associated with the given

Initiator Task Tag (restarts the negotiation).

When a target cannot finish the operation in a single Text

Response, and does not have enough resources to continue, it

rejects the Text Request with the appropriate Reject code.

A target may reset its internal state associated with an Initiator

Task Tag (the current negotiation state), state expressed through

the Target Transfer Tag if the initiator fails to continue the

exchange for some time. The target may reject subsequent Text

Requests with the Target Transfer Tag set to the "stale" value.

11.11.5. StatSN

The target StatSN variable is advanced by each Text Response sent.

11.11.6. Text Response Data

The data lengths of a text response MUST NOT exceed the iSCSI

initiator MaxRecvDataSegmentLength (a per connection and per

direction negotiated parameter).

The text in the Text Response Data is governed by the same rules

as the text in the Text Request Data (see Section 11.11.2).

Although the initiator is the requesting party and controls the

request-response initiation and termination, the target can offer

key=value pairs of its own as part of a sequence and not only in

response to the initiator.

11.12. Login Request

After establishing a TCP connection between an initiator and a

target, the initiator MUST start a Login Phase to gain further

access to the target's resources.

The Login Phase (see Section 6.3) consists of a sequence of Login

requests and responses that carry the same Initiator Task Tag.

Login requests are always considered as immediate.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 228]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|1| 0x03 |T|C|.|.|CSG|NSG| Version-max | Version-min |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| ISID |

 + +---------------+--------------+

12| | TSIH |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| CID | Reserved |

 +---------------+---------------+---------------+--------------+

24| CmdSN |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN or Reserved |

 +---------------+---------------+---------------+--------------+

32| Reserved |

 +---------------+---------------+---------------+--------------+

36| Reserved |

 +---------------+---------------+---------------+--------------+

40/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48/ DataSegment - Login Parameters in Text request Format /

 +/ /

 +---------------+---------------+---------------+--------------+

11.12.1. T (Transit) Bit

If set to 1, indicates that the initiator is ready to transit to

the next stage.

If the T bit is set to 1 and NSG is FullFeaturePhase, then this

also indicates that the initiator is ready for the Final Login

Response (see Section 6.3).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 229]

11.12.2. C (Continue) Bit

When set to 1, this bit indicates that the text (set of key=value

pairs) in this Login Request is not complete (it will be continued

on subsequent Login Requests); otherwise, it indicates that this

Login Request ends a set of key=value pairs. A Login Request with

the C bit set to 1 MUST have the T bit set to 0.

11.12.3. CSG and NSG

Through these fields, Current Stage (CSG) and Next Stage (NSG),

the Login negotiation requests and responses are associated with a

specific stage in the session (SecurityNegotiation,

LoginOperationalNegotiation, FullFeaturePhase) and may indicate

the next stage to which they want to move (see Section 6.3). The

next stage value is only valid when the T bit is 1; otherwise, it

is reserved.

The stage codes are:

- 0 - SecurityNegotiation

- 1 - LoginOperationalNegotiation

- 3 - FullFeaturePhase

All other codes are reserved.

11.12.4. Version

The version number of the current draft is 0x00. As such, all

devices MUST carry version 0x00 for both Version-min and Version-

max.

11.12.4.1. Version-max

Maximum Version number supported.

All Login requests within the Login Phase MUST carry the same

Version-max.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 230]

The target MUST use the value presented with the first login

request.

11.12.4.2. Version-min

All Login requests within the Login Phase MUST carry the same

Version-min. The target MUST use the value presented with the

first login request.

11.12.5. ISID

This is an initiator-defined component of the session identifier

and is structured as follows (see Section 10.1.1 for details):

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 8| T | A | B | C |

 +---------------+---------------+---------------+--------------+

12| D |

 +---------------+---------------+

The T field identifies the format and usage of A, B, C, and D as

indicated below:

T

00b OUI-Format

 A&B are a 22 bit OUI

 (the I/G & U/L bits are omitted)

 C&D 24 bit qualifier

01b EN - Format (IANA Enterprise Number)

 A - Reserved

 B&C EN (IANA Enterprise Number)

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 231]

 D - Qualifier

10b "Random"

 A - Reserved

 B&C Random

 D - Qualifier

11b A,B,C&D Reserved

For the T field values 00b and 01b, a combination of A and B (for

00b) or B and C (for 01b) identifies the vendor or organization

whose component (software or hardware) generates this ISID. A

vendor or organization with one or more OUIs, or one or more

Enterprise Numbers, MUST use at least one of these numbers and

select the appropriate value for the T field when its components

generate ISIDs. An OUI or EN MUST be set in the corresponding

fields in network byte order (byte big-endian).

If the T field is 10b, B and C are set to a random 24-bit unsigned

integer value in network byte order (byte big-endian). See

[RFC3721] for how this affects the principle of "conservative

reuse".

The Qualifier field is a 16 or 24-bit unsigned integer value that

provides a range of possible values for the ISID within the

selected namespace. It may be set to any value within the

constraints specified in the iSCSI protocol (see Section 4.4.3 and

Section 10.1.1).

The T field value of 11b is reserved.

If the ISID is derived from something assigned to a hardware

adapter or interface by a vendor, as a preset default value, it

MUST be configurable to a value assigned according to the SCSI

port behavior desired by the system in which it is installed (see

Section 10.1.1 and Section 10.1.2). The resultant ISID MUST also

be persistent over power cycles, reboot, card swap, etc.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 232]

11.12.6. TSIH

TSIH must be set in the first Login Request. The reserved value 0

MUST be used on the first connection for a new session. Otherwise,

the TSIH sent by the target at the conclusion of the successful

login of the first connection for this session MUST be used. The

TSIH identifies to the target the associated existing session for

this new connection.

All Login requests within a Login Phase MUST carry the same TSIH.

The target MUST check the value presented with the first login

request and act as specified in Section 5.3.1.

11.12.7. Connection ID - CID

A unique ID for this connection within the session.

All Login requests within the Login Phase MUST carry the same CID.

The target MUST use the value presented with the first login

request.

A Login request with a non-zero TSIH and a CID equal to that of an

existing connection implies a logout of the connection followed by

a Login (see Section 6.3.4). For the details of the implicit

Logout Request, see Section 11.14.

11.12.8. CmdSN

CmdSN is either the initial command sequence number of a session

(for the first Login request of a session - the "leading" login),

or the command sequence number in the command stream if the login

is for a new connection in an existing session.

Examples:

- Login on a leading connection - if the leading login carries

the CmdSN 123, all other login requests in the same login

phase carry the CmdSN 123 and the first non-immediate

command in FullFeaturePhase also carries the CmdSN 123.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 233]

- Login on other than a leading connection - if the current

CmdSN at the time the first login on the connection is

issued is 500, then that PDU carries CmdSN=500. Subsequent

login requests that are needed to complete this login phase

may carry a CmdSN higher than 500 if non-immediate requests

that were issued on other connections in the same session

advance CmdSN.

If the login request is a leading login request, the target MUST

use the value presented in CmdSN as the target value for ExpCmdSN.

11.12.9. ExpStatSN

For the first Login Request on a connection this is ExpStatSN for

the old connection and this field is only valid if the Login

request restarts a connection (see Section 6.3.4).

For subsequent Login Requests it is used to acknowledge the Login

Responses with their increasing StatSN values.

11.12.10. Login Parameters

The initiator MUST provide some basic parameters in order to

enable the target to determine if the initiator may use the

target's resources and the initial text parameters for the

security exchange.

All the rules specified in Section 11.10.5 for text requests also

hold for login requests. Keys and their explanations are listed

in Section 12 (security negotiation keys) and Section 13

(operational parameter negotiation keys). All keys in Section 13,

except for the X extension formats, MUST be supported by iSCSI

initiators and targets. Keys in Section 12 only need to be

supported when the function to which they refer is mandatory to

implement.

11.13. Login Response

The Login Response indicates the progress and/or end of the Login

Phase.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 234]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x23 |T|C|.|.|CSG|NSG| Version-max |Version-active|

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| ISID |

 + +---------------+--------------+

12| | TSIH |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Reserved |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| Status-Class | Status-Detail | Reserved |

 +---------------+---------------+---------------+--------------+

40/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48/ DataSegment - Login Parameters in Text request Format /

 +/ /

 +---------------+---------------+---------------+--------------+

11.13.1. Version-max

This is the highest version number supported by the target.

All Login responses within the Login Phase MUST carry the same

Version-max.

The initiator MUST use the value presented as a response to the

first login request.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 235]

11.13.2. Version-active

Indicates the highest version supported by the target and

initiator. If the target does not support a version within the

range specified by the initiator, the target rejects the login and

this field indicates the lowest version supported by the target.

All Login responses within the Login Phase MUST carry the same

Version-active.

The initiator MUST use the value presented as a response to the

first login request.

11.13.3. TSIH

The TSIH is the target assigned session identifying handle. Its

internal format and content are not defined by this protocol

except for the value 0 that is reserved. With the exception of the

Login Final-Response in a new session, this field should be set to

the TSIH provided by the initiator in the Login Request. For a

new session, the target MUST generate a non-zero TSIH and ONLY

return it in the Login Final-Response (see Section 6.3).

11.13.4. StatSN

For the first Login Response (the response to the first Login

Request), this is the starting status Sequence Number for the

connection. The next response of any kind, including the next

login response, if any, in the same Login Phase, will carry this

number + 1. This field is only valid if the Status-Class is 0.

11.13.5. Status-Class and Status-Detail

The Status returned in a Login Response indicates the execution

status of the Login Phase. The status includes:

Status-Class

Status-Detail

0 Status-Class indicates success.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 236]

A non-zero Status-Class indicates an exception. In this case,

Status-Class is sufficient for a simple initiator to use when

handling exceptions, without having to look at the Status-Detail.

The Status-Detail allows finer-grained exception handling for more

sophisticated initiators and for better information for logging.

The status classes are as follows:

0 - Success - indicates that the iSCSI target successfully

received, understood, and accepted the request. The

numbering fields (StatSN, ExpCmdSN, MaxCmdSN) are only valid

if Status-Class is 0.

 1 - Redirection - indicates that the initiator must take

further action to complete the request. This is usually due

to the target moving to a different address. All of the

redirection status class responses MUST return one or more

text key parameters of the type "TargetAddress", which

indicates the target's new address. A redirection response

MAY be issued by a target prior or after completing a

security negotiation if a security negotiation is required.

A redirection SHOULD be accepted by an initiator even

without having the target complete a security negotiation if

any security negotiation is required, and MUST be accepted

by the initiator after the completion of the security

negotiation if any security negotiation is required.

2 - Initiator Error (not a format error) - indicates that the

initiator most likely caused the error. This MAY be due to a

request for a resource for which the initiator does not have

permission. The request should not be tried again.

3 - Target Error - indicates that the target sees no errors in

the initiator's login request, but is currently incapable of

fulfilling the request. The initiator may re-try the same

login request later.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 237]

The table below shows all of the currently allocated status codes.

The codes are in hexadecimal; the first byte is the status class

and the second byte is the status detail.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 238]

Status | Code | Description

 |(hex) |

Success | 0000 | Login is proceeding OK (*1).

Target moved | 0101 | The requested iSCSI Target Name (ITN)

temporarily | | has temporarily moved

 | | to the address provided.

Target moved | 0102 | The requested ITN has permanently moved

permanently | | to the address provided.

Initiator | 0200 | Miscellaneous iSCSI initiator

error | | errors.

--

Authentication| 0201 | The initiator could not be

failure | | successfully authenticated or target

 | | authentication is not supported.

Authorization | 0202 | The initiator is not allowed access

failure | | to the given target.

Not found | 0203 | The requested ITN does not

 | | exist at this address.

Target removed| 0204 | The requested ITN has been removed and

 | | no forwarding address is provided.

Unsupported | 0205 | The requested iSCSI version range is

version | | not supported by the target.

Too many | 0206 | Too many connections on this SSID.

connections | |

Missing | 0207 | Missing parameters (e.g., iSCSI

parameter | | Initiator and/or Target Name).

Can't include | 0208 | Target does not support session

in session | | spanning to this connection (address).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 239]

Session type | 0209 | Target does not support this type of

not supported | | of session or not from this Initiator.

Session does | 020a | Attempt to add a connection

not exist | | to a non-existent session.

Invalid during| 020b | Invalid Request type during Login.

login | |

Target error | 0300 | Target hardware or software error.

Service | 0301 | The iSCSI service or target is not

unavailable | | currently operational.

Out of | 0302 | The target has insufficient session,

resources | | connection, or other resources.

(*1)If the response T bit is 1 in both the request and the

matching response, and the NSG is FullFeaturePhase in both the

request and the matching response, the Login Phase is finished and

the initiator may proceed to issue SCSI commands.

If the Status Class is not 0, the initiator and target MUST close

the TCP connection.

If the target wishes to reject the login request for more than one

reason, it should return the primary reason for the rejection.

11.13.6. T (Transit) bit

The T bit is set to 1 as an indicator of the end of the stage. If

the T bit is set to 1 and NSG is FullFeaturePhase, then this is

also the Final Login Response (see Section 6.3). A T bit of 0

indicates a "partial" response, which means "more negotiation

needed".

A login response with a T bit set to 1 MUST NOT contain key=value

pairs that may require additional answers from the initiator

within the same stage.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 240]

If the status class is 0, the T bit MUST NOT be set to 1 if the T

bit in the request was set to 0.

11.13.7. C (Continue) Bit

When set to 1, indicates that the text (set of key=value pairs) in

this Login Response is not complete (it will be continued on

subsequent Login Responses); otherwise, it indicates that this

Login Response ends a set of key=value pairs. A Login Response

with the C bit set to 1 MUST have the T bit set to 0.

11.13.8. Login Parameters

The target MUST provide some basic parameters in order to enable

the initiator to determine if it is connected to the correct port

and the initial text parameters for the security exchange.

All the rules specified in Section 11.11.6 for text responses also

hold for login responses. Keys and their explanations are listed

in Section 12(security negotiation keys) and Section 13

(operational parameter negotiation keys). All keys in Section 13,

except for the X extension formats, MUST be supported by iSCSI

initiators and targets. Keys in Section 12, only need to be

supported when the function to which they refer is mandatory to

implement.

11.14. Logout Request

The Logout request is used to perform a controlled closing of a

connection.

An initiator MAY use a logout request to remove a connection from

a session or to close an entire session.

After sending the Logout request PDU, an initiator MUST NOT send

any new iSCSI requests on the closing connection. If the Logout

request is intended to close the session, new iSCSI requests MUST

NOT be sent on any of the connections participating in the

session.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 241]

When receiving a Logout request with the reason code of "close the

connection" or "close the session", the target MUST terminate all

pending commands, whether acknowledged via ExpCmdSN or not, on

that connection or session respectively.

When receiving a Logout request with the reason code "remove

connection for recovery", the target MUST discard all requests not

yet acknowledged via ExpCmdSN that were issued on the specified

connection, and suspend all data/status/R2T transfers on behalf of

pending commands on the specified connection.

The target then issues the Logout response and half-closes the TCP

connection (sends FIN). After receiving the Logout response and

attempting to receive the FIN (if still possible), the initiator

MUST completely close the logging-out connection. For the

terminated commands, no additional responses should be expected.

A Logout for a CID may be performed on a different transport

connection when the TCP connection for the CID has already been

terminated. In such a case, only a logical "closing" of the iSCSI

connection for the CID is implied with a Logout.

All commands that were not terminated or not completed (with

status) and acknowledged when the connection is closed completely

can be reassigned to a new connection if the target supports

connection recovery.

If an initiator intends to start recovery for a failing

connection, it MUST use the Logout request to "clean-up" the

target end of a failing connection and enable recovery to start,

or the Login request with a non-zero TSIH and the same CID on a

new connection for the same effect. In sessions with a single

connection, the connection can be closed and then a new connection

reopened. A connection reinstatement login can be used for

recovery (see Section 6.3.4).

A successful completion of a logout request with the reason code

of "close the connection" or "remove the connection for recovery"

results at the target in the discarding of unacknowledged commands

received on the connection being logged out. These are commands

that have arrived on the connection being logged out, but have not

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 242]

been delivered to SCSI because one or more commands with a smaller

CmdSN has not been received by iSCSI. See Section 4.2.2.1. The

resulting holes in the command sequence numbers will have to be

handled by appropriate recovery (see Section 7) unless the session

is also closed.

The entire logout discussion in this Section is also applicable

for an implicit Logout realized by way of a connection

reinstatement or session reinstatement. When a Login Request

performs an implicit Logout, the implicit Logout is performed as

if having the reason codes specified below:

Reason code Type of implicit Logout

 0 session reinstatement

 1 connection reinstatement when the operational

ErrorRecoveryLevel < 2

 2 connection reinstatement when the operational

ErrorRecoveryLevel = 2

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 243]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|I| 0x06 |1| Reason Code | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +--+

 8/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| CID or Reserved | Reserved |

 +---------------+---------------+---------------+--------------+

24| CmdSN |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

11.14.1. Reason Code

Reason Code indicates the reason for Logout as follows:

0 - close the session. All commands associated with the

session (if any) are terminated.

1 - close the connection. All commands associated with

connection (if any) are terminated.

2 - remove the connection for recovery. Connection is closed

and all commands associated with it, if any, are to be

prepared for a new allegiance.

All other values are reserved.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 244]

11.14.2. TotalAHSLength and DataSegmentLength

For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

11.14.3. CID

This is the connection ID of the connection to be closed

(including closing the TCP stream). This field is only valid if

the reason code is not "close the session".

11.14.4. ExpStatSN

This is the last ExpStatSN value for the connection to be closed.

11.14.5. Implicit termination of tasks

A target implicitly terminates the active tasks due to the iSCSI

protocol in the following cases:

a) When a connection is implicitly or explicitly logged out
with the reason code of "Close the connection" and there

are active tasks allegiant to that connection.

b) When a connection fails and eventually the connection state
times out (state transition M1 in Section 8.2.2) and there

are active tasks allegiant to that connection.

c) When a successful recovery Logout is performed while there
are active tasks allegiant to that connection, and those

tasks eventually time out after the Time2Wait and

Time2Retain periods without allegiance reassignment.

d) When a connection is implicitly or explicitly logged out
with the reason code of "Close the session" and there are

active tasks in that session.

If the tasks terminated in any of the above cases are SCSI tasks,

they must be internally terminated as if with CHECK CONDITION

status. This status is only meaningful for appropriately handling

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 245]

the internal SCSI state and SCSI side effects with respect to

ordering because this status is never communicated back as a

terminating status to the initiator. However additional actions

may have to be taken at SCSI level depending on the SCSI context

as defined by the SCSI standards (e.g., queued commands and ACA,

UA for the next command on the I_T nexus in cases a), b), and c),

after the tasks are terminated, the target MUST report a Unit

Attention condition on the next command processed on any

connection for each affected I_T_L nexus with the status of CHECK

CONDITION, and the ASC/ASCQ value of 47h/7Fh - "SOME COMMANDS

CLEARED BY ISCSI PROTOCOL EVENT" - etc. - see [SPC3]).

11.15. Logout Response

The logout response is used by the target to indicate if the

cleanup operation for the connection(s) has completed.

After Logout, the TCP connection referred by the CID MUST be

closed at both ends (or all connections must be closed if the

logout reason was session close).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 246]

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x26 |1| Reserved | Response | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +--+

 8/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag |

 +---------------+---------------+---------------+--------------+

20| Reserved |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| Reserved |

 +--+

40| Time2Wait | Time2Retain |

 +---------------+---------------+---------------+--------------+

44| Reserved |

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

11.15.1. Response

Logout response:

0 - connection or session closed successfully.

1 - CID not found.

2 - connection recovery is not supported. If Logout reason

code was recovery and target does not support it as

indicated by the ErrorRecoveryLevel.

3 - cleanup failed for various reasons.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 247]

11.15.2. TotalAHSLength and DataSegmentLength

For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

11.15.3. Time2Wait

If the Logout response code is 0 and if the operational

ErrorRecoveryLevel is 2, this is the minimum amount of time, in

seconds, to wait before attempting task reassignment. If the

Logout response code is 0 and if the operational

ErrorRecoveryLevel is less than 2, this field is to be ignored.

This field is invalid if the Logout response code is 1.

If the Logout response code is 2 or 3, this field specifies the

minimum time to wait before attempting a new implicit or explicit

logout.

If Time2Wait is 0, the reassignment or a new Logout may be

attempted immediately.

11.15.4. Time2Retain

If the Logout response code is 0 and if the operational

ErrorRecoveryLevel is 2, this is the maximum amount of time, in

seconds, after the initial wait (Time2Wait), the target waits for

the allegiance reassignment for any active task after which the

task state is discarded. If the Logout response code is 0 and if

the operational ErrorRecoveryLevel is less than 2, this field is

to be ignored.

This field is invalid if the Logout response code is 1.

If the Logout response code is 2 or 3, this field specifies the

maximum amount of time, in seconds, after the initial wait

(Time2Wait), the target waits for a new implicit or explicit

logout.

If it is the last connection of a session, the whole session state

is discarded after Time2Retain.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 248]

If Time2Retain is 0, the target has already discarded the

connection (and possibly the session) state along with the task

states. No reassignment or Logout is required in this case.

11.16. SNACK Request

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x10 |1|.|.|.| Type | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or SNACK Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| Reserved |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

40| BegRun |

 +--+

44| RunLength |

 +--+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

If the implementation supports ErrorRecoveryLevel greater than

zero, it MUST support all SNACK types.

The SNACK is used by the initiator to request the retransmission

of numbered-responses, data, or R2T PDUs from the target. The

SNACK request indicates the numbered-responses or data "runs"

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 249]

whose retransmission is requested by the target, where the run

starts with the first StatSN, DataSN, or R2TSN whose

retransmission is requested and indicates the number of Status,

Data, or R2T PDUs requested including the first. 0 has special

meaning when used as a starting number and length:

- When used in RunLength, it means all PDUs starting with the

initial.

- When used in both BegRun and RunLength, it means all

unacknowledged PDUs.

The numbered-response(s) or R2T(s), requested by a SNACK, MUST be

delivered as exact replicas of the ones that the target

transmitted originally except for the fields ExpCmdSN, MaxCmdSN,

and ExpDataSN, which MUST carry the current values.

R2T(s)requested by SNACK MUST also carry the current value of

StatSN.

The numbered Data-In PDUs, requested by a Data SNACK MUST be

delivered as exact replicas of the ones that the target

transmitted originally except for the fields ExpCmdSN and

MaxCmdSN, which MUST carry the current values and except for

resegmentation (see Section 11.16.3).

Any SNACK that requests a numbered-response, Data, or R2T that was

not sent by the target or was already acknowledged by the

initiator, MUST be rejected with a reason code of "Protocol

error".

11.16.1. Type

This field encodes the SNACK function as follows:

0-Data/R2T SNACK - requesting retransmission of one or more

Data-In or R2T PDUs.

1-Status SNACK - requesting retransmission of one or more

numbered responses.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 250]

2-DataACK - positively acknowledges Data-In PDUs.

3-R-Data SNACK - requesting retransmission of Data-In PDUs

with possible resegmentation and status tagging.

All other values are reserved.

Data/R2T SNACK, Status SNACK, or R-Data SNACK for a command MUST

precede status acknowledgement for the given command.

11.16.2. Data Acknowledgement

If an initiator operates at ErrorRecoveryLevel 1 or higher, it

MUST issue a SNACK of type DataACK after receiving a Data-In PDU

with the A bit set to 1. However, if the initiator has detected

holes in the input sequence, it MUST postpone issuing the SNACK of

type DataACK until the holes are filled. An initiator MAY ignore

the A bit if it deems that the bit is being set aggressively by

the target (i.e., before the MaxBurstLength limit is

reached).

The DataACK is used to free resources at the target and not to

request or imply data retransmission.

An initiator MUST NOT request retransmission for any data it had

already acknowledged.

11.16.3. Resegmentation

If the initiator MaxRecvDataSegmentLength changed between the

original transmission and the time the initiator requests

retransmission, the initiator MUST issue a R-Data SNACK (see

Section 11.16.1). With R-Data SNACK, the initiator indicates that

it discards all the unacknowledged data and expects the target to

resend it. It also expects resegmentation. In this case, the

retransmitted Data-In PDUs MAY be different from the ones

originally sent in order to reflect changes in

MaxRecvDataSegmentLength. Their DataSN starts with the BegRun of

the last DataACK received by the target if any was received;

otherwise it starts with 0 and is increased by 1 for each resent

Data-In PDU.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 251]

A target that has received a R-Data SNACK MUST return a SCSI

Response that contains a copy of the SNACK Tag field from the R-

Data SNACK in the SCSI Response SNACK Tag field as its last or

only Response. For example, if it has already sent a response

containing another value in the SNACK Tag field or had the status

included in the last Data-In PDU, it must send a new SCSI Response

PDU. If a target sends more than one SCSI Response PDU due to this

rule, all SCSI responses must carry the same StatSN (see Section

11.4.4). If an initiator attempts to recover a lost SCSI Response

(with a Status-SNACK, see Section 11.16.1) when more than one

response has been sent, the target will send the SCSI Response

with the latest content known to the target, including the last

SNACK Tag for the command.

For considerations in allegiance reassignment of a task to a

connection with a different MaxRecvDataSegmentLength, refer to

Section 7.2.2.

11.16.4. Initiator Task Tag

For Status SNACK and DataACK, the Initiator Task Tag MUST be set

to the reserved value 0xffffffff. In all other cases, the

Initiator Task Tag field MUST be set to the Initiator Task Tag of

the referenced command.

11.16.5. Target Transfer Tag or SNACK Tag

For an R-Data SNACK, this field MUST contain a value that is

different from 0 or 0xffffffff and is unique for the task

(identified by the Initiator Task Tag). This value MUST be copied

by the iSCSI target in the last or only SCSI Response PDU it

issues for the command.

For DataACK, the Target Transfer Tag MUST contain a copy of the

Target Transfer Tag and LUN provided with the SCSI Data-In PDU

with the A bit set to 1.

In all other cases, the Target Transfer Tag field MUST be set to

the reserved value of 0xffffffff.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 252]

11.16.6. BegRun

The DataSN, R2TSN, or StatSN of the first PDU whose retransmission

is requested (Data/R2T and Status SNACK), or the next expected

DataSN (DataACK SNACK).

BegRun 0 when used in conjunction with RunLength 0 means resend

all unacknowledged Data-In, R2T or Response PDUs.

BegRun MUST be 0 for a R-Data SNACK.

11.16.7. RunLength

The number of PDUs whose retransmission is requested.

RunLength 0 signals that all Data-In, R2T, or Response PDUs

carrying the numbers equal to or greater than BegRun have to be

resent.

The RunLength MUST also be 0 for a DataACK SNACK in addition to R-

Data SNACK.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 253]

11.17. Reject

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x3f |1| Reserved | Reason | Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

16| 0xffffffff |

 +---------------+---------------+---------------+--------------+

20| Reserved |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36| DataSN/R2TSN or Reserved |

 +---------------+---------------+---------------+--------------+

40| Reserved |

 +---------------+---------------+---------------+--------------+

44| Reserved |

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

xx/ Complete Header of Bad PDU /

 +/ /

 +---------------+---------------+---------------+--------------+

yy/Vendor specific data (if any) /

 / /

 +---------------+---------------+---------------+--------------+

zz| Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 254]

Reject is used to indicate an iSCSI error condition (protocol,

unsupported option, etc.).

11.17.1. Reason

The reject Reason is coded as follows:

+------+--+----------------+

| Code | Explanation |Can the original|

| (hex)| |PDU be re-sent? |

+------+--+----------------+

| 0x01 | Reserved | no |

| | | |

| 0x02 | Data (payload) Digest Error | yes (Note 1) |

| | | |

| 0x03 | SNACK Reject | yes |

| | | |

| 0x04 | Protocol Error (e.g., SNACK request for| no |

| | a status that was already acknowledged)| |

| | | |

| 0x05 | Command not supported | no |

| | | |

| 0x06 | Immediate Command Reject - too many | yes |

| | immediate commands | |

| | | |

| 0x07 | Task in progress | no |

| | | |

| 0x08 | Invalid Data ACK | no |

| | | |

| 0x09 | Invalid PDU field | no (Note 2) |

| | | |

| 0x0a | Long Operation Reject - Can't generate | yes |

| | Target Transfer Tag - out of resources | |

| | | |

| 0x0c | Waiting for Logout | no |

+------+--+----------------+

Note 1: For iSCSI, Data-Out PDU retransmission is only done if the

target requests retransmission with a recovery R2T. However, if

this is the data digest error on immediate data, the initiator may

choose to retransmit the whole PDU including the immediate data.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 255]

Note 2: A target should use this reason code for all invalid

values of PDU fields that are meant to describe a task, a

response, or a data transfer. Some examples are invalid TTT/ITT,

buffer offset, LUN qualifying a TTT, and an invalid sequence

number in a SNACK.

Note 3: Reason code 0x0b (“Negotiation reset”) defined in

[RFC3720] is deprecated and MUST NOT be used by implementations.

An implementation receiving reason code 0x0b MUST treat it as a

negotiation failure that terminates the Login Phase and the TCP

connection, as specified in Section 7.12.

All other values for Reason are reserved.

In all the cases in which a pre-instantiated SCSI task is

terminated because of the reject, the target MUST issue a proper

SCSI command response with CHECK CONDITION as described in Section

11.4.3. In these cases in which a status for the SCSI task was

already sent before the reject, no additional status is required.

If the error is detected while data from the initiator is still

expected (i.e., the command PDU did not contain all the data and

the target has not received a Data-out PDU with the Final bit set

to 1 for the unsolicited data, if any, and all outstanding R2Ts,

if any), the target MUST wait until it receives the last expected

Data-out PDUs with the F bit set to 1 before sending the Response

PDU.

For additional usage semantics of Reject PDU, see Section 7.3.

11.17.2. DataSN/R2TSN

This field is only valid if the rejected PDU is a Data/R2T SNACK

and the Reject reason code is "Protocol error" (see Section

11.16). The DataSN/R2TSN is the next Data/R2T sequence number

that the target would send for the task, if any.

11.17.3. StatSN, ExpCmdSN and MaxCmdSN

These fields carry their usual values and are not related to the

rejected command. StatSN is advanced after a Reject.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 256]

11.17.4. Complete Header of Bad PDU

The target returns the header (not including digest) of the PDU in

error as the data of the response.

11.18. NOP-Out

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|I| 0x00 |1| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| CmdSN |

 +---------------+---------------+---------------+--------------+

28| ExpStatSN |

 +---------------+---------------+---------------+--------------+

32/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment - Ping Data (optional) /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

A NOP-Out may be used by an initiator as a "ping request" to

verify that a connection/session is still active and all its

components are operational. The NOP-In response is the "ping

echo".

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 257]

A NOP-Out is also sent by an initiator in response to a NOP-In.

A NOP-Out may also be used to confirm a changed ExpStatSN if

another PDU will not be available for a long time.

Upon receipt of a NOP-In with the Target Transfer Tag set to a

valid value (not the reserved 0xffffffff), the initiator MUST

respond with a NOP-Out. In this case, the NOP-Out Target Transfer

Tag MUST contain a copy of the NOP-In Target Transfer Tag. The

initiator SHOULD NOT send a NOP-Out in response to any other

received NOP-In in order to avoid lengthy sequences of NOP-In and

NOP-Out PDUs sent in response to each other.

11.18.1. Initiator Task Tag

The NOP-Out MUST have the Initiator Task Tag set to a valid value

only if a response in the form of NOP-In is requested (i.e., the

NOP-Out is used as a ping request). Otherwise, the Initiator Task

Tag MUST be set to 0xffffffff.

When a target receives the NOP-Out with a valid Initiator Task

Tag, it MUST respond with a Nop-In Response (see Section 6).

If the Initiator Task Tag contains 0xffffffff, the I bit MUST be

set to 1 and the CmdSN is not advanced after this PDU is sent.

11.18.2. Target Transfer Tag

A target assigned identifier for the operation.

The NOP-Out MUST only have the Target Transfer Tag set if it is

issued in response to a NOP-In with a valid Target Transfer Tag.

In this case, it copies the Target Transfer Tag from the NOP-In

PDU. Otherwise, the Target Transfer Tag MUST be set to 0xffffffff.

When the Target Transfer Tag is set to a value other than

0xffffffff, the LUN field MUST also be copied from the NOP-In.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 258]

11.18.3. Ping Data

Ping data is reflected in the NOP-In Response. The length of the

reflected data is limited to MaxRecvDataSegmentLength. The length

of ping data is indicated by the DataSegmentLength. 0 is a valid

value for the DataSegmentLength and indicates the absence of ping

data.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 259]

11.19. NOP-In

Byte/ 0 | 1 | 2 | 3 |

 / | | | |

 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 67|

 +---------------+---------------+---------------+--------------+

 0|.|.| 0x20 |1| Reserved |

 +---------------+---------------+---------------+--------------+

 4|TotalAHSLength | DataSegmentLength |

 +---------------+---------------+---------------+--------------+

 8| LUN or Reserved |

 + +

12| |

 +---------------+---------------+---------------+--------------+

16| Initiator Task Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

20| Target Transfer Tag or 0xffffffff |

 +---------------+---------------+---------------+--------------+

24| StatSN |

 +---------------+---------------+---------------+--------------+

28| ExpCmdSN |

 +---------------+---------------+---------------+--------------+

32| MaxCmdSN |

 +---------------+---------------+---------------+--------------+

36/ Reserved /

 +/ /

 +---------------+---------------+---------------+--------------+

48| Header-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

 / DataSegment - Return Ping Data /

 +/ /

 +---------------+---------------+---------------+--------------+

 | Data-Digest (Optional) |

 +---------------+---------------+---------------+--------------+

NOP-In is either sent by a target as a response to a NOP-Out, as a

"ping" to an initiator, or as a means to carry a changed ExpCmdSN

and/or MaxCmdSN if another PDU will not be available for a long

time (as determined by the target).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 260]

When a target receives the NOP-Out with a valid Initiator Task Tag

(not the reserved value 0xffffffff), it MUST respond with a NOP-In

with the same Initiator Task Tag that was provided in the NOP-Out

request. It MUST also duplicate up to the first

MaxRecvDataSegmentLength bytes of the initiator provided Ping

Data. For such a response, the Target Transfer Tag MUST be

0xffffffff. The target SHOULD NOT send a NOP-In in response to any

other received NOP-Out in order to avoid lengthy sequences of NOP-

In and NOP-Out PDUs sent in response to each other.

Otherwise, when a target sends a NOP-In that is not a response to

a Nop-Out received from the initiator, the Initiator Task Tag MUST

be set to 0xffffffff and the Data Segment MUST NOT contain any

data (DataSegmentLength MUST be 0).

11.19.1. Target Transfer Tag

If the target is responding to a NOP-Out, this is set to the

reserved value 0xffffffff.

If the target is sending a NOP-In as a Ping (intending to receive

a corresponding NOP-Out), this field is set to a valid value (not

the reserved 0xffffffff).

If the target is initiating a NOP-In without wanting to receive a

corresponding NOP-Out, this field MUST hold the reserved value of

0xffffffff.

11.19.2. StatSN

The StatSN field will always contain the next StatSN. However,

when the Initiator Task Tag is set to 0xffffffff StatSN for the

connection is not advanced after this PDU is sent.

11.19.3. LUN

A LUN MUST be set to a correct value when the Target Transfer Tag

is valid (not the reserved value 0xffffffff).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 261]

12. iSCSI Security Text Keys and Authentication Methods

Only the following keys are used during the SecurityNegotiation

stage of the Login Phase:

SessionType

InitiatorName

TargetName

TargetAddress

InitiatorAlias

TargetAlias

TargetPortalGroupTag

AuthMethod and the keys used by the authentication methods

specified under Section 12.1 along with all of their

associated keys as well as Vendor-Specific Authentication

Methods.

Other keys MUST NOT be used.

SessionType, InitiatorName, TargetName, InitiatorAlias,

TargetAlias, and TargetPortalGroupTag are described in Section 13

as they can be used also in the OperationalNegotiation stage.

All security keys have connection-wide applicability.

12.1. AuthMethod

Use: During Login - Security Negotiation

Senders: Initiator and Target

Scope: connection

AuthMethod = <list-of-values>

The main item of security negotiation is the authentication method

(AuthMethod).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 262]

The authentication methods that can be used (appear in the list-

of-values) are either those listed in the following table or are

vendor-unique methods:

+--+

| Name | Description |

+--+

| KRB5 | Kerberos V5 - defined in [RFC4120] |

+--+

| SRP | Secure Remote Password |

| | defined in [RFC2945] |

+--+

| CHAP | Challenge Handshake Authentication Protocol|

| | defined in [RFC1994] |

+--+

| None | No authentication |

+--+

The AuthMethod selection is followed by an "authentication

exchange" specific to the authentication method selected.

The authentication method proposal may be made by either the

initiator or the target. However the initiator MUST make the first

step specific to the selected authentication method as soon as it

is selected. It follows that if the target makes the

authentication method proposal the initiator sends the first

key(s) of the exchange together with its authentication method

selection.

The authentication exchange authenticates the initiator to the

target, and optionally, the target to the initiator.

Authentication is OPTIONAL to use but MUST be supported by the

target and initiator.

The initiator and target MUST implement CHAP. All other

authentication methods are OPTIONAL.

Private or public extension algorithms MAY also be negotiated for

authentication methods. Whenever a private or public extension

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 263]

algorithm is part of the default offer (the offer made in absence

of explicit administrative action) the implementer MUST ensure

that CHAP is listed as an alternative in the default offer and

"None" is not part of the default offer.

Extension authentication methods MUST be named using one of the

following two formats:

i) Z-reversed.vendor.dns_name.do_something=

ii) New public key with no name prefix constraints

Authentication methods named using the Z- format are used as

private extensions. New public keys must be registered with IANA

using IETF Review process ([RFC5226]). New public extensions for

authentication methods MUST NOT use the Z# name prefix.

For all of the public or private extension authentication methods,

the method specific keys MUST conform to the format specified in

Section 6.1 for standard-label.

To identify the vendor for private extension authentication

methods, we suggest you use the reversed DNS-name as a prefix to

the proper digest names.

The part of digest-name following Z- MUST conform to the format

for standard-label specified in Section 6.1.

Support for public or private extension authentication methods is

OPTIONAL.

The following subsections define the specific exchanges for each

of the standardized authentication methods. As mentioned earlier

the first step is always done by the initiator.

12.1.1. Kerberos

For KRB5 (Kerberos V5) [RFC4120] and [RFC1964], the initiator MUST

use:

 KRB_AP_REQ=<KRB_AP_REQ>

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 264]

where KRB_AP_REQ is the client message as defined in [RFC4120].

The default principal name assumed by an iSCSI initiator or target

(prior to any administrative configuration action) MUST be the

iSCSI Initiator Name or iSCSI Target Name respectively, prefixed

by the string "iscsi/".

If the initiator authentication fails, the target MUST respond

with a Login reject with "Authentication Failure" status.

Otherwise, if the initiator has selected the mutual authentication

option (by setting MUTUAL-REQUIRED in the ap-options field of the

KRB_AP_REQ), the target MUST reply with:

 KRB_AP_REP=<KRB_AP_REP>

where KRB_AP_REP is the server's response message as defined in

[RFC4120].

If mutual authentication was selected and target authentication

fails, the initiator MUST close the connection.

KRB_AP_REQ and KRB_AP_REP are binary-values and their binary

length (not the length of the character string that represents

them in encoded form) MUST NOT exceed 65536 bytes. Hex or Base64

encoding may be used for KRB_AP_REQ and KRB_AP_REP, see Section

6.1.

12.1.2. Secure Remote Password (SRP)

For SRP [RFC2945], the initiator MUST use:

 SRP_U=<U> TargetAuth=Yes /* or TargetAuth=No */

The target MUST answer with a Login reject with the "Authorization

Failure" status or reply with:

SRP_GROUP=<G1,G2...> SRP_s=<s>

Where G1,G2... are proposed groups, in order of preference.

The initiator MUST either close the connection or continue with:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 265]

SRP_A=<A> SRP_GROUP=<G>

Where G is one of G1,G2... that were proposed by the target.

The target MUST answer with a Login reject with the

"Authentication Failure" status or reply with:

 SRP_B=

The initiator MUST close the connection or continue with:

 SRP_M=<M>

If the initiator authentication fails, the target MUST answer with

a Login reject with "Authentication Failure" status. Otherwise, if

the initiator sent TargetAuth=Yes in the first message (requiring

target authentication), the target MUST reply with:

 SRP_HM=<H(A | M | K)>

If the target authentication fails, the initiator MUST close the

connection.

Where U, s, A, B, M, and H(A | M | K) are defined in [RFC2945]

(using the SHA1 hash function, such as SRP-SHA1) and G,Gn (Gn

stands for G1,G2...) are identifiers of SRP groups specified in

[RFC3723]. G, Gn, and U are text strings, s,A,B,M, and H(A | M |

K) are binary-values. The length of s,A,B,M and H(A | M | K) in

binary form (not the length of the character string that

represents them in encoded form) MUST NOT exceed 1024 bytes. Hex

or Base64 encoding may be used for s,A,B,M and H(A | M | K), see

Section 6.1.

See Appendix B for the related login example.

For the SRP_GROUP, all the groups specified in [RFC3723] up to

1536 bits (i.e., SRP-768, SRP-1024, SRP-1280, SRP-1536) must be

supported by initiators and targets. To guarantee

interoperability, targets MUST always offer "SRP-1536" as one of

the proposed groups.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 266]

12.1.3. Challenge Handshake Authentication Protocol (CHAP)

For CHAP [RFC1994], the initiator MUST use:

 CHAP_A=<A1,A2...>

Where A1,A2... are proposed algorithms, in order of preference.

The target MUST answer with a Login reject with the

"Authentication Failure" status or reply with:

 CHAP_A=<A> CHAP_I=<I> CHAP_C=<C>

Where A is one of A1,A2... that were proposed by the initiator.

The initiator MUST continue with:

 CHAP_N=<N> CHAP_R=<R>

or, if it requires target authentication, with:

 CHAP_N=<N> CHAP_R=<R> CHAP_I=<I> CHAP_C=<C>

If the initiator authentication fails, the target MUST answer with

a Login reject with "Authentication Failure" status. Otherwise, if

the initiator required target authentication, the target MUST

either answer with a Login reject with "Authentication Failure" or

reply with:

 CHAP_N=<N> CHAP_R=<R>

If target authentication fails, the initiator MUST close the

connection.

Where N, (A,A1,A2), I, C, and R are (correspondingly) the Name,

Algorithm, Identifier, Challenge, and Response as defined in

[RFC1994], N is a text string, A,A1,A2, and I are numbers, and C

and R are binary-values and their binary length (not the length of

the character string that represents them in encoded form) MUST

NOT exceed 1024 bytes. Hex or Base64 encoding may be used for C

and R, see Section 6.1.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 267]

See Appendix B for the related login example.

For the Algorithm, as stated in [RFC1994], one value is required

to be implemented:

 5 (CHAP with MD5)

To guarantee interoperability, initiators MUST always offer it as

one of the proposed algorithms.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 268]

13. Login/Text Operational Text Keys

Some session specific parameters MUST only be carried on the

leading connection and cannot be changed after the leading

connection login (e.g., MaxConnections, the maximum number of

connections). This holds for a single connection session with

regard to connection restart. The keys that fall into this

category have the use: LO (Leading Only).

Keys that can only be used during login have the use: IO

(initialize only), while those that can be used in both the Login

Phase and Full Feature Phase have the use: ALL.

Keys that can only be used during Full Feature Phase use FFPO

(Full Feature Phase only).

Keys marked as Any-Stage may also appear in the

SecurityNegotiation stage while all other keys described in this

Section are operational keys.

Keys that do not require an answer are marked as Declarative.

Key scope is indicated as session-wide (SW) or connection-only

(CO).

Result function, wherever mentioned, states the function that can

be applied to check the validity of the responder selection.

Minimum means that the selected value cannot exceed the offered

value. Maximum means that the selected value cannot be lower than

the offered value. AND means that the selected value must be a

possible result of a Boolean "and" function with an arbitrary

Boolean value (e.g., if the offered value is No the selected value

must be No). OR means that the selected value must be a possible

result of a Boolean "or" function with an arbitrary Boolean value

(e.g., if the offered value is Yes the selected value must be

Yes).

13.1. HeaderDigest and DataDigest

Use: IO

Senders: Initiator and Target

Scope: CO

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 269]

HeaderDigest = <list-of-values>

DataDigest = <list-of-values>

Default is None for both HeaderDigest and DataDigest.

Digests enable the checking of end-to-end, non-cryptographic data

integrity beyond the integrity checks provided by the link layers

and the covering of the whole communication path including all

elements that may change the network level PDUs such as routers,

switches, and proxies.

The following table lists cyclic integrity checksums that can be

negotiated for the digests and that MUST be implemented by every

iSCSI initiator and target. These digest options only have error

detection significance.

+---+

| Name | Description | Generator |

+---+

| CRC32C | 32 bit CRC |0x11edc6f41|

+---+

| None | no digest |

+---+

The generator polynomial for this digest is given in hex-notation

(e.g., 0x3b stands for 0011 1011 and the polynomial is

x**5+X**4+x**3+x+1).

When the Initiator and Target agree on a digest, this digest MUST

be used for every PDU in Full Feature Phase.

Padding bytes, when present in a segment covered by a CRC, SHOULD

be set to 0 and are included in the CRC.

The CRC MUST be calculated by a method that produces the same

results as the following process:

- The PDU bits are considered as the coefficients of a

polynomial M(x) of degree n-1; bit 7 of the lowest numbered

byte is considered the most significant bit (x^n-1),

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 270]

followed by bit 6 of the lowest numbered byte through bit 0

of the highest numbered byte (x^0).

- The most significant 32 bits are complemented.

- The polynomial is multiplied by x^32 then divided by G(x).

The generator polynomial produces a remainder R(x) of degree

<= 31.

- The coefficients of R(x) are considered a 32 bit sequence.

- The bit sequence is complemented and the result is the CRC.

- The CRC bits are mapped into the digest word. The x^31

coefficient in bit 7 of the lowest numbered byte of the

digest continuing through to the byte up to the x^24

coefficient in bit 0 of the lowest numbered byte, continuing

with the x^23 coefficient in bit 7 of next byte through x^0

in bit 0 of the highest numbered byte.

- Computing the CRC over any segment (data or header) extended

to include the CRC built using the generator 0x11edc6f41

will always get the value 0x1c2d19ed as its final remainder

(R(x)). This value is given here in its polynomial form

(i.e., not mapped as the digest word).

For a discussion about selection criteria for the CRC, see

[RFC3385]. For a detailed analysis of the iSCSI polynomial, see

[Castagnoli93].

Private or public extension algorithms MAY also be negotiated for

digests. Whenever a private or public digest extension algorithm

is part of the default offer (the offer made in absence of

explicit administrative action) the implementer MUST ensure that

CRC32C is listed as an alternative in the default offer and "None"

is not part of the default offer.

Extension digest algorithms MUST be named using one of the

following two formats:

i) Y-reversed.vendor.dns_name.do_something=

ii) New public key with no name prefix constraints

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 271]

Digests named using the Y- format are used for private purposes

(unregistered). New public keys must be registered with IANA using

IETF Review process ([RFC5226]). New public extensions for digests

MUST NOT use the Y# name prefix.

For private extension digests, to identify the vendor, we suggest

you use the reversed DNS-name as a prefix to the proper digest

names.

The part of digest-name following Y- MUST conform to the format

for standard-label specified in Section 6.1.

Support for public or private extension digests is OPTIONAL.

13.2. MaxConnections

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

MaxConnections=<numerical-value-from-1-to-65535>

Default is 1.

Result function is Minimum.

Initiator and target negotiate the maximum number of connections

requested/acceptable.

13.3. SendTargets

Use: FFPO

Senders: Initiator

Scope: SW

For a complete description, see Appendix C.

13.4. TargetName

Use: IO by initiator, FFPO by target - only as response to a

SendTargets, Declarative, Any-Stage

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 272]

Senders: Initiator and Target

Scope: SW

TargetName=<iSCSI-name-value>

Examples:

TargetName=iqn.1993-11.com.disk-vendor:diskarrays.sn.45678

TargetName=eui.020000023B040506

TargetName=naa.62004567BA64678D0123456789ABCDEF

The initiator of the TCP connection MUST provide this key to the

remote endpoint in the first login request if the initiator is not

establishing a discovery session. The iSCSI Target Name specifies

the worldwide unique name of the target.

The TargetName key may also be returned by the "SendTargets" text

request (which is its only use when issued by a target).

TargetName MUST NOT be redeclared within the login phase.

13.5. InitiatorName

Use: IO, Declarative, Any-Stage

Senders: Initiator

Scope: SW

InitiatorName=<iSCSI-name-value>

Examples:

InitiatorName=iqn.1992-04.com.os-vendor.plan9:cdrom.12345

InitiatorName=iqn.2001-02.com.ssp.users:customer235.host90

InitiatorName=naa.52004567BA64678D

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 273]

The initiator of the TCP connection MUST provide this key to the

remote endpoint at the first Login of the Login Phase for every

connection. The InitiatorName key enables the initiator to

identify itself to the remote endpoint.

InitiatorName MUST NOT be redeclared within the login phase.

13.6. TargetAlias

Use: ALL, Declarative, Any-Stage

Senders: Target

Scope: SW

TargetAlias=<iSCSI-local-name-value>

Examples:

TargetAlias=Bob-s Disk

TargetAlias=Database Server 1 Log Disk

TargetAlias=Web Server 3 Disk 20

If a target has been configured with a human-readable name or

description, this name SHOULD be communicated to the initiator

during a Login Response PDU if SessionType=Normal (see 13.21).

This string is not used as an identifier, nor is it meant to be

used for authentication or authorization decisions. It can be

displayed by the initiator's user interface in a list of targets

to which it is connected.

13.7. InitiatorAlias

Use: ALL, Declarative, Any-Stage

Senders: Initiator

Scope: SW

InitiatorAlias=<iSCSI-local-name-value>

Examples:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 274]

InitiatorAlias=Web Server 4

InitiatorAlias=spyalley.nsa.gov

InitiatorAlias=Exchange Server

If an initiator has been configured with a human-readable name or

description, it SHOULD be communicated to the target during a

Login Request PDU. If not, the host name can be used instead. This

string is not used as an identifier, nor is meant to be used for

authentication or authorization decisions. It can be displayed by

the target's user interface in a list of initiators to which it is

connected.

13.8. TargetAddress

Use: ALL, Declarative, Any-Stage

Senders: Target

Scope: SW

TargetAddress=domainname[:port][,portal-group-tag]

The domainname can be specified as either a DNS host name, a

dotted-decimal IPv4 address, or a bracketed IPv6 address as

specified in [RFC3986].

If the TCP port is not specified, it is assumed to be the IANA-

assigned default port for iSCSI (see Section 14).

If the TargetAddress is returned as the result of a redirect

status in a login response, the comma and portal group tag MUST be

omitted.

If the TargetAddress is returned within a SendTargets response,

the portal group tag MUST be included.

Examples:

TargetAddress=10.0.0.1:5003,1

TargetAddress=[1080:0:0:0:8:800:200C:417A],65

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 275]

TargetAddress=[1080::8:800:200C:417A]:5003,1

TargetAddress=computingcenter.example.com,23

Use of the portal-group-tag is described in Appendix C. The

formats for the port and portal-group-tag are the same as the one

specified in TargetPortalGroupTag.

13.9. TargetPortalGroupTag

Use: IO by target, Declarative, Any-Stage

Senders: Target

Scope: SW

TargetPortalGroupTag=<16-bit-binary-value>

Examples:

TargetPortalGroupTag=1

The target portal group tag is a 16-bit binary-value that uniquely

identifies a portal group within an iSCSI target node. This key

carries the value of the tag of the portal group that is servicing

the Login request. The iSCSI target returns this key to the

initiator in the Login Response PDU to the first Login Request PDU

that has the C bit set to 0 when TargetName is given by the

initiator.

[SAM2] notes in its informative text that TPGT value should be

non-zero, note that it is incorrect. A zero value is allowed as a

legal value for TPGT. This discrepancy currently stands corrected

in [SAM4].

For the complete usage expectations of this key see Section 6.3.

13.10. InitialR2T

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 276]

InitialR2T=<boolean-value>

Examples:

I->InitialR2T=No

T->InitialR2T=No

Default is Yes.

Result function is OR.

The InitialR2T key is used to turn off the default use of R2T for

unidirectional and the output part of bidirectional commands, thus

allowing an initiator to start sending data to a target as if it

has received an initial R2T with Buffer Offset=Immediate Data

Length and Desired Data Transfer Length=(min(FirstBurstLength,

Expected Data Transfer Length) - Received Immediate Data Length).

The default action is that R2T is required, unless both the

initiator and the target send this key-pair attribute specifying

InitialR2T=No. Only the first outgoing data burst (immediate data

and/or separate PDUs) can be sent unsolicited (i.e., not requiring

an explicit R2T).

13.11. ImmediateData

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

ImmediateData=<boolean-value>

Default is Yes.

Result function is AND.

The initiator and target negotiate support for immediate data. To

turn immediate data off, the initiator or target must state its

desire to do so. ImmediateData can be turned on if both the

initiator and target have ImmediateData=Yes.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 277]

If ImmediateData is set to Yes and InitialR2T is set to Yes

(default), then only immediate data are accepted in the first

burst.

If ImmediateData is set to No and InitialR2T is set to Yes, then

the initiator MUST NOT send unsolicited data and the target MUST

reject unsolicited data with the corresponding response code.

If ImmediateData is set to No and InitialR2T is set to No, then

the initiator MUST NOT send unsolicited immediate data, but MAY

send one unsolicited burst of Data-OUT PDUs.

If ImmediateData is set to Yes and InitialR2T is set to No, then

the initiator MAY send unsolicited immediate data and/or one

unsolicited burst of Data-OUT PDUs.

The following table is a summary of unsolicited data options:

+----------+-------------+------------------+--------------+

|InitialR2T|ImmediateData| Unsolicited |Immediate Data|

| | | Data Out PDUs | |

+----------+-------------+------------------+--------------+

| No | No | Yes | No |

+----------+-------------+------------------+--------------+

| No | Yes | Yes | Yes |

+----------+-------------+------------------+--------------+

| Yes | No | No | No |

+----------+-------------+------------------+--------------+

| Yes | Yes | No | Yes |

+----------+-------------+------------------+--------------+

13.12. MaxRecvDataSegmentLength

Use: ALL, Declarative

Senders: Initiator and Target

Scope: CO

MaxRecvDataSegmentLength=<numerical-value-512-to-(2**24-1)>

Default is 8192 bytes.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 278]

The initiator or target declares the maximum data segment length

in bytes it can receive in an iSCSI PDU.

The transmitter (initiator or target) is required to send PDUs

with a data segment that does not exceed MaxRecvDataSegmentLength

of the receiver.

A target receiver is additionally limited by MaxBurstLength for

solicited data and FirstBurstLength for unsolicited data. An

initiator MUST NOT send solicited PDUs exceeding MaxBurstLength

nor unsolicited PDUs exceeding FirstBurstLength (or

FirstBurstLength-Immediate Data Length if immediate data were

sent).

13.13. MaxBurstLength

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

MaxBurstLength=<numerical-value-512-to-(2**24-1)>

Default is 262144 (256 Kbytes).

Result function is Minimum.

The initiator and target negotiate maximum SCSI data payload in

bytes in a Data-In or a solicited Data-Out iSCSI sequence. A

sequence consists of one or more consecutive Data-In or Data-Out

PDUs that end with a Data-In or Data-Out PDU with the F bit set to

one.

13.14. FirstBurstLength

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

Irrelevant when: (InitialR2T=Yes and ImmediateData=No)

FirstBurstLength=<numerical-value-512-to-(2**24-1)>

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 279]

Default is 65536 (64 Kbytes).

Result function is Minimum.

The initiator and target negotiate the maximum amount in bytes of

unsolicited data an iSCSI initiator may send to the target during

the execution of a single SCSI command. This covers the immediate

data (if any) and the sequence of unsolicited Data-Out PDUs (if

any) that follow the command.

FirstBurstLength MUST NOT exceed MaxBurstLength.

13.15. DefaultTime2Wait

Use: LO

Senders: Initiator and Target

Scope: SW

DefaultTime2Wait=<numerical-value-0-to-3600>

Default is 2.

Result function is Maximum.

The initiator and target negotiate the minimum time, in seconds,

to wait before attempting an explicit/implicit logout or an active

task reassignment after an unexpected connection termination or a

connection reset.

A value of 0 indicates that logout or active task reassignment can

be attempted immediately.

13.16. DefaultTime2Retain

Use: LO

Senders: Initiator and Target

Scope: SW

DefaultTime2Retain=<numerical-value-0-to-3600>

Default is 20.

Result function is Minimum.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 280]

The initiator and target negotiate the maximum time, in seconds

after an initial wait (Time2Wait), before which an active task

reassignment is still possible after an unexpected connection

termination or a connection reset.

This value is also the session state timeout if the connection in

question is the last LOGGED_IN connection in the session.

A value of 0 indicates that connection/task state is immediately

discarded by the target.

13.17. MaxOutstandingR2T

Use: LO

Senders: Initiator and Target

Scope: SW

MaxOutstandingR2T=<numerical-value-from-1-to-65535>

Irrelevant when: SessionType=Discovery

Default is 1.

Result function is Minimum.

Initiator and target negotiate the maximum number of outstanding

R2Ts per task, excluding any implied initial R2T that might be

part of that task. An R2T is considered outstanding until the last

data PDU (with the F bit set to 1) is transferred, or a sequence

reception timeout (Section 7.1.4.1) is encountered for that data

sequence.

13.18. DataPDUInOrder

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

DataPDUInOrder=<boolean-value>

Default is Yes.

Result function is OR.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 281]

No is used by iSCSI to indicate that the data PDUs within

sequences can be in any order. Yes is used to indicate that data

PDUs within sequences have to be at continuously increasing

addresses and overlays are forbidden.

13.19. DataSequenceInOrder

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

DataSequenceInOrder=<boolean-value>

Default is Yes.

Result function is OR.

A Data Sequence is a sequence of Data-In or Data-Out PDUs that end

with a Data-In or Data-Out PDU with the F bit set to one. A Data-

out sequence is sent either unsolicited or in response to an R2T.

Sequences cover an offset-range.

If DataSequenceInOrder is set to No, Data PDU sequences may be

transferred in any order.

If DataSequenceInOrder is set to Yes, Data Sequences MUST be

transferred using continuously non-decreasing sequence offsets

(R2T buffer offset for writes, or the smallest SCSI Data-In buffer

offset within a read data sequence).

If DataSequenceInOrder is set to Yes, a target may retry at most

the last R2T, and an initiator may at most request retransmission

for the last read data sequence. For this reason, if

ErrorRecoveryLevel is not 0 and DataSequenceInOrder is set to Yes

then MaxOustandingR2T MUST be set to 1.

13.20. ErrorRecoveryLevel

Use: LO

Senders: Initiator and Target

Scope: SW

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 282]

ErrorRecoveryLevel=<numerical-value-0-to-2>

Default is 0.

Result function is Minimum.

The initiator and target negotiate the recovery level supported.

Recovery levels represent a combination of recovery capabilities.

Each recovery level includes all the capabilities of the lower

recovery levels and adds some new ones to them.

In the description of recovery mechanisms, certain recovery

classes are specified. Section 7.1.5 describes the mapping between

the classes and the levels.

13.21. SessionType

Use: LO, Declarative, Any-Stage

Senders: Initiator

Scope: SW

SessionType= <Discovery|Normal>

Default is Normal.

The Initiator indicates the type of session it wants to create.

The target can either accept it or reject it.

A Discovery session indicates to the Target that the only purpose

of this Session is discovery. The only requests a target accepts

in this type of session are a text request with a SendTargets key

and a logout request with reason "close the session".

The Discovery session implies MaxConnections = 1 and overrides

both the default and an explicit setting. As Section 7.4.1

states, ErrorRecoveryLevel MUST be 0 (zero) for Discovery

sessions.

Depending on the type of the session, a target may decide on

resources to allocate and the security to enforce, etc. for thion.

If the SessionType key is thus going to be offered as "Discovery",

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 283]

it SHOULD be offered in the initial Login request by the

initiator.

13.22. The Private Extension Key Format

Use: ALL

Senders: Initiator and Target

Scope: specific key dependent

X-reversed.vendor.dns_name.do_something=

Keys with this format are used for private extension purposes.

These keys always start with X- if unregistered with IANA

(private). New public keys (if registered with IANA via an IETF

Review, [RFC5226]) no longer have an X# name prefix requirement,

implementers may propose any intuitive unique name.

For unregistered keys, to identify the vendor, we suggest you use

the reversed DNS-name as a prefix to the key-proper.

The part of key-name following X- MUST conform to the format for

key-name specified in Section 6.1.

Vendor specific keys MUST ONLY be used in normal sessions.

Support for public or private extension keys is OPTIONAL.

13.23. TaskReporting

Use: LO

Senders: Initiator and Target

Scope: SW

Irrelevant when: SessionType=Discovery

TaskReporting=<list-of-values>

Default is RFC3720.

Result function is AND.

This key is used to negotiate the task completion reporting

semantics from the SCSI target. The following table describes the

semantics that an iSCSI target MUST support for respective

negotiated key values. Whenever this key is negotiated, at least

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 284]

the RFC3720 and ResponseFence values MUST be offered as options by

the negotiation originator.

+--------------+--+

| Name | Description |

+--------------+--+

| RFC3720 | RFC 3720-compliant semantics. Response |

| | fencing is not guaranteed and fast |

| | completion of multi-task aborting is not |

| | supported |

+--------------+--+

| ResponseFence| Response Fence (Section 4.2.2.3.3) |

| | semantics MUST be supported in reporting |

| | task completions |

+--------------+--+

| FastAbort | Updated fast multi-task abort semantics |

| | defined in Section 4.2.3.4 MUST be |

| | supported. Support for Response Fence is |

| | implied -- i.e., (Section 4.2.2.3.3) |

| | semantics MUST be supported as well |

+--------------+--+

When TaskReporting is not negotiated to FastAbort, the standard

multi-task abort semantics in Section 4.2.3.3 MUST be used.

13.24. iSCSIProtocolLevel Negotiation

The iSCSIProtocolLevel associated with this document is “1”. As a

responder or an originator in a negotiation of this key, an iSCSI

implementation compliant to this document alone, without any

future protocol extensions, MUST use this value as defined by the

[iSCSI-SAM] document.

13.25. Obsoleted Keys

This document obsoletes the following keys defined in [RFC3720]:

IFMarker, OFMarker, OFMarkInt, IFMarkInt. However, iSCSI

implementations compliant to this document may still receive these

obsoleted keys - i.e. in a responder role - in a text negotiation.

When IFMarker or OFMarker key is received, a compliant iSCSI

implementation SHOULD respond with the constant “Reject” value.

The implementation MAY alternatively respond with a “No” value.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 285]

However, the implementation MUST NOT respond with a

“NotUnderstood” value for either of these keys.

When IFMarkInt or OFMarkInt key is received, a compliant iSCSI

implementation MUST respond with the constant “Reject” value.

The implementation MUST NOT respond with a “NotUnderstood” value

for either of these keys.

13.26. X#NodeArchitecture

13.26.1. Definition

Use: LO, Declarative

Senders: Initiator and Target

Scope: SW

X#NodeArchitecture=<list-of-values>

Default is none.

Examples:

X#NodeArchitecture=ExampleOS/v1234,ExampleInc_SW_Initiator/1.05a

X#NodeArchitecture=ExampleInc_HW_Initiator/4010,Firmware/2.0.0.5

X#NodeArchitecture=ExampleInc_SW_Initiator/2.1,CPU_Arch/i686

This document does not define the structure or content of the list

of values.

The initiator or target declares the details of its iSCSI node

architecture to the remote endpoint. These details may include,

but are not limited to, iSCSI vendor software, firmware, or

hardware versions, the OS version, or hardware architecture. This

key may be declared on a Discovery session or a Normal session.

The length of the key value (total length of the list-of-values)

MUST NOT be greater than 255 bytes.

X#NodeArchitecture MUST NOT be redeclared during the login phase.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 286]

13.26.2. Implementation Requirements

Functional behavior of the iSCSI node (this includes the iSCSI

protocol logic -- the SCSI, iSCSI, and TCP/IP protocols) MUST NOT

depend on the presence, absence, or content of the

X#NodeArchitecture key. The key MUST NOT be used by iSCSI nodes

for interoperability, or exclusion of other nodes. To ensure

proper use, key values SHOULD be set by the node itself, and there

SHOULD NOT be provisions for the key values to contain user-

defined text.

Nodes implementing this key MUST choose one of the following

implementation options:

- only transmit the key,

- only log the key values received from other nodes, or

- both transmit and log the key values.

Each node choosing to implement transmission of the key values

MUST be prepared to handle the response of iSCSI Nodes that do not

understand the key.

Nodes that implement transmission and/or logging of the key values

may also implement administrative mechanisms that disable and/or

change the logging and key transmission detail (see Section 9.4).

Thus, a valid behavior for this key may be that a node is

completely silent (the node does not transmit any key value, and

simply discards any key values it receives without issuing a

NotUnderstood response).

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 287]

14. Rationale for revised IANA Considerations

This document makes rather significant changes in this area, and

this Section outlines the reasons behind the changes. As

previously specified in [RFC3720], iSCSI had used text string

prefixes, such as X- and X#, to distinguish extended login/text

keys, digest algorithms and authentication methods from their

standardized counterparts. Based on experience with other

protocols, [RFC6648] however strongly recommends against this

practice, in large part because extensions that use such prefixes

may become standard over time at which point it can be infeasible

to change their text string names due to widespread usage under

the existing text string name.

iSCSI's experience with public extensions supports the

recommendations in [RFC6648], as the only extension item ever

registered with IANA, the X#NodeArchitecture key, was specified as

a standard key in a standards-track RFC [RFC4850], and hence did

not require the X# prefix. In addition, that key is the only

public iSCSI extension that has been registered with IANA since

RFC 3720 was originally published, so there has been effectively

no use of the X#, Y# and Z# public extension formats.

Therefore, this document makes the following changes to the IANA

registration procedures for iSCSI:

(1) The separate registries for X#, Y# and Z# public

extensions are removed. The single entry in the registry for

X# login/text keys(X#NodeArchitecture) is transferred to the

main login/text key registry. IANA has never created the

latter two registries because there have been no

registration requests for them. These public extension

formats (X#, Y#, Z#) MUST NOT be used with the exception of

the existing X#NodeArchitecture key.

(2) The Registration Procedures for the main login/text key,

digest algorithm and authentication method IANA registries

are changed to IETF Review [RFC5226] for possible future

extensions to iSCSI. This change includes a deliberate

decision to remove the possibility of specifying an IANA-

registered iSCSI extension in an RFC published via an RFC

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 288]

Editor independent submission, as the level of review in

that process is insufficient for iSCSI extensions.

(3) The restriction against registering items using the

private extension formats (X-, Y-, Z-) in the main IANA

registries is removed. Extensions using these formats MAY be

registered under the IETF Review registration procedures,

but each format is restricted to the type of extension for

which it is specified in this RFC and MUST NOT be used for

other types. For example, the X- extension format for

extension login/text keys MUST NOT be used for digest

algorithms or authentication methods.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 289]

15. IANA Considerations

The well-known TCP port number for iSCSI connections assigned by

IANA is 3260 and this is the default iSCSI port. Implementations

needing a system TCP port number may use port 860, the port

assigned by IANA as the iSCSI system port; however in order to use

port 860, it MUST be explicitly specified - implementations MUST

NOT default to use of port 860, as 3260 is the only allowed

default.

IANA is requested to update all references to RFC 3720, RFC 4850

and RFC 5048 to instead reference this RFC in all of the iSCSI

registries that are part of the "Internet Small Computer System

Interface (iSCSI) Parameters" set of registries. This change

reflects the fact that those three RFCs are obsoleted by this RFC.

References to other RFCs that are not being obsoleted (e.g., RFC

3723, RFC 5046) should not be changed.

IANA is requested to perform the following actions on the iSCSI

Login/Text Keys registry:

- Change the registration procedure to IETF Review from

Standard Required.

- Change the RFC 5048 reference for the registry to reference

this RFC.

- Add the X#NodeArchitecture Key from the iSCSI extended key

registry and change its reference to this RFC.

- Change all references of RFC 3720 and RFC 5048 to reference

this RFC.

IANA is requested to change the Registration Procedures for the

iSCSI authentication methods and iSCSI digests registries to IETF

Review from RFC Required.

IANA is requested to remove the iSCSI extended key registry, as

its one entry is to be added to the iSCSI login/text keys

registry.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 290]

IANA is requested to mark obsolete the values 4 and 5, for SPKM1

and SPKM2 respectively, in the iSCSI authentication methods

subregistry of the Internet Small Computer System Interface

(iSCSI) Parameters registries.

All the other IANA considerations stated in [RFC3720] and

[RFC5048] remain unchanged.

This document obsoletes the SPKM1 and SPKM2 key values for the

AuthMethod text key. Consequently, the SPKM_ text key prefix MUST

be treated as obsolete and be not reused.

References

Normative References

[EUI] "Guidelines for 64-bit Global Identifier (EUI-64)",

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

[FC-FS3] INCITS 470-2011, Fibre Channel - Framing and

Signaling - 3 (FC-FS-3).

[IPSEC-IPS] Black, D., Koning, P., “IP Storage: IPsec

Requirements Update for IPsec v3”, draft-ietf-storm-ipsec-

ips-update-01.txt (work in progress), June 2013

[iSCSI-SAM] Knight, F., Chadalapaka, M., “Internet Small

Computer Systems Interface (iSCSI) SCSI Architecture

Features Update”, draft-ietf-storm-iscsi-sam-06.txt (work in

progress), July 2012

[OUI] "IEEE OUI and Company_Id Assignments",

http://standards.ieee.org/regauth/oui

[RFC1122] R.Braden, "Requirements for Internet Hosts --

Communication Layers", October 1989.

[RFC1964] J. Linn, "The Kerberos Version 5 GSS-API Mechanism",

June 1996.

[RFC1982] Elz, R., Bush, R., "Serial Number Arithmetic",

August 1996.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 291]

[RFC1994] W. Simpson, “PPP Challenge Handshake Authentication

Protocol (CHAP)", August 1996.

[RFC2119] Bradner, S. "Key Words for use in RFCs to Indicate

Requirement Levels", BCP 14, March 1997.

[RFC2404] C. Madson, R. Glenn, "The Use of HMAC-SHA-1-96

within ESP and AH", November 1998.

[RFC2451] R. Pereira, R. Adams "The ESP CBC-Mode Cipher

Algorithms".

[RFC2945] Wu, T., "The SRP Authentication and Key Exchange

System", September 2000.

[RFC3454] Hoffman, P. and M. Blanchet, "Preparation of

Internationalized Strings ("stringprep")", RFC 3454,

December 2002.

[RFC3566] Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96

Algorithm and Its Use With IPsec", RFC 3566, September 2003.

[RFC3629] Yergeau, F., "UTF-8, a Transformation Format of ISO

10646", RFC 3629, November 2003

[RFC3686] Housley, R., "Using Advanced Encryption Standard

(AES) Counter Mode with IPsec Encapsulating Security Payload

(ESP)", RFC 3686, January 2004.

 [RFC3722] Bakke, M., "String Profile for Internet Small

Computer Systems Interface (iSCSI) Names", RFC 3722, March

2004.

[RFC3723] Aboba, B., Tseng, J., Walker, J., Rangan, V. and F.

Travostino, "Securing Block Storage Protocols over IP", RFC

3723, March 2004.

 [RFC3986] T. Berners-Lee, R. Fielding, L. Masinter "Uniform

Resource Identifier (URI): Generic Syntax", January 2005.

[RFC4106] J. Viega, D. McGrew, "The Use of Galois/Counter Mode

(GCM) in IPsec Encapsulating Security Payload (ESP)", RFC

4106, June 2005.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 292]

[RFC4120] Neuman, C., Yu, T., Hartman, S., Raeburn, K, "The

Kerberos Network Authentication Service (V5)", RFC 4120,

July 2005.

[RFC4171] J. Tseng, K. Gibbons, F. Travostino, C. Du Laney, J.

Souza, "Internet Storage Name Service (iSNS)", September

2005.

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", February 2006.

[RFC4301] S. Kent, K.Seo, "Security Architecture for the

Internet Protocol", December 2005.

[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",

RFC 4303, December 2005

[RFC4543] D. McGrew, J. Viega, "The Use of Galois Message

Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,

May 2006

[RFC4648] S. Josefsson, "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, October 2006

[RFC5226] H. Alvestrand, T. Narten, "Guidelines for Writing an

IANA Considerations Section in RFCs", RFC 5226, May 2008

[RFC5996] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, "Internet

Key Exchange Protocol Version 2 (IKEv2) ", RFC 5996,

September 2010.

[SAM2] T10/1157-D, SCSI Architecture Model - 2 (SAM-2).

[SAM4] T10/1683-D, SCSI Architecture Model - 4 (SAM-4).

[SPC2] T10/1236-D, SCSI Primary Commands-2.

[SPC3] T10/1416-D, SCSI Primary Commands-3.

[UML] ISO/IEC 19501, Unified Modeling Language

Specification Version 1.4.2.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 293]

[UNICODE] Unicode Standard Annex #15, "Unicode Normalization

Forms", http://www.unicode.org/unicode/reports/tr15

Informative References

[FC-SP-2] T11/1835-D, Fibre Channel Security Protocols– 2 (FC-

SP-2).

[RFC1737] K. Sollins, L. Masinter "Functional Requirements for

Uniform Resource Names".

[RFC5433] T. Clancy, H. Tschofenig "Extensible Authentication

Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method",

RFC 5433, February 2009.

[IB] InfiniBand{tm} Architecture Specification, Vol. 1,

Rel.1.0.a, InfiniBand Trade

Association(http://www.infinibandta.org).

[Castagnoli93] G. Castagnoli, S. Braeuer and M. Herrman

"Optimization of Cyclic Redundancy-Check Codes with 24 and

32 Parity Bits", IEEE Transact. on Communications, Vol. 41,

No. 6, June 1993.

[CRC] ISO 3309, High-Level Data Link Control (CRC 32).

[RFC2401] S. Kent, R. Atkinson, "Security Architecture for the

Internet Protocol ", November 1998.

[RFC2406] S. Kent, R. Atkinson, "IP Encapsulating Security

Payload (ESP)", November 1998.

[RFC2407] D. Piper, "The Internet IP Security Domain of

Interpretation for ISAKMP", November 1998.

[RFC2409] D. Harkins, D. Carrel, "The Internet Key Exchange

(IKE)", November 1998.

[RFC2608] E. Guttman, C. Perkins, J. Veizades, M. Day,

"Service Location Protocol, Version 2", June 1999.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 294]

[RFC2743] J.Linn, "Generic Security Service Application

Program Interface Version 2, Update 1", January 2000

[RFC2865] C. Rigney, S. Willens, A. Rubens, W. Simpson,

"Remote Authentication Dial In User Service (RADIUS)", June

2000.

[RFC3385] Sheinwald, D., Satran, J., Thaler, P. and V.

Cavanna, "Internet Protocol Small Computer System Interface

(iSCSI) Cyclic Redundancy Check (CRC)/Checksum

Considerations", RFC 3385, September 2002.

[RFC3602] S. Frankel, R. Glenn, S. Kelly, "The AES-CBC Cipher

Algorithm and Its Use with IPsec", RFC 3602, September 2003.

[RFC3720] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka,

M., and E. Zeidner, "Internet Small Computer Systems

Interface (iSCSI)", RFC 3720, April 2004.

[RFC3721] Bakke, M., Hafner, J., Hufferd, J., Voruganti, K.

and M. Krueger, "Internet Small Computer Systems Interface

(iSCSI) Naming and Discovery", RFC 3721, March 2004

[RFC3783] M. Chadalapaka, R. Elliott, “Small Computer Systems

Interface (SCSI) Command Ordering Considerations with

iSCSI”, RFC 3783, May 2004.

[RFC4121] L. Zhu, K. Jaganathan, S. Hartman, “The Kerberos

Version 5 Generic Security Service Application Program

Interface (GSS-API) Mechanism: Version 2”, RFC 4121, July

2005.

[RFC4297] Romanow, A., Mogul, J., Talpey, T., and S. Bailey,

"Remote Direct Memory Access (RDMA) over IP Problem

Statement", RFC 4297, October 2004

[RFC4850] Wysochanski, D., "Declarative Public Extension Key

for Internet Small Computer Systems Interface (iSCSI) Node

Architecture", RFC 4850, April 2007.

[RFC5046] Ko, M., Chadalapaka, M., Hufferd, J., Elzur, U.,

Shah, H., and P. Thaler, "Internet Small Computer System

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 295]

Interface (iSCSI) Extensions for Remote Direct Memory Access

(RDMA)", RFC 5046, October 2007

[RFC5048] Chadalapaka, M., "Internet Small Computer Systems

Interface (iSCSI) Corrections and Clarifications", RFC 5048,

October 2007.

[RFC6648] P. Saint-Andre, D. Crocker, M. Nottingham,

"Deprecating the X- Prefix and Similar Constructs in

Application Protocols", RFC 6648, June 2012

[SAS] T10/2125-D, Serial Attached SCSI - 2.1 (SAS-2.1);

T10/2124-D, SAS Protocol Layer (SPL); T10/2124-M, SAS

Protocol Layer (SPL) Amendment #1 (SPL AM1).

[SBC2] NCITS.405-205, SCSI Block Commands - 2 (SBC-2).

[SPC4] T10/1731-D, SCSI Primary Commands-4.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 296]

Appendix A. Examples

Read Operation Example

+------------------+-----------------------+---------------------+

|Initiator Function| PDU Type | Target Function |

+------------------+-----------------------+---------------------+

| Command request |SCSI Command (READ)>>> | |

| (read) | | |

+------------------+-----------------------+---------------------+

| | |Prepare Data Transfer|

+------------------+-----------------------+---------------------+

| Receive Data | <<< SCSI Data-in | Send Data |

+------------------+-----------------------+---------------------+

| Receive Data | <<< SCSI Data-in | Send Data |

+------------------+-----------------------+---------------------+

| Receive Data | <<< SCSI Data-in | Send Data |

+------------------+-----------------------+---------------------+

| | <<< SCSI Response |Send Status and Sense|

+------------------+-----------------------+---------------------+

| Command Complete | | |

+------------------+-----------------------+---------------------+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 297]

Write Operation Example

+------------------+-----------------------+---------------------+

|Initiator Function| PDU Type | Target Function |

+------------------+-----------------------+---------------------+

| Command request |SCSI Command (WRITE)>>>| Receive command |

| (write) | | and queue it |

+------------------+-----------------------+---------------------+

| | | Process old commands|

+------------------+-----------------------+---------------------+

| | | Ready to process |

| | <<< R2T | WRITE command |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Data-out >>> | Receive Data |

+------------------+-----------------------+---------------------+

| | <<< R2T | Ready for data |

+------------------+-----------------------+---------------------+

| | <<< R2T | Ready for data |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Data-out >>> | Receive Data |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Data-out >>> | Receive Data |

+------------------+-----------------------+---------------------+

| | <<< SCSI Response |Send Status and Sense|

+------------------+-----------------------+---------------------+

| Command Complete | | |

+------------------+-----------------------+---------------------+

R2TSN/DataSN Use Examples

Output (write) data DataSN/R2TSN Example

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 298]

+------------------+-----------------------+---------------------+

|Initiator Function| PDU Type & Content | Target Function |

+------------------+-----------------------+---------------------+

| Command request |SCSI Command (WRITE)>>>| Receive command |

| (write) | | and queue it |

+------------------+-----------------------+---------------------+

| | | Process old commands|

+------------------+-----------------------+---------------------+

| | <<< R2T | Ready for data |

| | R2TSN = 0 | |

+------------------+-----------------------+---------------------+

| | <<< R2T | Ready for more data |

| | R2TSN = 1 | |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Data-out >>> | Receive Data |

| for R2TSN 0 | DataSN = 0, F=0 | |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Data-out >>> | Receive Data |

| for R2TSN 0 | DataSN = 1, F=1 | |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Data >>> | Receive Data |

| for R2TSN 1 | DataSN = 0, F=1 | |

+------------------+-----------------------+---------------------+

| | <<< SCSI Response |Send Status and Sense|

| | ExpDataSN = 0 | |

+------------------+-----------------------+---------------------+

| Command Complete | | |

+------------------+-----------------------+---------------------+

 Input (read) data DataSN Example

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 299]

+------------------+-----------------------+---------------------+

|Initiator Function| PDU Type | Target Function |

+------------------+-----------------------+---------------------+

| Command request |SCSI Command (READ)>>> | |

| (read) | | |

+------------------+-----------------------+---------------------+

| | |Prepare Data Transfer|

+------------------+-----------------------+---------------------+

| Receive Data | <<< SCSI Data-in | Send Data |

| | DataSN = 0, F=0 | |

+------------------+-----------------------+---------------------+

| Receive Data | <<< SCSI Data-in | Send Data |

| | DataSN = 1, F=0 | |

+------------------+-----------------------+---------------------+

| Receive Data | <<< SCSI Data-in | Send Data |

| | DataSN = 2, F=1 | |

+------------------+-----------------------+---------------------+

| | <<< SCSI Response |Send Status and Sense|

| | ExpDataSN = 3 | |

+------------------+-----------------------+---------------------+

| Command Complete | | |

+------------------+-----------------------+---------------------+

 Bidirectional DataSN Example

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 300]

+------------------+-----------------------+---------------------+

|Initiator Function| PDU Type | Target Function |

+------------------+-----------------------+---------------------+

| Command request |SCSI Command >>> | |

| (Read-Write) | Read-Write | |

+------------------+-----------------------+---------------------+

| | | Process old commands|

+------------------+-----------------------+---------------------+

| | <<< R2T | Ready to process |

| | R2TSN = 0 | WRITE command |

+------------------+-----------------------+---------------------+

| * Receive Data | <<< SCSI Data-in | Send Data |

| | DataSN = 0, F=0 | |

+------------------+-----------------------+---------------------+

| * Receive Data | <<< SCSI Data-in | Send Data |

| | DataSN = 1, F=1 | |

+------------------+-----------------------+---------------------+

| * Send Data | SCSI Data-out >>> | Receive Data |

| for R2TSN 0 | DataSN = 0, F=1 | |

+------------------+-----------------------+---------------------+

| | <<< SCSI Response |Send Status and Sense|

| | ExpDataSN = 2 | |

+------------------+-----------------------+---------------------+

| Command Complete | | |

+------------------+-----------------------+---------------------+

*) Send data and Receive Data may be transferred simultaneously as

in an atomic Read-Old-Write-New or sequentially as in an atomic

Read-Update-Write (in the latter case the R2T may follow the

received data).

Unsolicited and immediate output (write) data with DataSN Example

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 301]

+------------------+-----------------------+---------------------+

|Initiator Function| PDU Type & Content | Target Function |

+------------------+-----------------------+---------------------+

| Command request |SCSI Command (WRITE)>>>| Receive command |

| (write) |F=0 | and data |

|+ immediate data | | and queue it |

+------------------+-----------------------+---------------------+

| Send Unsolicited | SCSI Write Data >>> | Receive more Data |

| Data | DataSN = 0, F=1 | |

+------------------+-----------------------+---------------------+

| | | Process old commands|

+------------------+-----------------------+---------------------+

| | <<< R2T | Ready for more data |

| | R2TSN = 0 | |

+------------------+-----------------------+---------------------+

| Send Data | SCSI Write Data >>> | Receive Data |

| for R2TSN 0 | DataSN = 0, F=1 | |

+------------------+-----------------------+---------------------+

| | <<< SCSI Response |Send Status and Sense|

| | | |

+------------------+-----------------------+---------------------+

| Command Complete | | |

+------------------+-----------------------+---------------------+

CRC Examples

N.B. all Values are Hexadecimal

32 bytes of zeroes:

 Byte: 0 1 2 3

 0: 00 00 00 00

 ...

 28: 00 00 00 00

 CRC: aa 36 91 8a

32 bytes of ones:

 Byte: 0 1 2 3

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 302]

 0: ff ff ff ff

 ...

 28: ff ff ff ff

 CRC: 43 ab a8 62

32 bytes of incrementing 00..1f:

 Byte: 0 1 2 3

 0: 00 01 02 03

 ...

 28: 1c 1d 1e 1f

 CRC: 4e 79 dd 46

32 bytes of decrementing 1f..00:

 Byte: 0 1 2 3

 0: 1f 1e 1d 1c

 ...

 28: 03 02 01 00

 CRC: 5c db 3f 11

An iSCSI - SCSI Read (10) Command PDU

 Byte: 0 1 2 3

 0: 01 c0 00 00

 4: 00 00 00 00

 8: 00 00 00 00

 12: 00 00 00 00

 16: 14 00 00 00

 20: 00 00 04 00

 24: 00 00 00 14

 28: 00 00 00 18

 32: 28 00 00 00

 36: 00 00 00 00

 40: 02 00 00 00

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 303]

 44: 00 00 00 00

 CRC: 56 3a 96 d9

Appendix B. Login Phase Examples

In the first example, the initiator and target authenticate each

other via Kerberos:

 I-> Login (CSG,NSG=0,1 T=1)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=KRB5,SRP,None

 T-> Login (CSG,NSG=0,0 T=0)

 AuthMethod=KRB5

 I-> Login (CSG,NSG=0,1 T=1)

 KRB_AP_REQ=<krb_ap_req>

(krb_ap_req contains the Kerberos V5 ticket and authenticator with

MUTUAL-REQUIRED set in the ap-options field)

If the authentication is successful, the target proceeds with:

 T-> Login (CSG,NSG=0,1 T=1)

 KRB_AP_REP=<krb_ap_rep>

(krb_ap_rep is the Kerberos V5 mutual authentication reply)

If the authentication is successful, the initiator may proceed

with:

 I-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=8192

 T-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=4096

MaxBurstLength=8192

 I-> Login (CSG,NSG=1,0 T=0) MaxBurstLength=8192

 ... more iSCSI Operational Parameters

 T-> Login (CSG,NSG=1,0 T=0)

 ... more iSCSI Operational Parameters

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 304]

 And at the end:

 I-> Login (CSG,NSG=1,3 T=1)

 optional iSCSI parameters

 T-> Login (CSG,NSG=1,3 T=1) "login accept"

If the initiator’s authentication by the target is not successful,

the target responds with:

 T-> Login "login reject"

instead of the Login KRB_AP_REP message, and terminates the

connection.

If the target’s authentication by the initiator is not successful,

the initiator terminates the connection (without responding to the

Login KRB_AP_REP message).

In the next example only the initiator is authenticated by the

target via Kerberos:

 I-> Login (CSG,NSG=0,1 T=1)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=SRP,KRB5,None

 T-> Login-PR (CSG,NSG=0,0 T=0)

 AuthMethod=KRB5

 I-> Login (CSG,NSG=0,1 T=1)

 KRB_AP_REQ=krb_ap_req

(MUTUAL-REQUIRED not set in the ap-options field of krb_ap_req)

If the authentication is successful, the target proceeds with:

 T-> Login (CSG,NSG=0,1 T=1)

 I-> Login (CSG,NSG=1,0 T=0)

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 305]

 ... iSCSI parameters

 T-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

. . .

 T-> Login (CSG,NSG=1,3 T=1)"login accept"

In the next example, the initiator and target authenticate each

other via SRP:

 I-> Login (CSG,NSG=0,1 T=1)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=KRB5,SRP,None

 T-> Login-PR (CSG,NSG=0,0 T=0)

 AuthMethod=SRP

 I-> Login (CSG,NSG=0,0 T=0)

 SRP_U=<user>

 TargetAuth=Yes

 T-> Login (CSG,NSG=0,0 T=0)

 SRP_N=<N>

 SRP_g=<g>

 SRP_s=<s>

 I-> Login (CSG,NSG=0,0 T=0)

 SRP_A=<A>

 T-> Login (CSG,NSG=0,0 T=0)

 SRP_B=

 I-> Login (CSG,NSG=0,1 T=1)

 SRP_M=<M>

If the initiator authentication is successful, the target

proceeds:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 306]

 T-> Login (CSG,NSG=0,1 T=1)

 SRP_HM=<H(A | M | K)>

 Where N, g, s, A, B, M, and H(A | M | K) are defined in

[RFC2945].

If the target authentication is not successful, the initiator

terminates the connection; otherwise, it proceeds.

 I-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

 T-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

And at the end:

 I-> Login (CSG,NSG=1,3 T=1)

 optional iSCSI parameters

 T-> Login (CSG,NSG=1,3 T=1) "login accept"

If the initiator authentication is not successful, the target

responds with:

 T-> Login "login reject"

Instead of the T-> Login SRP_HM=<H(A | M | K)> message and

terminates the connection.

In the next example, only the initiator is authenticated by the

target via SRP:

 I-> Login (CSG,NSG=0,1 T=1)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=KRB5,SRP,None

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 307]

 T-> Login-PR (CSG,NSG=0,0 T=0)

 AuthMethod=SRP

 I-> Login (CSG,NSG=0,0 T=0)

 SRP_U=<user>

 TargetAuth=No

 T-> Login (CSG,NSG=0,0 T=0)

 SRP_N=<N>

 SRP_g=<g>

 SRP_s=<s>

 I-> Login (CSG,NSG=0,0 T=0)

 SRP_A=<A>

 T-> Login (CSG,NSG=0,0 T=0)

 SRP_B=

 I-> Login (CSG,NSG=0,1 T=1)

 SRP_M=<M>

If the initiator authentication is successful, the target

proceeds:

T-> Login (CSG,NSG=0,1 T=1)

I-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

T-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 308]

And at the end:

I-> Login (CSG,NSG=1,3 T=1)

 optional iSCSI parameters

T-> Login (CSG,NSG=1,3 T=1) "login accept"

In the next example the initiator and target authenticate each

other via CHAP:

I-> Login (CSG,NSG=0,0 T=0)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=KRB5,CHAP,None

T-> Login-PR (CSG,NSG=0,0 T=0)

 AuthMethod=CHAP

I-> Login (CSG,NSG=0,0 T=0)

 CHAP_A=<A1,A2>

 T-> Login (CSG,NSG=0,0 T=0)

 CHAP_A=<A1>

 CHAP_I=<I>

 CHAP_C=<C>

I-> Login (CSG,NSG=0,1 T=1)

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 309]

 CHAP_N=<N>

 CHAP_R=<R>

 CHAP_I=<I>

 CHAP_C=<C>

If the initiator authentication is successful, the target

proceeds:

T-> Login (CSG,NSG=0,1 T=1)

 CHAP_N=<N>

 CHAP_R=<R>

If the target authentication is not successful, the initiator

aborts the connection; otherwise, it proceeds.

I-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

T-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

And at the end:

I-> Login (CSG,NSG=1,3 T=1)

 optional iSCSI parameters

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 310]

T-> Login (CSG,NSG=1,3 T=1) "login accept"

If the initiator authentication is not successful, the target

responds with:

T-> Login "login reject"

Instead of the Login CHAP_R=<response> "proceed and change

stage" message and terminates the connection.

In the next example, only the initiator is authenticated by the

target via CHAP:

I-> Login (CSG,NSG=0,1 T=0)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=KRB5,CHAP,None

T-> Login-PR (CSG,NSG=0,0 T=0)

 AuthMethod=CHAP

I-> Login (CSG,NSG=0,0 T=0)

 CHAP_A=<A1,A2>

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 311]

 T-> Login (CSG,NSG=0,0 T=0)

 CHAP_A=<A1>

 CHAP_I=<I>

 CHAP_C=<C>

I-> Login (CSG,NSG=0,1 T=1)

 CHAP_N=<N>

 CHAP_R=<R>

If the initiator authentication is successful, the target

proceeds:

T-> Login (CSG,NSG=0,1 T=1)

I-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

T-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

And at the end:

I-> Login (CSG,NSG=1,3 T=1)

 optional iSCSI parameters

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 312]

T-> Login (CSG,NSG=1,3 T=1) "login accept"

In the next example, the initiator does not offer any security

parameters. It therefore may offer iSCSI parameters on the Login

PDU with the T bit set to 1, and the target may respond with a

final Login Response PDU immediately:

I-> Login (CSG,NSG=1,3 T=1)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 ... iSCSI parameters

T-> Login (CSG,NSG=1,3 T=1) "login accept"

 ... ISCSI parameters

In the next example, the initiator does offer security

parameters on the Login PDU, but the target does not choose

any (i.e., chooses the "None" values):

I-> Login (CSG,NSG=0,1 T=1)

 InitiatorName=iqn.1999-07.com.os:hostid.77

 TargetName=iqn.1999-07.com.example:diskarray.sn.88

 AuthMethod=KRB5,SRP,None

T-> Login-PR (CSG,NSG=0,1 T=1)

 AuthMethod=None

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 313]

I-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

T-> Login (CSG,NSG=1,0 T=0)

 ... iSCSI parameters

And at the end:

I-> Login (CSG,NSG=1,3 T=1)

 optional iSCSI parameters

T-> Login (CSG,NSG=1,3 T=1) "login accept"

Appendix C. SendTargets Operation

The text in this Appendix is a normative part of this document.

To reduce the amount of configuration required on an initiator,

iSCSI provides the SendTargets text request. The initiator uses

the SendTargets request to get a list of targets to which it may

have access, as well as the list of addresses (IP address and TCP

port) on which these targets may be accessed.

To make use of SendTargets, an initiator must first establish one

of two types of sessions. If the initiator establishes

the session using the key "SessionType=Discovery", the session is

a discovery session, and a target name does not need to be

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 314]

specified. Otherwise, the session is a normal, operational

session. The SendTargets command MUST only be sent during the

Full Feature Phase of a normal or discovery session.

A system that contains targets MUST support discovery sessions on

each of its iSCSI IP address-port pairs, and MUST support the

SendTargets command on the discovery session. In a discovery

session, a target MUST return all path information (IP address-

port pairs and portal group tags) for the targets on the target

network entity which the requesting initiator is authorized to

access.

A target MUST support the SendTargets command on operational

sessions; these will only return path information about the target

to which the session is connected, and do not need to return

information about other target names that may be defined in the

responding system.

An initiator MAY make use of the SendTargets as it sees fit.

A SendTargets command consists of a single Text request PDU.

This PDU contains exactly one text key and value. The text key

MUST be SendTargets. The expected response depends upon the

value, as well as whether the session is a discovery or

operational session.

The value must be one of:

All

The initiator is requesting that information on all relevant

targets known to the implementation be returned. This value

MUST be supported on a discovery session, and MUST NOT be

supported on an operational session.

<iSCSI-target-name>

If an iSCSI target name is specified, the session should

respond with addresses for only the named target, if

possible. This value MUST be supported on discovery

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 315]

sessions. A discovery session MUST be capable of returning

addresses for those targets that would have been returned

had value=All been designated.

<nothing>

The session should only respond with addresses for the target

to which the session is logged in. This MUST be supported

on operational sessions, and MUST NOT return targets other

than the one to which the session is logged in.

The response to this command is a text response that contains a

list of zero or more targets and, optionally, their addresses.

Each target is returned as a target record. A target record

begins with the TargetName text key, followed by a list of

TargetAddress text keys, and bounded by the end of the text

response or the next TargetName key, which begins a new record.

No text keys other than TargetName and TargetAddress are permitted

within a SendTargets response.

For the format of the TargetName, see Section 13.4.

A discovery session MAY respond to a SendTargets request with its

complete list of targets, or with a list of targets that is based

on the name of the initiator logged in to the session.

A SendTargets response MUST NOT contain target names if there are

no targets for the requesting initiator to access.

Each target record returned includes zero or more TargetAddress

fields.

Each target record starts with one text key of the form:

TargetName=<target-name-goes-here>

Followed by zero or more address keys of the form:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 316]

TargetAddress=<hostname-or-ipaddress>[:<tcp-port>],<portal-

group-tag>

The hostname-or-ipaddress contains a domain name, IPv4 address, or

IPv6 address ([RFC4291]), as specified for the TargetAddress key.

A hostname-or-ipaddress duplicated in TargetAddress responses for

a given node (the port is absent or equal) would probably indicate

that multiple address families are in use at once (IPv6 and IPv4).

Each TargetAddress belongs to a portal group, identified by its

numeric portal group tag (as in Section 13.9). The iSCSI target

name, together with this tag, constitutes the SCSI port

identifier; the tag only needs to be unique within a given

target’s name list of addresses.

Multiple-connection sessions can span iSCSI addresses that belong

to the same portal group.

Multiple-connection sessions cannot span iSCSI addresses that

belong to different portal groups.

If a SendTargets response reports an iSCSI address for a target,

it SHOULD also report all other addresses in its portal group in

the same response.

A SendTargets text response can be longer than a single Text

Response PDU, and makes use of the long text responses as

specified.

After obtaining a list of targets from the discovery target

session,

an iSCSI initiator may initiate new sessions to log in to the

discovered targets for full operation. The initiator MAY keep the

discovery session open, and MAY send subsequent SendTargets

commands to discover new targets.

Examples:

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 317]

This example is the SendTargets response from a single target that

has no other interface ports.

Initiator sends text request that contains:

SendTargets=All

Target sends a text response that contains:

TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

All the target had to return in the simple case was the target

name. It is assumed by the initiator that the IP address and TCP

port for this target are the same as used on the current

connection to the default iSCSI target.

The next example has two internal iSCSI targets, each accessible

via two different ports with different IP addresses. The

following is the text response:

TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

TargetAddress=10.1.0.45:3000,1

TargetAddress=10.1.1.45:3000,2

TargetName=iqn.1993-11.com.example:diskarray.sn.1234567

TargetAddress=10.1.0.45:3000,1

TargetAddress=10.1.1.45:3000,2

Both targets share both addresses; the multiple addresses are

likely used to provide multi-path support. The initiator may

connect to either target name on either address. Each of the

addresses has its own portal group tag; they do not support

spanning multiple-connection sessions with each other. Keep in

mind that the portal group tags for the two named targets are

independent of one another; portal group "1" on the first target

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 318]

is not necessarily the same as portal group "1" on the second

target.

In the above example, a DNS host name or an IPv6 address could

have been returned instead of an IPv4 address.

The next text response shows a target that supports spanning

sessions across multiple addresses, and further illustrates the

use of the portal group tags:

TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

TargetAddress=10.1.0.45:3000,1

TargetAddress=10.1.1.46:3000,1

TargetAddress=10.1.0.47:3000,2

TargetAddress=10.1.1.48:3000,2

TargetAddress=10.1.1.49:3000,3

In this example, any of the target addresses can be used to reach

the same target. A single-connection session can be established

to any of these TCP addresses. A multiple-connection session

could span addresses .45 and .46 or .47 and .48, but cannot span

any other combination. A TargetAddress with its own tag (.49)

cannot be combined with any other address within the same session.

This SendTargets response does not indicate whether .49 supports

multiple connections per session; it is communicated via the

MaxConnections text key upon login to the target.

Appendix D. Algorithmic Presentation of Error Recovery Classes

This Appendix illustrates the error recovery classes using a

pseudo-programming-language. The procedure names are chosen to be

obvious to most implementers. Each of the recovery classes

described has initiator procedures as well as target procedures.

These algorithms focus on outlining the mechanics of error

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 319]

recovery classes, and do not exhaustively describe all other

aspects/cases. Examples of this approach are:

- Handling for only certain Opcode types is shown.

- Only certain reason codes (e.g., Recovery in Logout command)

are outlined.

- Resultant cases, such as recovery of Synchronization on a

header digest error are considered out-of-scope in these

algorithms. In this particular example, a header digest

error may lead to connection recovery if some type of sync

and steering layer is not implemented.

These algorithms strive to convey the iSCSI error recovery

concepts in the simplest terms, and are not designed to be

optimal.

D.1. General Data Structure and Procedure Description

This Section defines the procedures and data structures that are

commonly used by all the error recovery algorithms. The structures

may not be the exhaustive representations of what is required for

a typical implementation.

Data structure definitions -

struct TransferContext {

 int TargetTransferTag;

 int ExpectedDataSN;

};

struct TCB { /* task control block */

 Boolean SoFarInOrder;

 int ExpectedDataSN; /* used for both R2Ts, and Data */

 int MissingDataSNList[MaxMissingDPDU];

 Boolean FbitReceived;

 Boolean StatusXferd;

 Boolean CurrentlyAllegiant;

 int ActiveR2Ts;

 int Response;

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 320]

 char *Reason;

 struct TransferContext

 TransferContextList[MaxOutStandingR2T];

 int InitiatorTaskTag;

 int CmdSN;

 int SNACK_Tag;

};

struct Connection {

 struct Session SessionReference;

 Boolean SoFarInOrder;

 int CID;

 int State;

 int CurrentTimeout;

 int ExpectedStatSN;

 int MissingStatSNList[MaxMissingSPDU];

 Boolean PerformConnectionCleanup;

};

struct Session {

 int NumConnections;

 int CmdSN;

 int Maxconnections;

 int ErrorRecoveryLevel;

 struct iSCSIEndpoint OtherEndInfo;

 struct Connection ConnectionList[MaxSupportedConns];

};

Procedure descriptions -

Receive-a-In-PDU(transport connection, inbound PDU);

check-basic-validity(inbound PDU);

Start-Timer(timeout handler, argument, timeout value);

Build-And-Send-Reject(transport connection, bad PDU, reason

code);

D.2. Within-command Error Recovery Algorithms

D.2.1. Procedure Descriptions

Recover-Data-if-Possible(last required DataSN, task control

block);

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 321]

Build-And-Send-DSnack(task control block);

Build-And-Send-RDSnack(task control block);

Build-And-Send-Abort(task control block);

SCSI-Task-Completion(task control block);

Build-And-Send-A-Data-Burst(transport connection, data-

descriptor,

 task control

block);

Build-And-Send-R2T(transport connection, data-descriptor,

 task control

block);

Build-And-Send-Status(transport connection, task control block);

Transfer-Context-Timeout-Handler(transfer context);

Notes:

- One procedure used in this Section: Handle-Status-SNACK-

request is defined in Within-connection recovery algorithms.

- The Response processing pseudo-code, shown in the target

algorithms, applies to all solicited PDUs that carry StatSN

- SCSI Response, Text Response etc.

D.2.2. Initiator Algorithms

Recover-Data-if-Possible(LastRequiredDataSN, TCB)

{

 if (operational ErrorRecoveryLevel > 0) {

 if (# of missing PDUs is trackable) {

 Note the missing DataSNs in TCB.

 if (the task spanned a change in

 MaxRecvDataSegmentLength) {

 if (TCB.StatusXferd is TRUE)

 drop the status PDU;

 Build-And-Send-RDSnack(TCB);

 } else {

 Build-And-Send-DSnack(TCB);

 }

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 322]

 } else {

 TCB.Reason = "Protocol service CRC error";

 }

 } else {

 TCB.Reason = "Protocol service CRC error";

 }

 if (TCB.Reason == "Protocol service CRC error") {

 Clear the missing PDU list in the TCB.

 if (TCB.StatusXferd is not TRUE)

 Build-And-Send-Abort(TCB);

 }

}

Receive-a-In-PDU(Connection, CurrentPDU)

{

 check-basic-validity(CurrentPDU);

 if (Header-Digest-Bad) discard, return;

 Retrieve TCB for CurrentPDU.InitiatorTaskTag.

 if ((CurrentPDU.type == Data)

 or (CurrentPDU.type = R2T)) {

 if (Data-Digest-Bad for Data) {

 send-data-SNACK = TRUE;

 LastRequiredDataSN = CurrentPDU.DataSN;

 } else {

 if (TCB.SoFarInOrder = TRUE) {

 if (current DataSN is expected) {

 Increment TCB.ExpectedDataSN.

 } else {

 TCB.SoFarInOrder = FALSE;

 send-data-SNACK = TRUE;

 }

 } else {

 if (current DataSN was considered

missing) {

 remove current DataSN from missing

PDU list.

 } else if (current DataSN is higher than

expected) {

 send-data-SNACK = TRUE;

 } else {

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 323]

 discard, return;

 }

 Adjust TCB.ExpectedDataSN if

appropriate.

 }

 LastRequiredDataSN = CurrentPDU.DataSN - 1;

 }

 if (send-data-SNACK is TRUE and

 task is not already considered failed) {

 Recover-Data-if-Possible(LastRequiredDataSN, TCB);

 }

 if (missing data PDU list is empty) {

 TCB.SoFarInOrder = TRUE;

 }

 if (CurrentPDU.type == R2T) {

 Increment ActiveR2Ts for this task.

 Create a data-descriptor for the data burst.

 Build-And-Send-A-Data-Burst(Connection, data-

descriptor,

 TCB);

 }

 } else if (CurrentPDU.type == Response) {

 if (Data-Digest-Bad) {

 send-status-SNACK = TRUE;

 } else {

 TCB.StatusXferd = TRUE;

 Store the status information in TCB.

 if (ExpDataSN does not match) {

 TCB.SoFarInOrder = FALSE;

 Recover-Data-if-Possible(current DataSN, TCB);

 }

 if (missing data PDU list is empty) {

 TCB.SoFarInOrder = TRUE;

 }

 }

 } else { /* REST UNRELATED TO WITHIN-COMMAND-RECOVERY, NOT

SHOWN */

 }

 if ((TCB.SoFarInOrder == TRUE) and

 (TCB.StatusXferd == TRUE)) {

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 324]

 SCSI-Task-Completion(TCB);

 }

}

D.2.3. Target Algorithms

Receive-a-In-PDU(Connection, CurrentPDU)

{

 check-basic-validity(CurrentPDU);

 if (Header-Digest-Bad) discard, return;

 Retrieve TCB for CurrentPDU.InitiatorTaskTag.

 if (CurrentPDU.type == Data) {

 Retrieve TContext from CurrentPDU.TargetTransferTag;

 if (Data-Digest-Bad) {

 Build-And-Send-Reject(Connection, CurrentPDU,

 Payload-Digest-Error);

 Note the missing data PDUs in MissingDataRange[].

 send-recovery-R2T = TRUE;

 } else {

 if (current DataSN is not expected) {

 Note the missing data PDUs in MissingDataRange[].

 send-recovery-R2T = TRUE;

 }

 if (CurrentPDU.Fbit == TRUE) {

 if (current PDU is solicited) {

 Decrement TCB.ActiveR2Ts.

 }

 if ((current PDU is unsolicited and

 data received is less than I/O length and

 data received is less than

FirstBurstLength)

 or (current PDU is solicited and the length of

 this burst is less than expected)) {

 send-recovery-R2T = TRUE;

 Note the missing data in MissingDataRange[].

 }

 }

 }

 Increment TContext.ExpectedDataSN.

 if (send-recovery-R2T is TRUE and

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 325]

 task is not already considered failed) {

 if (operational ErrorRecoveryLevel > 0) {

 Increment TCB.ActiveR2Ts.

 Create a data-descriptor for the data burst

 from MissingDataRange.

 Build-And-Send-R2T(Connection, data-descriptor,

TCB);

 } else {

 if (current PDU is the last unsolicited)

 TCB.Reason = "Not enough unsolicited data";

 else

 TCB.Reason = "Protocol service CRC error";

 }

 }

 if (TCB.ActiveR2Ts == 0) {

 Build-And-Send-Status(Connection, TCB);

 }

 } else if (CurrentPDU.type == SNACK) {

 snack-failure = FALSE;

 if (operational ErrorRecoveryLevel > 0) {

 if (CurrentPDU.type == Data/R2T) {

 if (the request is satisfiable) {

 if (request for Data) {

 Create a data-descriptor for the data burst

 from BegRun and RunLength.

 Build-And-Send-A-Data-Burst(Connection,

 data-descriptor, TCB);

 } else { /* R2T */

 Create a data-descriptor for the data burst

 from BegRun and RunLength.

 Build-And-Send-R2T(Connection, data-

descriptor,

 TCB);

 }

 } else {

 snack-failure = TRUE;

 }

 } else if (CurrentPDU.type == status) {

 Handle-Status-SNACK-request(Connection,

CurrentPDU);

 } else if (CurrentPDU.type == DataACK) {

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 326]

 Consider all data upto CurrentPDU.BegRun as

 acknowledged.

 Free up the retransmission resources for that data.

 } else if (CurrentPDU.type == R-Data SNACK) {

 Create a data descriptor for a data burst

covering

 all unacknowledged data.

 Build-And-Send-A-Data-Burst(Connection,

 data-descriptor, TCB);

 TCB.SNACK_Tag = CurrentPDU.SNACK_Tag;

 if (there’s no more data to send) {

 Build-And-Send-Status(Connection, TCB);

 }

 }

 } else { /* operational ErrorRecoveryLevel = 0 */

 snack-failure = TRUE;

 }

 if (snack-failure == TRUE) {

 Build-And-Send-Reject(Connection, CurrentPDU,

 SNACK-Reject);

 if (TCB.StatusXferd != TRUE) {

 TCB.Reason = "SNACK Rejected";

 Build-And-Send-Status(Connection, TCB);

 }

 }

 } else { /* REST UNRELATED TO WITHIN-COMMAND-RECOVERY, NOT

SHOWN */

 }

}

Transfer-Context-Timeout-Handler(TContext)

{

 Retrieve TCB and Connection from TContext.

 Decrement TCB.ActiveR2Ts.

 if (operational ErrorRecoveryLevel > 0 and

 task is not already considered failed) {

 Note the missing data PDUs in MissingDataRange[].

 Create a data-descriptor for the data burst

 from MissingDataRange[].

 Build-And-Send-R2T(Connection, data-descriptor, TCB);

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 327]

 } else {

 TCB.Reason = "Protocol service CRC error";

 if (TCB.ActiveR2Ts = 0) {

 Build-And-Send-Status(Connection, TCB);

 }

 }

}

D.3. Within-connection Recovery Algorithms

D.3.1. Procedure Descriptions

Procedure descriptions:

Recover-Status-if-Possible(transport connection,

 currently received PDU);

Evaluate-a-StatSN(transport connection, currently received PDU);

Retransmit-Command-if-Possible(transport connection, CmdSN);

Build-And-Send-SSnack(transport connection);

Build-And-Send-Command(transport connection, task control

block);

Command-Acknowledge-Timeout-Handler(task control block);

Status-Expect-Timeout-Handler(transport connection);

Build-And-Send-Nop-Out(transport connection);

Handle-Status-SNACK-request(transport connection, status SNACK

PDU);

Retransmit-Status-Burst(status SNACK, task control block);

Is-Acknowledged(beginning StatSN, run length);

Implementation-specific tunables:

InitiatorProactiveSNACKEnabled

Notes:

- The initiator algorithms only deal with unsolicited Nop-In

PDUs for generating status SNACKs. A solicited Nop-In PDU

has an assigned StatSN, which, when out of order, could

trigger the out of order StatSN handling in Within-command

algorithms, again leading to Recover-Status-if-Possible.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 328]

- The pseudo-code shown may result in the retransmission of

unacknowledged commands in more cases than necessary. This

will not, however, affect the correctness of the operation

because the target is required to discard the duplicate

CmdSNs.

- The procedure Build-And-Send-Async is defined in the

Connection recovery algorithms.

- The procedure Status-Expect-Timeout-Handler describes how

initiators may proactively attempt to retrieve the Status if

they so choose. This procedure is assumed to be triggered

much before the standard ULP timeout.

D.3.2. Initiator Algorithms

Recover-Status-if-Possible(Connection, CurrentPDU)

{

 if ((Connection.state == LOGGED_IN) and

 connection is not already considered

failed) {

 if (operational ErrorRecoveryLevel > 0) {

 if (# of missing PDUs is trackable) {

 Note the missing StatSNs in Connection

 that were not already requested with SNACK;

 Build-And-Send-SSnack(Connection);

 } else {

 Connection.PerformConnectionCleanup = TRUE;

 }

 } else {

 Connection.PerformConnectionCleanup = TRUE;

 }

 if (Connection.PerformConnectionCleanup == TRUE) {

 Start-Timer(Connection-Cleanup-Handler, Connection,

0);

 }

 }

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 329]

}

Retransmit-Command-if-Possible(Connection, CmdSN)

{

 if (operational ErrorRecoveryLevel > 0) {

 Retrieve the InitiatorTaskTag, and thus TCB for the

CmdSN.

 Build-And-Send-Command(Connection, TCB);

 }

}

Evaluate-a-StatSN(Connection, CurrentPDU)

{

 send-status-SNACK = FALSE;

 if (Connection.SoFarInOrder == TRUE) {

 if (current StatSN is the expected) {

 Increment Connection.ExpectedStatSN.

 } else {

 Connection.SoFarInOrder = FALSE;

 send-status-SNACK = TRUE;

 }

 } else {

 if (current StatSN was considered missing) {

 remove current StatSN from the missing list.

 } else {

 if (current StatSN is higher than expected){

 send-status-SNACK = TRUE;

 } else {

 send-status-SNACK = FALSE;

 discard the PDU;

 }

 }

 Adjust Connection.ExpectedStatSN if appropriate.

 if (missing StatSN list is empty) {

 Connection.SoFarInOrder = TRUE;

 }

 }

 return send-status-SNACK;

}

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 330]

Receive-a-In-PDU(Connection, CurrentPDU)

{

 check-basic-validity(CurrentPDU);

 if (Header-Digest-Bad) discard, return;

 Retrieve TCB for CurrentPDU.InitiatorTaskTag.

 if (CurrentPDU.type == Nop-In) {

 if (the PDU is unsolicited) {

 if (current StatSN is not expected) {

 Recover-Status-if-Possible(Connection,

CurrentPDU);

 }

 if (current ExpCmdSN is not Session.CmdSN) {

 Retransmit-Command-if-Possible(Connection,

 CurrentPDU.ExpCmdSN);

 }

 }

 } else if (CurrentPDU.type == Reject) {

 if (it is a data digest error on immediate data) {

 Retransmit-Command-if-Possible(Connection,

CurrentPDU.BadPDUHeader.CmdSN);

 }

 } else if (CurrentPDU.type == Response) {

 send-status-SNACK = Evaluate-a-StatSN(Connection,

 CurrentPDU);

 if (send-status-SNACK == TRUE)

 Recover-Status-if-Possible(Connection, CurrentPDU);

 } else { /* REST UNRELATED TO WITHIN-CONNECTION-RECOVERY,

 * NOT SHOWN */

 }

}

Command-Acknowledge-Timeout-Handler(TCB)

{

 Retrieve the Connection for TCB.

 Retransmit-Command-if-Possible(Connection, TCB.CmdSN);

}

Status-Expect-Timeout-Handler(Connection)

{

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 331]

 if (operational ErrorRecoveryLevel > 0) {

 Build-And-Send-Nop-Out(Connection);

 } else if (InitiatorProactiveSNACKEnabled){

 if ((Connection.state == LOGGED_IN) and

 connection is not already considered

failed) {

 Build-And-Send-SSnack(Connection);

 }

 }

}

D.3.3.Target Algorithms

Handle-Status-SNACK-request(Connection, CurrentPDU)

{

 if (operational ErrorRecoveryLevel > 0) {

 if (request for an acknowledged run) {

 Build-And-Send-Reject(Connection, CurrentPDU,

 Protocol-Error);

 } else if (request for an untransmitted run) {

 discard, return;

 } else {

 Retransmit-Status-Burst(CurrentPDU, TCB);

 }

 } else {

 Build-And-Send-Async(Connection, DroppedConnection,

 DefaultTime2Wait,

DefaultTime2Retain);

 }

}

D.4. Connection Recovery Algorithms

D.4.1. Procedure Descriptions

Build-And-Send-Async(transport connection, reason code,

 minimum time, maximum time);

Pick-A-Logged-In-Connection(session);

Build-And-Send-Logout(transport connection, logout connection

 identifier, reason code);

PerformImplicitLogout(transport connection, logout connection

 identifier, target information);

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 332]

PerformLogin(transport connection, target information);

CreateNewTransportConnection(target information);

Build-And-Send-Command(transport connection, task control

block);

Connection-Cleanup-Handler(transport connection);

Connection-Resource-Timeout-Handler(transport connection);

Quiesce-And-Prepare-for-New-Allegiance(session, task control

block);

Build-And-Send-Logout-Response(transport connection,

 CID of connection in recovery, reason

code);

Build-And-Send-TaskMgmt-Response(transport connection,

 task mgmt command PDU, response code);

Establish-New-Allegiance(task control block, transport

connection);

Schedule-Command-To-Continue(task control block);

Notes:

- Transport exception conditions, such as unexpected

connection termination, connection reset, and hung

connection while the connection is in the full-feature

phase, are all assumed to be asynchronously signaled to the

iSCSI layer using the Transport_Exception_Handler procedure.

D.4.2. Initiator Algorithms

Receive-a-In-PDU(Connection, CurrentPDU)

{

 check-basic-validity(CurrentPDU);

 if (Header-Digest-Bad) discard, return;

 Retrieve TCB from CurrentPDU.InitiatorTaskTag.

 if (CurrentPDU.type == Async) {

 if (CurrentPDU.AsyncEvent == ConnectionDropped) {

 Retrieve the AffectedConnection for

CurrentPDU.Parameter1.

 AffectedConnection.CurrentTimeout =

CurrentPDU.Parameter3;

 AffectedConnection.State = CLEANUP_WAIT;

 Start-Timer(Connection-Cleanup-Handler,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 333]

 AffectedConnection,

CurrentPDU.Parameter2);

 } else if (CurrentPDU.AsyncEvent == LogoutRequest)) {

 AffectedConnection = Connection;

 AffectedConnection.State = LOGOUT_REQUESTED;

 AffectedConnection.PerformConnectionCleanup = TRUE;

 AffectedConnection.CurrentTimeout =

CurrentPDU.Parameter3;

 Start-Timer(Connection-Cleanup-Handler,

 AffectedConnection, 0);

 } else if (CurrentPDU.AsyncEvent == SessionDropped)) {

 for (each Connection) {

 Connection.State = CLEANUP_WAIT;

 Connection.CurrentTimeout = CurrentPDU.Parameter3;

 Start-Timer(Connection-Cleanup-Handler,

 Connection, CurrentPDU.Parameter2);

 }

 Session.state = FAILED;

 }

 } else if (CurrentPDU.type == LogoutResponse) {

 Retrieve the CleanupConnection for CurrentPDU.CID.

 if (CurrentPDU.Response = failure) {

 CleanupConnection.State = CLEANUP_WAIT;

 } else {

 CleanupConnection.State = FREE;

 }

 } else if (CurrentPDU.type == LoginResponse) {

 if (this is a response to an implicit Logout) {

 Retrieve the CleanupConnection.

 if (successful) {

 CleanupConnection.State = FREE;

 Connection.State = LOGGED_IN;

 } else {

 CleanupConnection.State = CLEANUP_WAIT;

 DestroyTransportConnection(Connection);

 }

 }

 } else { /* REST UNRELATED TO CONNECTION-RECOVERY,

 * NOT SHOWN */

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 334]

 }

 if (CleanupConnection.State == FREE) {

 for (each command that was active on CleanupConnection) {

 /* Establish new connection allegiance */

 NewConnection = Pick-A-Logged-In-

Connection(Session);

 Build-And-Send-Command(NewConnection, TCB);

 }

 }

}

Connection-Cleanup-Handler(Connection)

{

 Retrieve Session from Connection.

 if (Connection can still exchange iSCSI PDUs) {

 NewConnection = Connection;

 } else {

 Start-Timer(Connection-Resource-Timeout-Handler,

 Connection, Connection.CurrentTimeout);

 if (there are other logged-in connections) {

 NewConnection = Pick-A-Logged-In-

Connection(Session);

 } else {

 NewConnection =

CreateTransportConnection(Session.OtherEndInfo);

 Initiate an implicit Logout on NewConnection for

 Connection.CID.

 return;

 }

 }

 Build-And-Send-Logout(NewConnection, Connection.CID,

 RecoveryRemove);

}

Transport_Exception_Handler(Connection)

{

 Connection.PerformConnectionCleanup = TRUE;

 if (the event is an unexpected transport disconnect) {

 Connection.State = CLEANUP_WAIT;

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 335]

 Connection.CurrentTimeout = DefaultTime2Retain;

 Start-Timer(Connection-Cleanup-Handler, Connection,

 DefaultTime2Wait);

 } else {

 Connection.State = FREE;

 }

}

D.4.3. Target Algorithms

Receive-a-In-PDU(Connection, CurrentPDU)

{

 check-basic-validity(CurrentPDU);

 if (Header-Digest-Bad) discard, return;

 else if (Data-Digest-Bad) {

 Build-And-Send-Reject(Connection, CurrentPDU,

 Payload-Digest-Error);

 discard, return;

 }

 Retrieve TCB and Session.

 if (CurrentPDU.type == Logout) {

 if (CurrentPDU.ReasonCode = RecoveryRemove) {

 Retrieve the CleanupConnection from CurrentPDU.CID).

 for (each command active on CleanupConnection) {

 Quiesce-And-Prepare-for-New-Allegiance(Session,

TCB);

 TCB.CurrentlyAllegiant = FALSE;

 }

 Cleanup-Connection-State(CleanupConnection);

 if ((quiescing successful) and (cleanup successful))

{

 Build-And-Send-Logout-Response(Connection,

 CleanupConnection.CID,

Success);

 } else {

 Build-And-Send-Logout-Response(Connection,

 CleanupConnection.CID,

Failure);

 }

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 336]

 }

 } else if ((CurrentPDU.type == Login) and

 operational ErrorRecoveryLevel == 2) {

 Retrieve the CleanupConnection from CurrentPDU.CID).

 for (each command active on CleanupConnection) {

 Quiesce-And-Prepare-for-New-Allegiance(Session,

TCB);

 TCB.CurrentlyAllegiant = FALSE;

 }

 Cleanup-Connection-State(CleanupConnection);

 if ((quiescing successful) and (cleanup successful))

{

 Continue with the rest of the Login processing;

 } else {

 Build-And-Send-Login-Response(Connection,

 CleanupConnection.CID, Target

Error);

 }

 }

 } else if (CurrentPDU.type == TaskManagement) {

 if (CurrentPDU.function == "TaskReassign") {

 if (Session.ErrorRecoveryLevel < 2) {

 Build-And-Send-TaskMgmt-Response(Connection,

 CurrentPDU, "Allegiance reassignment

 not supported");

 } else if (task is not found) {

 Build-And-Send-TaskMgmt-Response(Connection,

 CurrentPDU, "Task not in task set");

 } else if (task is currently allegiant) {

 Build-And-Send-TaskMgmt-Response(Connection,

 CurrentPDU, "Task still allegiant");

 } else {

 Establish-New-Allegiance(TCB, Connection);

 TCB.CurrentlyAllegiant = TRUE;

 Schedule-Command-To-Continue(TCB);

 }

 }

 } else { /* REST UNRELATED TO CONNECTION-RECOVERY,

 * NOT SHOWN */

 }

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 337]

}

Transport_Exception_Handler(Connection)

{

 Connection.PerformConnectionCleanup = TRUE;

 if (the event is an unexpected transport disconnect) {

 Connection.State = CLEANUP_WAIT;

 Start-Timer(Connection-Resource-Timeout-Handler,

Connection,

(DefaultTime2Wait+DefaultTime2Retain));

 if (this Session has full-feature phase connections

left) {

 DifferentConnection =

 Pick-A-Logged-In-Connection(Session);

 Build-And-Send-Async(DifferentConnection,

 DroppedConnection, DefaultTime2Wait,

 DefaultTime2Retain);

 }

 } else {

 Connection.State = FREE;

 }

}

Appendix E. Clearing Effects of Various Events on Targets

E.1. C

learing Effects on iSCSI Objects

The following tables describe the target behavior on receiving the

events specified in the rows of the table. The second table is

an extension of the first table and defines clearing actions for

more objects on the same events. The legend is:

Y = Yes (cleared/discarded/reset on the event specified in

the row). Unless otherwise noted, the clearing action is

only applicable for the issuing initiator port.

N = No (not affected on the event specified in the row,

i.e., stays at previous value).

NA = Not Applicable or Not Defined.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 338]

 +-----+-----+-----+-----+-----+

 |IT(1)|IC(2)|CT(5)|ST(6)|PP(7)|

+---------------------+-----+-----+-----+-----+-----+

|connection failure(8)|Y |Y |N |N |Y |

+---------------------+-----+-----+-----+-----+-----+

|connection state |NA |NA |Y |N |NA |

|timeout (9) | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|session timeout/ |Y |Y |Y |Y |Y(14)|

|closure/reinstatement| | | | | |

|(10) | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|session continuation |NA |NA |N(11)|N |NA |

|(12) | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|successful connection|Y |Y |Y |N |Y(13)|

|close logout | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|session failure (18) |Y |Y |N |N |Y |

+---------------------+-----+-----+-----+-----+-----+

|successful recovery |Y |Y |N |N |Y(13)|

|Logout | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|failed Logout |Y |Y |N |N |Y |

+---------------------+-----+-----+-----+-----+-----+

|connection Login |NA |NA |NA |Y(15)|NA |

|(leading) | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|connection Login |NA |NA |N(11)|N |Y |

|(non-leading) | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|target cold reset(16)|Y(20)|Y |Y |Y |Y |

+---------------------+-----+-----+-----+-----+-----+

|target warm reset(16)|Y(20)|Y |Y |Y |Y |

+---------------------+-----+-----+-----+-----+-----+

|LU reset(19) |Y(20)|Y |Y |Y |Y |

+---------------------+-----+-----+-----+-----+-----+

|powercycle(16) |Y |Y |Y |Y |Y |

+---------------------+-----+-----+-----+-----+-----+

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 339]

1. Incomplete TTTs - Target Transfer Tags on which the target is

still expecting PDUs to be received. Examples include TTTs

received via R2T, NOP-IN, etc.

2. Immediate Commands - immediate commands, but waiting for

execution on a target. For example, Abort Task Set.

5. Connection Tasks - tasks that are active on the iSCSI connection

in question.

6. Session Tasks - tasks that are active on the entire iSCSI

session. A union of "connection tasks" on all participating

connections.

7. Partial PDUs (if any) - PDUs that are partially sent and waiting

for transport window credit to complete the transmission.

8. Connection failure is a connection exception condition - one of

the transport connections shutdown, transport connections

reset, or transport connections timed out, which abruptly

terminated the iSCSI full-feature phase connection. A

connection failure always takes the connection state machine to

the CLEANUP_WAIT state.

9. Connection state timeout happens if a connection spends more

time than agreed upon during Login negotiation in the

CLEANUP_WAIT state, and this takes the connection to the FREE

state (M1 transition in connection cleanup state diagram).

10.These are defined in Section 6.3.5.

11.This clearing effect is "Y" only if it is a connection

reinstatement and the operational ErrorRecoveryLevel is less

than 2.

12.Session continuation is defined in Section 6.3.5.

13.This clearing effect is only valid if the connection is being

logged out on a different connection and when the connection

being logged out on the target may have some partial PDUs

pending to be sent. In all other cases, the effect is "NA".

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 340]

14.This clearing effect is only valid for a "close the session"

logout in a multi-connection session. In all other cases, the

effect is "NA".

15.Only applicable if this leading connection login is a session

reinstatement. If this is not the case, it is "NA".

16.This operation affects all logged-in initiators.

18.Session failure is defined in Section 6.3.5.

19.This operation affects all logged-in initiators and the clearing

effects are only applicable to the LU being reset.

20.With Standard multi-task abort semantics (Section 4.2.3.3), a

target warm reset or a target cold reset or an LU reset would

clear the active TTTs upon completion. However, the FastAbort

multi-task abort semantics defined by Section 4.2.3.4 do not

guarantee that the active TTTs are cleared by the end of the

reset operations. In fact, the FastAbort semantics are designed

to allow clearing the TTTs in a "lazy" fashion after the TMF

Response is delivered. Thus, when TaskReporting=FastAbort

(Section 13.23) is operational on a session, the clearing

effects of reset operations on "Incomplete TTTs" is "N".

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 341]

 +-----+-----+-----+-----+-----+

 |DC(1)|DD(2)|SS(3)|CS(4)|DS(5)|

+---------------------+-----+-----+-----+-----+-----+

|connection failure |N |Y |N |N |N |

+---------------------+-----+-----+-----+-----+-----+

|connection state |Y |NA |Y |N |NA |

|timeout | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|session timeout/ |Y |Y |Y(7) |Y |NA |

|closure/reinstatement| | | | | |

+---------------------+-----+-----+-----+-----+-----+

|session continuation |N(11)|NA*12|NA |N |NA*13|

+---------------------+-----+-----+-----+-----+-----+

|successful connection|Y |Y |Y |N |NA |

|close Logout | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|session failure |N |Y |N |N |N |

+---------------------+-----+-----+-----+-----+-----+

|successful recovery |Y |Y |Y |N |N |

|Logout | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|failed Logout |N |Y(9) |N |N |N |

+---------------------+-----+-----+-----+-----+-----+

|connection Login |NA |NA |N(8) |N(8) |NA |

|(leading | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|connection Login |N(11)|NA*12|N(8) |N |NA*13|

|(non-leading) | | | | | |

+---------------------+-----+-----+-----+-----+-----+

|target cold reset |Y |Y |Y |Y(10)|NA |

+---------------------+-----+-----+-----+-----+-----+

|target warm reset |Y |Y |N |N |NA |

+---------------------+-----+-----+-----+-----+-----+

|LU reset |N |Y |N |N |N |

+---------------------+-----+-----+-----+-----+-----+

|powercycle |Y |Y |Y |Y(10)|NA |

+---------------------+-----+-----+-----+-----+-----+

1. Discontiguous Commands - commands allegiant to the connection

in question and waiting to be reordered in the iSCSI layer. All

“Y”s in this column assume that the task causing the event (if

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 342]

indeed the event is the result of a task) is issued as an

immediate command, because the discontiguities can be ahead of the

task.

2. Discontiguous Data - data PDUs received for the task in

question and waiting to be reordered due to prior discontiguities

in DataSN.

3. StatSN

4. CmdSN

5. DataSN

7. It clears the StatSN on all the connections.

8. This sequence number is instantiated on this event.

9. A logout failure drives the connection state machine to the

CLEANUP_WAIT state, similar to the connection failure event.

Hence, it has a similar effect on this and several other protocol

aspects.

10. This is cleared by virtue of the fact that all sessions with

all initiators are terminated.

11. This clearing effect is "Y" if it is a connection

reinstatement.

12. This clearing effect is "Y" only if it is a connection

reinstatement and the operational ErrorRecoveryLevel is 2.

13. This clearing effect is "N" only if it is a connection

reinstatement and the operational ErrorRecoveryLevel is 2.

E.2. C

Clearing Effects on SCSI Objects

The only iSCSI protocol action that can effect clearing actions on

SCSI objects is the "I_T nexus loss" notification (Section 6.3.5.1

Loss of Nexus notification). [SPC3] describes the clearing effects

of this notification on a variety of SCSI attributes. In addition,

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 343]

SCSI standards documents (such as [SAM2] and [SBC2]) define

additional clearing actions that may take place for several SCSI

objects on SCSI events such as LU resets and power-on resets.

Since iSCSI defines a target cold reset as a protocol-equivalent

to a target power-cycle, the iSCSI target cold reset must also be

considered as the power-on reset event in interpreting the actions

defined in the SCSI standards.

When the iSCSI session is reconstructed (between the same SCSI

ports with the same nexus identifier) reestablishing the same I_T

nexus, all SCSI objects that are defined to not clear on the "I_T

nexus loss" notification event, such as persistent reservations,

are automatically associated to this new session.

Acknowledgments

Several individuals on the original IPS Working Group made

significant contributions to the original RFCs 3720, 3980, 4850

and 5048.

Specifically, the authors of the original RFCs - which this draft

consolidates into a single document - were the following:

RFC 3720: Julian Satran, Kalman Meth, Costa Sapuntzakis,

Mallikarjun Chadalapaka, Efri Zeidner

RFC 3980: Marjorie Krueger, Mallikarjun Chadalapaka, Rob Elliott

RFC 4850: David Wysochanski

RFC 5048: Mallikarjun Chadalapaka

Many thanks to Fred Knight for contributing to the UML notations

and drawings in this draft.

We would in addition like to acknowledge the following individuals

who contributed to this revised draft: David Harrington, Paul

Koning, Mark Edwards, Rob Elliott, Martin Stiemerling.

 iSCSI (Consolidated) 6/23/13

Chadalapaka et al. Expires December 31, 2013 [Page 344]

Thanks to Yi Zeng and Nico for suggesting and/or reviewing

Kerberos-related security considerations text.

Finally, this draft also benefited from significant review

contributions from the Storm Working Group at large.

Authors' Addresses

Mallikarjun Chadalapaka

Microsoft

One Microsoft Way

Redmond WA 98052 USA

E-mail: cbm@chadalapaka.com

Julian Satran

Infinidat Ltd.

E-mail: julians@infinidat.com, julian@satran.net

Kalman Meth

IBM Haifa Research Lab

Haifa University Campus - Mount Carmel

Haifa 31905, Israel

Phone +972.4.829.6341

E-mail: meth@il.ibm.com

David L. Black,

EMC Corporation,

176 South St., Hopkinton, MA 01748

Phone +1 (508) 293-7953

Email: david.black@emc.com

Comments may be sent to Mallikarjun Chadalapaka

Acknowledgement

Funding for the RFC Editor function is currently provided by the

Internet Society

