

Multipath TCP Ramin Khalili
INTERNET-DRAFT T-Labs/TU-Berlin
Intended Status: Standard Track Nicolas Gast
Expires: April 24, 2014 Miroslav Popovic
 Jean-Yves Le Boudec
 EPFL-LCA2
 October 21, 2013

 Opportunistic Linked-Increases Congestion Control Algorithm for MPTCP
 draft-khalili-mptcp-congestion-control-02

Abstract

 This document describes the mechanism of OLIA, the "Opportunistic
 Linked Increases Algorithm". OLIA is a congestion control algorithm
 for MPTCP. The current congestion control algorithm of MPTCP, LIA
 [4], forces a tradeoff between optimal congestion balancing and
 responsiveness. OLIA's design departs from this tradeoff and provide
 these properties simultaneously. Hence, it solves the identified
 performance problems with LIA while retaining non-flappiness and
 responsiveness behavior of LIA, as shown by different studies [5, 6,
 7, 8]. OLIA is now part of the UCLouvain's MPTCP implementation [9].

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2014.

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Khalili, et al. Expires April 24, 2014 [Page 1]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

Copyright and License Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1 Introduction . 3
 1.1 Requirements Language 4
 1.2 Terminology . 4
 2 The set of best paths, paths with maximum windows, and
 collected paths . 5
 3 Opportunistic Linked-Increases Algorithm 6
 4 Practical considerations . 8
 5 Discussion . 9
 6 References . 10
 6.1 Normative References . 10
 6.2 Informative References 10
 Authors' Addresses . 11

Khalili, et al. Expires April 24, 2014 [Page 2]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

1 Introduction

 The current MPTCP implementation uses a congestion control algorithm
 called LIA, the "Linked-Increases" algorithm [4]. The design of LIA
 forces a tradeoff between optimal congestion balancing and
 responsiveness. Hence, to provide good responsiveness, LIA's current
 implementation must depart from optimal congestion balancing. This
 leads to important performance issues (refer to [5] and [6]): (i) in
 some scenarios upgrading TCP users to MPTCP results in a significant
 drop in the aggregate throughput in the network without any benefit
 for anybody; and (ii) MPTCP users can be excessively aggressive
 toward TCP users.

 In this draft, we introduce OLIA, the "opportunistic linked increases
 algorithm", as an alternative to LIA. Contrary to LIA, OLIA's design
 is not based on a trade-off between responsiveness and optimal
 congestion balancing; it can provide both simultaneously [5].

 Similarly to LIA, OLIA couples the additive increases and uses
 unmodified TCP behavior in the case of a loss. The difference between
 LIA and OLIA is in the increase part. OLIA's increase part, Equation
 (1), has two terms:

 - The first term is an adaptation of the increase term of Kelly and
 Voice's algorithm [10]. This term is essential to provide optimal
 resource pooling.

 - The second term guarantees responsiveness and non-flappiness of
 OLIA. By measuring the number of transmitted bytes since the last
 loss, it reacts to events within the current window and adapts to
 changes faster than the first term.

 By adapting the window increases as a function of RTTs, OLIA also
 compensates for different RTTs. As OLIA is rooted on the optimal
 algorithm of [10], it provides fairness and optimal congestion
 balancing. Because of the second term, it is responsive and non-
 flappy.

 OLIA is implemented in the Linux kernel and is now a part of
 UCLouvain's MPTCP implementation. In [5], we study the performance of
 MPTCP with OLIA over a testbed, by simulations and by theoretical
 analysis. We prove theoretically that OLIA is Pareto-optimal and that
 it satisfies the design goals of MPTCP described in [4]. Hence, it
 can provide optimal congestion balancing and fairness in the network.
 Our measurements and simulations indicate that MPTCP with OLIA is as
 responsive and non-flappy as MPTCP with LIA and that it solves the
 identified problems with LIA. Recent studies show that MPTCP with
 OLIA always outperforms MPTCP with LIA and is very responsive to the

Khalili, et al. Expires April 24, 2014 [Page 3]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

 changes in the environment [7, 8].

 The rest of the document provides a description of OLIA. For an
 analysis of its performance, we refer to [5, 7, 8].

1.1 Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

1.2 Terminology

 Regular TCP: The standard version of TCP that operates between a
 single pair of IP addresses and ports [2].

 Multipath TCP: A modified version of the regular TCP that allows a
 user to spread its traffic across multiple paths.

 MPTCP: The proposal for multipath TCP specified in [3].

 LIA: The Linked-Increases Algorithm of MPTCP (the congestion control
 of MPTCP) [4].

 OLIA: The Opportunistic Linked-Increases Algorithm for MPTCP proposed
 in [5].

 all_paths: The set of all the paths established by a MPTCP
 connection.

 best_paths: The set of paths in all_paths that are presumably the
 best paths for the MPTCP connection.

 max_w_paths: The set of paths in all_paths with largest congestion
 windows.

 collected_paths: The set of paths in all_paths that are presumably
 the best paths but do not have largest congestion window (i.e. the
 paths of best_paths that are not in max_w_paths).

 w_r: The congestion windows on a path r.

 rtt_r: The Round-Trip Time on a path r.

 MSS_r: The Maximum Segment Size that specifies the largest amount of
 data can be transmitted by a TCP packet on the path r.

Khalili, et al. Expires April 24, 2014 [Page 4]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

2 The set of best paths, paths with maximum windows, and collected paths

 A MPTCP connection has access to one or more paths (subflows). Let
 all_paths be the set of these paths and r be one of them. We denote
 by l_{1r} the number of bytes that were successfully transmitted over
 path r between the last two losses seen on r, by l_{2r} the number of
 bytes that are successfully transmitted over r after the last loss,
 and by l_r=max{l_{1r},l_{2r}} the smoothed estimation of number of
 bytes transmitted on r between last two losses.

 l_{1r} and l_{2r} can be measured by using information that is
 already available to a regular TCP user:

 - For each ACK on r: l_{2r} <- l_{2r} + (number of bytes that are
 acknowledged by ACK),

 - For each loss on r: l_{1r} <- l_{2r} and l_{2r} <- 0.

 l_{1r} and l_{2r} are initially set to zero when the connection is
 established. If no losses have been observed on r until now, then
 l_{1r}=0 and l_{2r} is the total number of bytes transmitted on r.

 Let rtt_r be the round-trip time observed on path r (e.g. the
 smoothed round-trip time used by regular TCP) and w_r be the
 congestion windows on path r. We denote by best_paths the set of
 paths r in all_paths that have the maximum value of l_r*l_r/rtt_r, by
 max_w_paths the set of paths r in all_paths with largest w_r, and by
 collected_paths the set of best paths that do not have maximum window
 size, i.e.:

 - best_paths = { r | r = arg max_{p in all_paths} (l_p*l_p/rtt_p) }

 - max_w_paths = { r | r = arg max_{p in all_paths} (w_p) }

 - collected_paths = { r | r in best_paths and not in max_w_paths }.

 where arg max is the argument of maximum, the set of points of the
 given argument for which the given function is maximum. arg max is
 applied over all paths p in all_paths.

 best_paths represents the set of paths that are presumably the best
 paths (in term of transmission rate) for the user: 1/l_r can be
 considered as an estimate of byte loss probability on path r, and
 hence the rate that path r can provide to a TCP user can be estimated
 by (2*l_r)^{1/2}/rtt_r. A collected path is a path that is presumably
 good but is not fully used. The set collected_paths can be empty.
 Note that l_{1r}, l_{2r}, l_r, rtt_r, w_r, best_paths, max_w_paths
 and collected_paths are all functions of time.

Khalili, et al. Expires April 24, 2014 [Page 5]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

3 Opportunistic Linked-Increases Algorithm

 In this section, we introduce OLIA. OLIA is a window-based
 congestion-control algorithm. It couples the increase of congestion
 windows and uses unmodified TCP behavior in the case of a loss. OLIA
 is an alternative for LIA, the current congestion control of MPTCP.

 The algorithm only applies to the increase part of the congestion
 avoidance phase. The fast retransmit and fast recovery algorithms, as
 well as the multiplicative decrease of the congestion avoidance
 phase, are the same as in TCP [2]. We also use a similar slow start
 algorithm as in TCP, with the modification that we set the ssthresh
 (slow start threshold) to be 1 MSS if multiple paths are established.
 In the case of a single path flow, we use the same minimum ssthresh
 as in TCP (i.e. 2 MSS). The purpose of this modification is to avoid
 transmitting unnecessary traffic over congested paths when multiple
 paths are available to a user. Note that this modification will not
 affect the single path TCP.

 As defined before, we denote by w_r the congestion windows on the
 path r and by MSS_r the maximum segment size on this path. We assume
 that w_r is maintained in bytes.

 Our proposed "Opportunistic Linked-Increases Algorithm" (OLIA) must:

 - For each ACK on path r, increase w_r by

 w_r/rtt_r^2 alpha_r
 (-------------------------- + ---------) (1)
 (SUM_{p in all_paths} (w_p/rtt_p))^2 w_r

 multiplied by MSS_r * bytes_acked.

 The summation in the denominator is over all paths p in all_paths.

 alpha_r is calculated as follows:

 - If r is in collected_paths, then

 1/number_of_paths
 alpha_r = --------------------
 |collected_paths|

 - If r is in max_w_paths and if collected_paths is not empty, then

 1/number_of_paths
 alpha_r = - -----------------
 |max_w_paths|

Khalili, et al. Expires April 24, 2014 [Page 6]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

 - Otherwise, alpha_r=0.

 |collected_paths| and |max_w_paths| are the number of paths in
 collected_paths and in max_w_paths. Note that the sum of all alpha_r
 is equal to 0.

 The first term in (1) is an adaptation of Kelly and Voice's increase
 term [10] and provides the optimal resource pooling (Kelly and
 Voice's algorithm is based on scalable TCP; the first term in (1) is
 a TCP compatible version of their algorithm that compensates also for
 different RTTs). The second term, with alpha_r, guarantees
 responsiveness and non-flappiness of our algorithm.

 By definition of alpha_r, if all the best paths have the largest
 window size, then alpha_r=0 for any r. This is because we already use
 the capacity available to the user by using all the best path.

 If there is any best path with a small window size, i.e. if
 collected_paths is not empty, then alpha_r is positive for all r in
 collected_paths and negative for all r in max_w_paths. Hence, our
 algorithm increases windows faster on the paths that are presumably
 best but that have small windows. The increase will be slower on the
 paths with maximum windows. In this case, OLIA re-forwards traffic
 from fully used paths (i.e. paths in max_w_paths) to paths that have
 free capacity available to the users (i.e. paths in collected_paths).

 In [4], three goals have been proposed for the design of a practical
 multipath congestion control algorithm : (1) Improve throughput: a
 multipath TCP user should perform at least as well as a TCP user that
 uses the best path available to it. (2) Do no harm: a multipath TCP
 user should never take up more capacity from any of its paths than a
 TCP user. And (3) balance congestion: a multipath TCP algorithm
 should balance congestion in the network, subject to meeting the
 first two goals.

 Our theoretical results in [5] show that OLIA fully satisfies these
 three goals. LIA, however, fails to fully satisfy the goal (3) as
 discussed in [5] and [6]. Moreover, in [5], we show through
 measurements and by simulation that our algorithm is as responsive
 and non-flappy as LIA and that it can solve the identified problems
 with LIA. In [7], Chen et al. study how MPTCP with LIA and OLIA
 performs in the wild with a common wireless environment, namely using
 both WiFi and Cellular simultaneously. Their results show that MPTCP
 with OLIA is very responsive to the changes in the environment and
 always outperforms MPTCP with LIA. Furthermore, using Experimental
 Design, Paasch et al. [8] show that MPTCP with OLIA satisfy the
 design goal of MPTCP in a very wide range of scenarios and always
 outperform MPTCP with LIA.

Khalili, et al. Expires April 24, 2014 [Page 7]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

4 Practical considerations

 Calculation of alpha requires performing costly floating point
 operation whenever an ACK received over path r. In practice, however,
 we can integrate calculation of alpha and Equation (1) together. Our
 algorithm can be therefore simplified as the following.

 For each ACK on the path r:

 - If r is in collected_paths, increase w_r by

 w_r/rtt_r^2 1
 ----------------- + ------------------------------------ (2)
 (SUM_p (w_p/rtt_p))^2 w_r * number_of_paths * |collected_paths|

 multiplied by MSS_r * bytes_acked.

 - If r is in max_w_paths and if collected_paths is not empty,
 increase w_r by

 w_r/rtt_r^2 1
 ---------------- - ------------------------------- (3)
 (SUM_p (w_p/rtt_p))^2 w_r * number_of_paths * |max_w_paths|

 multiplied by MSS_r * bytes_acked.

 - Otherwise, increase w_r by

 (w_r/rtt_r^2)
 -------------------------- (4)
 (SUM_p (w_p/rtt_p))^2

 multiplied by MSS_r * bytes_acked.

 The summation in the dominator of equations (2), (3), and (4) is over
 the path p in all_paths. To compute the increase, we only need to
 determine the sets collected_paths and max_w_paths when an ACK is
 received on the path r. We can further simplify the algorithm by
 updating the sets collected_paths and max_w_paths only once per
 round-trip time or whenever there is a drop on the path.

 We can see from above that in some cases (i.e. when r is max_w_paths
 and collected_paths is not empty) the increase could be negative.
 This is a property of our algorithm as in this case OLIA re-forwards
 traffic from paths in max_w_paths to paths in collected_paths. It is
 easy to show that using our algorithm, w_r >= 1 for any path r.

Khalili, et al. Expires April 24, 2014 [Page 8]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

5 Discussion

 Our results in [5] show that the identified problems with current
 MPTCP implementation are not due to the nature of a window-based
 multipath protocol, but rather to the design of LIA. OLIA shows that
 it is possible to build an alternative to LIA that mitigates these
 problems and that is as responsive and non-flappy as LIA.

 Our proposed algorithm can provide similar resource pooling as Kelly
 and Voice's algorithm [10] and fully satisfies the design goals of
 MPTCP described in [4]. Hence, it can provide optimal congestion
 balancing and fairness in the network [5]. Moreover, it is as
 responsive and non-flappy as LIA and outperforms LIA in realistic
 scenarios such as wireless networks (refer to [5, 7, 8]).

 We therefore believe that mptcp working group should revisit the
 congestion control part of MPTCP and that an alternative algorithm,
 such as OLIA, should be considered.

Khalili, et al. Expires April 24, 2014 [Page 9]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

6 References

6.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [3] Ford, A., Raiciu, C., Greenhalgh, A., and M. Handley,
 "Architectural Guidelines for Multipath TCP Development",
 RFC 6182, March 2011.

6.2 Informative References

 [4] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 RFC 6356, October 2011.

 [5] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le
 Boudec. "MPTCP is not Pareto-optimality: Performance
 issues and a possible solution", ACM CoNEXT 2012 (The
 extended version of this paper will be appeared at
 IEEE/ACM Transaction of Networking).

 [6] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec.
 "Performance Issues with MPTCP", draft-khalili-mptcp-
 performance-issues-04.

 [7] Chen Y.-C, Y.-S. Lim, R. J. Gibbens, E. M. Nahum, R.
 Khalili, and D. Towsley, "A Measurement-based Study of
 Multipath TCP Performance over Wireless Networks." ACM IMC
 2013.

 [8] C. Paasch, R. Khalili, and O. Bonaventure, "On the
 Benefits of Applying Experimental Design to Improve
 Multipath TCP." ACM CoNEXT 2013.

 [9] UCL, Louvain-la-Neuve, Belgium, "MultiPath TCP-Linux
 kernel implementation," 2013 [Online]. Available:
 http://mptcp.info.ucl.ac.be/.

 [10] Kelly, F. and T. Voice, "Stability of end-to-end
 algorithms for joint routing and rate control", ACM
 SIGCOMM CCR vol. 35 num. 2, pp. 5-12, 2005.

Khalili, et al. Expires April 24, 2014 [Page 10]

INTERNET DRAFT MPTCP Congestion Control October 21, 2013

Authors' Addresses

 Ramin Khalili
 T-Labs/TU-Berlin
 TEL 3, Ernst-Reuter-Platz 7
 10587 Berlin
 Germany

 Phone: +49 30 8353 58276
 EMail: ramin@net.t-labs.tu-berlin.de

 Nicolas Gast
 EPFL IC ISC LCA2
 Station 14
 CH-1015 Lausanne
 Switzerland

 Phone: +41 21 693 1254
 EMail: nicolas.gast@epfl.ch

 Miroslav Popovic
 EPFL IC ISC LCA2
 Station 14
 CH-1015 Lausanne
 Switzerland

 Phone: +41 21 693 6466
 EMail: miroslav.popovic@epfl.ch

 Jean-Yves Le Boudec
 EPFL IC ISC LCA2
 Station 14
 CH-1015 Lausanne
 Switzerland

 Phone: +41 21 693 6631
 EMail: jean-yves.leboudec@epfl.ch

Khalili, et al. Expires April 24, 2014 [Page 11]

