
core P. van der Stok
Internet-Draft consultant
Intended status: Informational B. Greevenbosch
Expires: July 13, 2014 Huawei Technologies
 January 9, 2014

 CoAp Management Interfaces
 draft-vanderstok-core-comi-02

Abstract

 The draft describes an interface based on CoAP to manage constrained
 devices via MIBs. The proposed integration of CoAP with SNMP reduces
 the code- and application development complexity by accessing MIBs
 via a standard CoAP server. The payload of the MIB request is CBOR
 based on JSON. The mapping from SMI to CBOR is specified.

Note

 Discussion and suggestions for improvement are requested, and should
 be sent to core@ietf.org.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 13, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

van der Stok & GreevenboscExpires July 13, 2014 [Page 1]

Internet-Draft CoMI January 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. CoAP Interface . 5
 3. MIB Function Set . 5
 3.1. SNMP/MIB architecture 5
 3.1.1. SNMP functions 6
 3.1.2. MIB structure . 7
 3.2. CoMI Function Set . 8
 3.2.1. Single MIB values 9
 3.2.2. multi MIB values 11
 3.2.3. Table row . 13
 3.2.4. Error returns . 14
 4. Mapping SMI to CoMI payload 14
 4.1. Mapping strings to CBOR 15
 4.2. Mapping SMI to CBOR 16
 4.2.1. General overview 16
 4.2.2. Conversion from YANG datatypes to CBOR datatypes . . 16
 4.2.3. Examples . 18
 4.2.4. 6LoWPAN MIB . 20
 5. MIB discovery . 23
 6. Trap functions . 24
 7. MIB access management . 24
 7.1. Notify destinations 24
 7.2. Conversion tables . 25
 8. Error handling . 25
 9. Security Considerations 26
 10. IANA Considerations . 26
 11. Acknowledgements . 26
 12. Changelog . 27
 13. References . 27
 13.1. Normative References 27
 13.2. Informative References 28
 Appendix A. Notational Convention for CBOR data 30
 Authors’ Addresses . 31

van der Stok & GreevenboscExpires July 13, 2014 [Page 2]

Internet-Draft CoMI January 2014

1. Introduction

 The Constrained RESTful Environments (CoRE) working group aims at
 Machine to Machine (M2M) applications such as smart energy and
 building control.

 Small M2M devices need to be managed in an automatic fashion to
 handle the large quantities of devices that are expected to be
 installed in future installations. The management protocol of choice
 for Internet is SNMP [RFC3410] as is testified by the large number of
 Management Information Base (MIB) [RFC3418] specifications currently
 published [STD0001]. More recently, the NETCONF protocol [RFC6241]
 was developed with an extended set of messages using XML [XML] as
 data format. The data syntax is specified with YANG [RFC6020] and a
 mapping from Yang to XML is specified. In [RFC6643] SMIv2 syntax is
 expressed in Yang. Contrary to SNMP and also CoAP, NETCONF assumes
 persistent connections for example provided by SSH. The NETCONF
 protocol provides operations to retrieve, configure, copy, and delete
 configuration data-stores. Configuring data-stores distinguishes
 NETCONF from SNMP which operates on standardized MIBs.

 The CoRE Management Interface (CoMI) is intended to work on
 standardized data-sets in a stateless client-server fashion and is
 thus closer to SNMP than to NETCONF. Standardized data sets promote
 interoperability between small devices and applications from
 different manufacturers. Stateless communication is encouraged to
 keep communications simple and the amount of state information small
 in line with the design objectives of 6lowpan [RFC4944] [RFC6775],
 RPL [RFC6650], and CoAP [I-D.ietf-core-coap].

 The draft [I-D.bierman-netconf-restconf] describes a restful
 interface to NETCONF data stores and approaches the CoMI approach.
 CoMI uses SMI encoded in CBOR, and CoAP/UDP to access MIBs, where
 restconf uses YANG encoded in JSON and HTTP/TCP to access NETCONF
 data stores. CoMI is more low resource oriented than restconf is.

 Currently, managed devices need to support two protocols: CoAP and
 SNMP. When the MIB can be accessed with the CoAP protocol, the SNMP
 protocol can be replaced with the CoAP protocol. This arrangement
 reduces the code complexity of the stack in the constrained device,
 and harmonizes applications development.

 The objective of CoMI is to provide a CoAP based Function Set that
 reads and sets values of MIB variables in devices to (1) initialize
 parameter values at start-up, (2) acquire statistics during
 operation, and (3) maintain nodes by adjusting parameter values
 during operation.

van der Stok & GreevenboscExpires July 13, 2014 [Page 3]

Internet-Draft CoMI January 2014

 The payload of CoMI is encoded in CBOR [RFC7049] which similar to
 JSON [JSON], but has a binary format and hence has more coding
 efficiency. CoMI is intended for small devices. The JSON overhead
 can be prohibitive. It is therefore chosen to transport CBOR in the
 payload. CBOR, like BER used for SNMP, transports the data type in
 the payload.

 The end goal of CoMI is to provide information exchange over the CoAP
 transport protocol in a uniform manner to approach the full
 management functionality as specified in
 [I-D.ersue-constrained-mgmt].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Readers of this specification are required to be familiar with all
 the terms and concepts discussed in [RFC3410], [RFC3416], and
 [RFC2578].

 Core Management Interface (CoMI) specifies the profile of Function
 Sets which access MIBs with the purpose of managing the operation of
 constrained devices in a network.

 The following list defines the terms used in this document:

 Managing Entity: An entity that manages one or more managed devices.
 Within the CoMI framework, the managing entity acts as a CoAP
 client for CoMI.

 Managed Device: An entity that is being managed. The managed device
 acts as a CoAP server for CoMI.

 NOTE: It is assumed that the managed device is the most constrained
 entity. The managing entity might be more capable, however this is
 not necessarily the case.

 The following list contains the abbreviations used in this document.

 OID: ASN.1 OBJECT-IDENTIFIER, which is used to uniquely identify MIB
 objects in the managed device.

van der Stok & GreevenboscExpires July 13, 2014 [Page 4]

Internet-Draft CoMI January 2014

2. CoAP Interface

 In CoRE a group of links can constitute a Function Set. The format of
 the links is specified in [I-D.ietf-core-interfaces]. This note
 specifies a Management Function Set. CoMI end-points that implement
 the CoMI management protocol support at least one discoverable
 management resource of resource type (rt): core.mg, with path: /mg,
 where mg is short-hand for management. The mg resource has two sub-
 resources accessible with the paths:

 o MIB with path /mg/mib and a CBOR content format.

 o XLAT with path /mg/xlat and CBOR content format.

 The mib resource provides access to the MIBs as described in
 Section 3.2. The xlat resource provides access to a string to CBOR
 identifier table as described in Section 4.1. The mib and xlat
 resources are introduced as sub resources to mg to permit later
 additions to CoMI mg resource.

 The profile of the management function set, with IF=core.mg.mib, is
 shown in the table below, following the guidelines of
 [I-D.ietf-core-interfaces]:

 +-----------------+-----------+---------------+-------------------+
 | name | path | RT | Data Type |
 +-----------------+-----------+---------------+-------------------+
 | Management | /mg | core.mg | n/a |
 | | | | |
 | MIB | /mg/mib | core.mg.mib | application/cbor |
 | | | | |
 | XLAT | /mg/xlat | core.mg.xlat | application/cbor |
 +-----------------+-----------+---------------+-------------------+

3. MIB Function Set

 The MIB Function Set provides a CoAP interface to perform equivalent
 functions to the ones provided by SNMP. Section 3.1 explains the
 structure of SNMP Protocol Data Units (PDU), their transport, and the
 structure of the MIB modules. An excellent overview of the documents
 describing the SNMP/MIB architecture is provided in section 7 of
 [RFC3410].

3.1. SNMP/MIB architecture

 The architecture of the Internet Standard management framework
 consists of:

van der Stok & GreevenboscExpires July 13, 2014 [Page 5]

Internet-Draft CoMI January 2014

 o A data definition language that is referred to as Structure of
 Management Information (SMI)[RFC2578].

 o The Management Information Base (MIB) which contains the
 information to be managed and is defined for each specific
 function to be managed [RFC3418].

 o A protocol definition referred to as Simple Network Management
 Protocol (SNMP) [RFC3416].

 o Security and administration that provides SNMP message based
 security on the basis of the user-based security model [RFC3414].

 o A management domain definition where a SNMP entity has access to a
 collection of management information called a "context" [RFC3411].

 In addition [RFC4088] describes a URI scheme to refer to a specific
 MIB instance.

 Separation in modules was motivated by the wish to respond to the
 evolution of Internet. The protocol part (SNMP) and data definition
 part (MIB) are independent of each other. The separation has enabled
 the progressive passage from SNMPv1 via SNMPv2 to SNMPv3. This draft
 leverages this separation to replace the SNMP protocol with a CoAP
 based protocol.

3.1.1. SNMP functions

 The SNMP protocol supports seven types of access supported by as many
 Protocol Data Unit (PDU) types:

 o Get Request, transmits a list of OBJECT-IDENTIFIERs to be paired
 with values.

 o GetNext Request, transmits a list of OBJECT-IDENTIFIERs to which
 lexicographic successors are returned for table traversal.

 o GetBulk Request, transmits a list of OBJECT-IDENTIFIERs and the
 maximum number of expected paired values.

 o Response, returns an error or the (OBJECT-IDENTIFIER, value) pairs
 for the OBJECT-IDENTIFIERs specified in Get, GetNext, GetBulk,
 Set, or Inform Requests.

 o Set Request, transmits a list of (OBJECT-IDENTIFIERs, value) pairs
 to be set in the specified MIB object.

van der Stok & GreevenboscExpires July 13, 2014 [Page 6]

Internet-Draft CoMI January 2014

 o Trap, sends an unconfirmed message with a list of (OBJECT-
 IDENTIFIERs, value) pairs to a notification requesting end-point.

 o Inform Request, sends a confirmed message with a list of (OBJECT-
 IDENTIFIERs, value) pairs to a notification requesting end-point.

 The binding of the notification to a destination is discussed in
 Section 6.

3.1.2. MIB structure

 A MIB module is composed of MIB objects. MIB objects are
 standardized by the IETF or by other relevant Standards Developing
 Organizations (SDO).

 MIB objects have a descriptor and an identifier: OBJECT-IDENTIFIER
 (OID). The identifier, following the OSI hierarchy, is an ordered
 list of non-negative numbers [RFC2578]. OID values are unique. Each
 number in the list is referred as a sub-identifier. The descriptor
 is unique within a module. Different modules may contain the same
 descriptor. Consequently, a descriptor can be related to several
 OIDs.

 Many instances of an object type exist within a management domain.
 Each instance can be identified within some scope or "context", where
 there are multiple such contexts within the management domain.
 Often, a context is a physical or logical device. A context is
 always defined as a subset of a single SNMP entity. To identify an
 individual item of management information within the management
 domain, its contextName and contextEngineID must be identified in
 addition to its object type and its instance. A default context is
 assumed when no context is specified.

 A MIB object is usually a scalar object. A MIB object may have a
 tabular form with rows and columns. Such an object is composed of a
 sequence of rows, with each row composed of a sequence of typed
 values. The index is a subset (1-2 items) of the typed values in the
 row. An index value identifies the row in the table.

 In SMI, a table is constructed as a SEQUENCE OF its entries. For
 example, the IpAddrTable from [RFC4293] has the following definition:

van der Stok & GreevenboscExpires July 13, 2014 [Page 7]

Internet-Draft CoMI January 2014

 ipv6InterfaceTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Ipv6InterfaceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table containing per-interface IPv6-specific
 information."
 ::= { ip 30 }

 ipv6InterfaceEntry OBJECT-TYPE
 SYNTAX Ipv6InterfaceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry containing IPv6-specific information for a given
 interface."
 INDEX { ipv6InterfaceIfIndex }
 ::= { ipv6InterfaceTable 1 }

 Ipv6InterfaceEntry ::= SEQUENCE {
 ipv6InterfaceIfIndex InterfaceIndex,
 ipv6InterfaceReasmMaxSize Unsigned32,
 ipv6InterfaceIdentifier Ipv6AddressIfIdentifierTC,
 ipv6InterfaceEnableStatus INTEGER,
 ipv6InterfaceReachableTime Unsigned32,
 ipv6InterfaceRetransmitTime Unsigned32,
 ipv6InterfaceForwarding INTEGER
 }

 The descriptor (name) of the MIB table is used for the name of the
 CoMI variable. However, there is no explicit mention of the names
 "ipv6InterfaceEntry" and "Ipv6InterfaceEntry". Instead, the value of
 the main CoMI variable consists of an array, each element of which
 contains 7 CoMI variables: one element for "ipv6InterfaceIfIndex",
 one for "ipv6InterfaceReasmMaxSize" and so on until
 "ipv6InterfaceForwarding".

3.2. CoMI Function Set

 Two types of interfaces are supported by CoMI:

 single value Reading/Writing one MIB variable, specified in the URI
 with path /mg/mib/descriptor or with path /mg/mib/OID.

 multiple values Reading writing arrays or multiple MIB variables,
 specified in the payload.

van der Stok & GreevenboscExpires July 13, 2014 [Page 8]

Internet-Draft CoMI January 2014

 The examples in this section use a JSON payload with one or more
 entries describing the pair (descriptor, value), or (OID, value).
 The CBOR syntax of the payloads is specified in Section 4.

3.2.1. Single MIB values

 A request to read the value of a MIB variable is sent with a
 confirmable CoAP GET message. The single MIB variable is specified
 in the URI path with the OID or descriptor suffixing the /mg/mib/
 path name. When the descriptor is used to specify the MIB value, the
 same descriptor may be present in multiple module. To disambiguate
 the descriptor the "mod" uri-query attribute specifies the enveloping
 modules. A request to set the value of a MIB variable is sent with a
 confirmable CoAP PUT message. The Response is piggybacked to the
 CoAP ACK message corresponding with the Request.

 TODO: for multicast send unconfirmed PUT

 Using for example the same MIB from [RFC1213] as used in [RFC3416], a
 request is sent to retrieve the value of sysUpTime specified in
 module SNMPv2-MIB. The answer to the request returns a (descriptor,
 value) pair.

 For clarity of the examples, in this and all following examples the
 payload is expressed in JSON, although the operational payload is
 specified to be in CBOR, as described in Section 4.

 REQ: GET example.com/mg/mib/sysUpTime?mod=SNMPv2-MIB

 RES: 2.05 Content (Content-Format: application/json)
 {
 "sysUpTime" : 123456
 }

 Another way to express the descriptor of the required value is by
 specifying the pair (descriptor or oid, null value) in the payload of
 the request message.

van der Stok & GreevenboscExpires July 13, 2014 [Page 9]

Internet-Draft CoMI January 2014

 REQ: GET example.com/mg/mib/(Content-Format: application/json)
 {
 "SNMPv2-MIB.sysUpTime" : "null"
 }

 RES: 2.05 Content (Content-Format: application/json)
 {
 "SNMPv2-MIB.sysUpTime" : 123456
 }

 The module name SNMPv2-MIB can be omitted when there is no
 possibility of ambiguity. The module.descriptor can of course be
 replaced with the corresponding oid.

 In some cases it is necessary to determine the "context" by
 specifying a context name and a contextEngine identifier. The
 context can be specified in the URI with the uri-query attribute
 "con". Based on the example of figure 3 in section 3.3 of [RFC3411],
 the context name, bridge1, and the context Engine Identifier,
 800002b804616263, separated by an underscore, are specified in the
 following example:

 REQ: GET example.com/mg/mib/sysUPTime?con=bridge1_800002b804616263

 RES: 2.05 Content (Content-Format: application/json)
 {
 "sysUpTime" : 123456
 }

 The specified object can be a table. The returned payload is
 composed of all the rows associated with the table. Each row is
 returned as a set of (column name, value) pairs. For example the GET
 of the ipNetToMediaTable, sent by the managing entity, results in the
 following returned payload sent by the managed entity:

van der Stok & GreevenboscExpires July 13, 2014 [Page 10]

Internet-Draft CoMI January 2014

 REQ: GET example.com/mg/mib/ipNetToMediaTable

 RES: 2.05 Content (Content-Format: application/json)
 {
 "ipNetTOMediaTable" : [
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaPhysAddress" : "00:00::10:01:23:45",
 "ipNetToMediaNetAddress" : "10.0.0.51",
 "ipNetToMediaType" : "static"
 },
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaPhysAddress" : "00:00::10:54:32:10",
 "ipNetToMediaNetAddress" : "9.2.3.4",
 "ipNetToMediaType" : "dynamic"
 },
 {
 "ipNetToMediaIfIndex" : 2,
 "ipNetToMediaPhysAddress" : "00:00::10:98:76:54",
 "ipNetToMediaNetAddress" : "10.0.0.15",
 "ipNetToMediaType" : "dynamic"
 }
]
 }

 It is possible that the size of the returned payload is too large to
 fit in a single message.

 CoMI gives the possibility to send the contents of the objects in
 several fragments with a maximum size. The "sz" link-format
 attribute [RFC6690] can be used to specify the expected maximum size
 of the mib resource in (identifier, value) pairs. The returned data
 MUST terminate with a complete (identifier, value) pair.

 In the case that management data is bigger than the maximum supported
 payload size, the Block mechanism from [I-D.ietf-core-block] is used.
 Notice that the Block mechanism splits the data at fixed positions,
 such that individual data fields may become fragmented. Therefore,
 assembly of multiple blocks may be required to process the complete
 data field.

3.2.2. multi MIB values

 A request to read multiple MIB variables is done by expressing the
 pairs (MIB descriptor, null) in the payload of the GET request
 message. A request to set multiple MIB variables is done by
 expressing the pairs (MIB descriptor, null value) in the payload of

van der Stok & GreevenboscExpires July 13, 2014 [Page 11]

Internet-Draft CoMI January 2014

 the PUT request message. The key word _multiMIB is used as array
 name to signal that the payload contains multiple MIB values as
 separate _multiMIB array entries.

 The following example shows a request that specifies to return the
 values of sysUpTime and ipNetToMediaTable:

 REQ: GET example.com/mg/mib (Content-Format: application/json)
 {
 "_multiMIB" : [
 { "sysUpTime" : "null"},
 { "ipNetToMediaTable" : "null" }
]
 }

 RES: 2.05 Content (Content-Format: application/json)
 {
 "_multiMIB" : [
 { "sysUpTime" : 123456},
 { "ipNetTOMediaTable" : [
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaPhysAddress" : "00:00::10:01:23:45",
 "ipNetToMediaNetAddress" : "10.0.0.51",
 "ipNetToMediaType" : "static"
 },
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaPhysAddress" : "00:00::10:54:32:10",
 "ipNetToMediaNetAddress" : "9.2.3.4",
 "ipNetToMediaType" : "dynamic"
 },
 {
 "ipNetToMediaIfIndex" : 2,
 "ipNetToMediaPhysAddress" : "00:00::10:98:76:54",
 "ipNetToMediaNetAddress" : "10.0.0.15",
 "ipNetToMediaType" : "dynamic"
 }
]
 }
]
 }

van der Stok & GreevenboscExpires July 13, 2014 [Page 12]

Internet-Draft CoMI January 2014

3.2.3. Table row

 The managing entity MAY be interested only in certain table entries.
 One way to specify a row is to specify its row number in the URI with
 the "row" uri-query attribute. The specification of row=1 returns
 row 1 values of the ipNetToMediaTable in the example:

 REQ: GET example.com/mg/mib/ipNetToMediaTable?row=1

 RES: 2.05 Content (Content-Format: application/json)
 { "ipNetTOMediaTable" : [
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaPhysAddress" : "00:00::10:01:23:45",
 "ipNetToMediaNetAddress" : "10.0.0.51",
 "ipNetToMediaType" : "static"
 }
]
 }

 An alternative mode of selection is by specifying the value of the
 INDEX attributes. Towards this end, the managing entity can include
 the required entries in the payload of its "GET" request by
 specifying the values of the index attributes. The key word
 _indexMIB is used to specify the index value.

 For example, to obtain a table entry from ipNetToMediaTable, the rows
 are specified by specifying the index attributes: ipNetToMediaIfIndex
 and ipNetToMediaNetAddress. The managing entity could have sent a
 GET with the following payload:

van der Stok & GreevenboscExpires July 13, 2014 [Page 13]

Internet-Draft CoMI January 2014

REQ: GET example.com/mg/mib/ipNetToMediaTable(Content-Format: application/js
on)

{ "_indexMIB" :
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaNetAddress" : "9.2.3.4"
 }
}

RES: 2.05 Content (Content-Format: application/json)
{ "ipNetTOMediaTable" : [
 {
 "ipNetToMediaIfIndex" : 1,
 "ipNetToMediaPhysAddress" : "00:00::10:01:23:45",
 "ipNetToMediaNetAddress" : "9.2.3.4",
 "ipNetToMediaType" : "static"
 }
]
}

 Constrained devices MAY support this kind of filtering. However, if
 they don’t support it, they MUST ignore the payload in the GET
 request and handle the message as if the payload was empty.

 It is advised to keep MIBs for constrained entities as simple as
 possible, and therefore it would be best to avoid extensive tables.

 TODO: Describe how the contents of the next lexicographical row can
 be returned.

3.2.4. Error returns

 When a variable with the specified name cannot be processed, CoAP
 Error code 5.01 is returned. In addition, a MIB specific error can
 be returned in the payload as specified in Section 8.

4. Mapping SMI to CoMI payload

 The SMI syntax is mapped to CBOR necessary for the transport of MIB
 data in the CoAP payload. This section first describes an additional
 data reduction technique by creating a table that maps string values
 to numbers used in CBOR encoded data.

 The section continues by describing the mapping from SMI to CBOR.
 The mapping is inspired by the mapping from SMI to JSON via YANG
 [RFC6020], as described in [RFC6643] defining a mapping from SMI to

van der Stok & GreevenboscExpires July 13, 2014 [Page 14]

Internet-Draft CoMI January 2014

 YANG, and [I-D.lhotka-netmod-yang-json] defining a mapping from YANG
 to JSON.

 Notice that such conversion chain MAY be virtual only, as SMI could
 be converted directly to JSON by combining the rules from the above
 documents.

4.1. Mapping strings to CBOR

 Because descriptors may be rather long and may occur repeatedly, CoMI
 allows for association of a string with an integer, henceforth called
 "string number". The association between string and string number is
 done through a translation table, leveraging CBOR encoding.

 Using the notational convention from Appendix A, the CBOR data has
 the following syntax:

 cBorMIB : CBorMIB;

 *CBorMIB {
 xlatTableID : uint;
 mibString : map(uint, .);
 }

 The main structure consist of an array of two elements: "xlatTableID"
 and "mibString".

 The values of the MIB strings are stored in the "mibString" field.
 This field consist of integer-value pairs. The integers correspond
 to the string numbers, whereas the values contain the actual value of
 the associated string.

 The "xlatTableID" contains an integer that is used to indentify the
 translation table. The translation table can be acquired as follows:

 GET /mg/xlat/[xlatTableID]

 where "[xlatTableID]" is replaced by the the value of xlatId from the
 CBorMIB structure, encoded as a hexidecimal integer without leading
 zeros.

 The maintenance of the table is described in Section 7.2.

 The use of the table is to initialize devices with the strings which
 will be frequently used, such as the strings of the descriptors in
 the MIB variables. The transmitted CBOR data will contain the string

van der Stok & GreevenboscExpires July 13, 2014 [Page 15]

Internet-Draft CoMI January 2014

 numbers and not the entire descriptor strings, leading to appreciable
 data reduction.

 It is important that sender and receiver have identical versions of
 the table.

 The translation table is serialized to the payload in the following
 fashion:

 xlatTable : XLatTable;

 *XLatTable {
 xlatId : uint;
 xlatData : map(uint, tstr);
 }

 where "xlatId" has the same value as "xlatId" in the CBorMIB
 structure, and "xlatData" is a CBOR map between the string number and
 associated variable descriptor.

4.2. Mapping SMI to CBOR

4.2.1. General overview

 Starting from the intermediate conversion from SMI to YANG as defined
 in [RFC6643], This section defines how to convert the resulting YANG
 structure to CBOR [RFC7049]. The actual conversion code from SMI to
 YANG and subsequently YANG to CBOR MAY be direct conversion code from
 SMI to CBOR or a sequence of existing SMI to YANG conversion code
 followed by YANG to CBOR conversion code.

4.2.2. Conversion from YANG datatypes to CBOR datatypes

 Table 1 defines the mapping between YANG datatypes and CBOR
 datatypes.

 Elements of types not in this table, and of which the type cannot be
 inferred from a type in this table, are ignored in the CBOR encoding
 by default. Examples include the "description" and "key" elements.
 However, conversion rules for some elements to CBOR MAY be defined
 elsewhere.

 +-------------+------------------+----------------------------------+
 | YANG type | CBOR type | Specification |
 +-------------+------------------+----------------------------------+
 | int8, | unsigned int | The CBOR integer type depends on |
 | int16, | (major type 0) | the sign of the actual value. |

van der Stok & GreevenboscExpires July 13, 2014 [Page 16]

Internet-Draft CoMI January 2014

int32,	or negative int	
int64,	(mayor type 1)	
uint16,		
uint32,		
uint64,		
decimal64		
boolean	either "true"	
	(major type 7,	
	simple value 21)	
	or "false"	
	(major type 7,	
	simple value 20)	
string	text string	
	(major type 3)	
enumeration	unsigned int	
	(major type 0)	
bits	array of text	Each text string contains the
	strings	name of a bit value that is set.
binary	byte string	
	(major type 2)	
empty	null (major type	TBD: This MAY not be applicable
	7, simple value	to true MIBs, as SNMP may not
	22)	support empty variables...
union		Similar ot the JSON
		transcription from
		[I-D.lhotka-netmod-yang-json],
		the elements in a union MUST be
		determined using the procedure
		specified in section 9.12 of
		[RFC6020].
leaf-list	array (major	The array is encapsulated in the
	type 4)	map associated with the
		descriptor.
list	map (major type	Like the higher level map, the
	4)	lower level map contains
		descriptor number - value pairs
		of the elements in the list.
container	map (major type	The map contains decriptor

van der Stok & GreevenboscExpires July 13, 2014 [Page 17]

Internet-Draft CoMI January 2014

	5)	number - value pairs
		corresponding to the elements in
		the container.
smiv2:oid	array of	Each integer contains an element
	integers	of the OID, the first integer in
		the array corresponds to the
		most left element in the OID.
 +-------------+------------------+----------------------------------+

 Table 1: Conversion of YANG datatypes to CBOR

4.2.3. Examples

4.2.3.1. ipNetToMediaTable to JSON/CBOR

 The YANG translation of the SMI specifying the
 ipNetToMediaTable yields:

 container ipNetToMediaTable {
 list ipNetToMediaEntry {
 leaf ipNetToMediaIfIndex {
 type: int32;
 }
 leaf ipNetToPhysAddress {
 type: phys-address;
 }
 leaf ipNetToMediaNetAddress {
 type: ipv4-address;
 }
 leaf ipNetToMediaType {
 type: int32;
 }
 }
 }

 The coresponding JSON looks like:

van der Stok & GreevenboscExpires July 13, 2014 [Page 18]

Internet-Draft CoMI January 2014

 {
 "ipNetToMediaTable" : {
 "ipNetToMediaEntry" : [
 {
 "ipNetToMediaIfIndex" : 1.
 "ipNetToMediaPhysAddress" : "00:00::10:01:23:45",
 "ipNetToMediaNetAddress" : "10.0.0.51",
 "ipNetToMediaType" : "static"
 },
 {
 "ipNetToMediaIfIndex " : 1,
 "ipNetToMediaPhysAddress " : "00:00::10:54:32:10",
 "ipNetToMediaNetAddress" : "9.2.3.4",
 "ipNetToMediaType " : "dynamic"
 }
]
 }
 }

 An example CBOR instance of the MIB can be found in Figure 1. The
 names "ipNetToMediaTable", "ipNetToMediaEntry", and
 "ipNetToMediaIfIndex" are represented with the string numbers 00, 01,
 and 02 as described in Section 4.1.

 82 # two element array
 19 43 A1 # translation table ID 43A1
 BF # indefinite length map
 00 # descriptor number related to
 # ipNetToMediaTable
 BF # indefinite length map related to
 # ipNetToMediaTable
 01 # descriptor number related to
 # ipNetToMediaEntry
 BF # map related to ipNetToMediaEntry
 02 # descriptor number associated with
 # ipNetToMediaIfIndex
 1A 00 00 00 01 # associated value as 32-bit integer
 # ...
 FF
 FF
 FF

 Figure 1: Example CBOR encoding for ifTable

 The associated "descriptor string" to "string number" translation
 table is given in Figure 2.

van der Stok & GreevenboscExpires July 13, 2014 [Page 19]

Internet-Draft CoMI January 2014

 82 # two element array
 19 43 A1 # translation table ID 43A1
 BF # indefinite length map
 00 # descriptor number related to
 # ipNetToMediaTable
 72 69 70 50 65 74 57
 6F 51 65 64 61 57 61
 62 6C 65 # "ipNetToMediaTable"
 01 # descriptor number related to
 # ipNetToMediaEntry
 72 69 70 50 65 74 57
 6F 51 65 64 61 45 6E
 74 72 78 # "ipNetToMediaEntry"
 02 # descriptor number related to
 # ipNetToMediaIfIndex
 75 69 70 50 65 74 57
 6F 51 65 64 61 61 49
 66 49 6E 64 65 77 # "ipNetToMediaIfIndex"
 # ...
 FF

 Figure 2: Translation table for ifTable

4.2.4. 6LoWPAN MIB

 A MIB for 6LoWPAN is defined in [I-D.schoenw-6lowpan-mib]. The
 document also provides an example JSON representation in its
 Appendix A. Figure 3 shows the associated CBOR representation with
 string number, and Figure 4 shows the corresponding string to string
 number conversion table.

 82 # two element array
 1A 8B 47 88 F3 # translation table ID 8B4788F3
 BF # indefinite length map
 00 # "LOWPAN-MIB:LOWPAN-MIB"
 BF # indefinite length map related to ifTable
 01 # "lowpanReasmTimeout"
 14 # 20
 02 # "lowpanInReceives"
 18 2A # 42
 03 # "lowpanInHdrErrors"
 00 # 0
 04 # "lowpanInMeshReceives"
 08 # 8
 05 # "lowpanInMeshForwds"
 00 # 0
 06 # "lowpanInMeshDelivers"

van der Stok & GreevenboscExpires July 13, 2014 [Page 20]

Internet-Draft CoMI January 2014

 00 # 0
 07 # "lowpanInReasmReqds"
 16 # 22
 08 # "lowpanInReasmFails"
 02 # 02
 09 # "lowpanInReasmOKs"
 14 # 20
 0A # "lowpanInCompReqds"
 10 # 16
 0B # "lowpanInCompFails"
 02 # 2
 0C # "lowpanInCompOKs"
 0E # 14
 0D # "lowpanInDiscards"
 01 # 01
 0E # "lowpanInDelivers"
 0C # 12
 0F # "lowpanOutRequests"
 0C # 12
 10 # "lowpanOutCompReqds"
 00 # 0
 11 # "lowpanOutCompFails"
 00 # 0
 12 # "lowpanOutCompOKs"
 00 # 0
 13 # "lowpanOutFragReqds"
 05 # 5
 14 # "lowpanOutFragFails"
 00 # 0
 15 # "lowpanOutFragOKs"
 05 # 5
 16 # "lowpanOutFragCreates"
 08 # 8
 17 # "lowpanOutMeshHopLimitExceeds"
 00 # 0
 18 18 # "lowpanOutMeshNoRoutes"
 00 # 0
 18 19 # "lowpanOutMeshRequests"
 00 # 0
 18 1A # "lowpanOutMeshForwds"
 00 # 0
 18 1B # "lowpanOutMeshTransmits"
 00 # 0
 18 1C # "lowpanOutDiscards"
 00 # 0
 18 1D # "lowpanOutTransmits"
 0F # 15
 FF

van der Stok & GreevenboscExpires July 13, 2014 [Page 21]

Internet-Draft CoMI January 2014

 FF

 Figure 3: Example CBOR encoding for the 6LoWPAN MIB

 82 # two element array
 1A 8B 47 88 F3 # translation table ID 8B4788F3
 BF # indefinite length map
 00
 75 # "LOWPAN-MIB:LOWPAN-MIB"
 01 #
 72 ... # "lowpanReasmTimeout"
 02
 70 ... # "lowpanInReceives"
 03
 71 ... # "lowpanInHdrErrors"
 04
 74 ... # "lowpanInMeshReceives"
 05
 72 ... # "lowpanInMeshForwds"
 06
 74 ... # "lowpanInMeshDelivers"
 07
 72 ... # "lowpanInReasmReqds"
 08
 72 ... # "lowpanInReasmFails"
 09
 70 ... # "lowpanInReasmOKs"
 0A
 71 ... # "lowpanInCompReqds"
 0B
 71 ... # "lowpanInCompFails"
 0C
 6F ... # "lowpanInCompOKs"
 0D
 70 ... # "lowpanInDiscards"
 0E
 70 ... # "lowpanInDelivers"
 0F
 71 ... # "lowpanOutRequests"
 10
 72 ... # "lowpanOutCompReqds"
 11
 72 ... # "lowpanOutCompFails"
 12
 70 ... # "lowpanOutCompOKs"
 13
 72 ... # "lowpanOutFragReqds"

van der Stok & GreevenboscExpires July 13, 2014 [Page 22]

Internet-Draft CoMI January 2014

 14
 72 ... # "lowpanOutFragFails"
 15
 70 ... # "lowpanOutFragOKs"
 16
 74 ... # "lowpanOutFragCreates"
 17
 78 1B ... # "lowpanOutMeshHopLimitExceeds"
 18 18
 75 ... # "lowpanOutMeshNoRoutes"
 18 19
 75 ... # "lowpanOutMeshRequests"
 18 1A
 73 ... # "lowpanOutMeshForwds"
 18 1B
 76 ... # "lowpanOutMeshTransmits"
 18 1C
 71 ... # "lowpanOutDiscards"
 18 1D
 72 ... # "lowpanOutTransmits"
 FF

 Figure 4: Translation table for the 6LoWPAN MIB

 In this example, a GET to /mg/mib/lowpanOutFragFails would give:

 82 # two element array
 1A 8B 47 88 F3 # translation table ID 8B4788F3
 BF # indefinite length map
 14 # "lowpanOutFragFails"
 00 # 0
 FF

5. MIB discovery

 MIB objects are discovered like resources with the standard CoAP
 resource discovery. Performing a GET on "/.well-known/core" with
 rt=core.mg.mib returns all MIB descriptors and all OIDs which are
 available on this device. For table objects there is no further
 possibility to discover the row descriptors. For example, consider
 there are two MIB objects with descriptors "sysUpTime" and
 "ipNetToMediaTable" associated with OID 1.3.6.1.2.1.1.3 and
 1.3.6.1.2.1.4.22

van der Stok & GreevenboscExpires July 13, 2014 [Page 23]

Internet-Draft CoMI January 2014

REQ: GET example.com/.well-known/core?rt=core.mg.mib

RES: 2.05 Content (Content-Format: application/text)
</mg/mib/sysUpTime>;rt="core.mg.mib";oid="1.3.6.1.2.1.1.3";mod="SNMPv2-MIB"
</mg/mib/ipNetToMediaTable>;rt="core.mg.mib";oid="1.3.6.1.2.1.4.22";mod="ipM
IB"

 The link format attribute ’oid’ is used to associate the name of the
 MIB resource with its OID. The OID is written as a string in its
 conventional form.

 Notice that a MIB variable normally is associated with a descriptor
 and an OID. The OID is unique, whereas the descriptor is unique in
 combination with the module name.

 The "mod", "con", and "rt" attributes can be used to filter resource
 queries as specified in [RFC6690].

6. Trap functions

 A trap can be set through the CoAP Observe [I-D.ietf-core-observe]
 function. As regular with Observe, the managing entity subscribes to
 the variable by sending a GET request with an "Observe" option.

 TODO: Observe example

 In the registration request, the managing entity MAY include a
 "Response-To-Uri-Host" and optionally "Response-To-Uri-Port" option
 as defined in [I-D.becker-core-coap-sms-gprs]. In this case, the
 observations SHOULD be sent to the address and port indicated in
 these options. This can be useful when the managing entity wants the
 managed device to send the trap information to a multicast address.

7. MIB access management

 Two topics are relevant: (1) the definition of the destination of
 Notify messages, and (2) the creation and maintenance of "string to
 number" tables.

7.1. Notify destinations

 The destination of notifications need to be communicated to the
 applications sending them. Draft [I-D.ietf-core-interfaces]
 describes the binding of end-points to end-points on remote devices.
 The object with type "binding table" contains a sequence of bindings.
 The contents of bindings contains the methods, location, the interval
 specifications, and the step value as suggested in
 [I-D.ietf-core-interfaces]. The method "notify" has been added to

van der Stok & GreevenboscExpires July 13, 2014 [Page 24]

Internet-Draft CoMI January 2014

 the binding methods "poll", "obs" and "push", to cater for the
 binding of notification source to the receiver.

 TODO: describe interface for NOTIFY destination definition.

7.2. Conversion tables

 POST is used to initialize a conversion table. At the arrival of the
 POST, all existing tables are removed and new tables as specified by
 the payload are created with the contents specified in the payload.
 When the payload of the POST is empty, no table is created.

 PUT is used to create new entries in an existing table and overwrite
 existing entries. When the payload of the PUT contains a non
 existing table, a new table with the new identity is created. When
 the payload of the PUT contains a table with an already existing
 identifier, two possiblities exist:

 exiting string value the contents of the existing pair is
 overwritten with the pair in the payload.

 new string value A new pair is created in the table with the pair in
 the payload.

8. Error handling

 In case a request is received which cannot be processed properly, the
 managed entity MUST return an error message. This error message MUST
 contain a CoAP 4.xx or 5.xx response code, and SHOULD include
 additional information in the payload.

 Such an error message payload is encoded in CBOR, using the following
 structure:

 errorMsg : ErrorMsg;

 *ErrorMsg {
 errorCode : uint;
 ?errorText : tstr;
 }

 The variable "errorCode" has one of the values from the table below,
 and the OPTIONAL "errorText" field contains a human readible
 explanation of the error.

van der Stok & GreevenboscExpires July 13, 2014 [Page 25]

Internet-Draft CoMI January 2014

 +----------------+----------------+---------------------------------+
 | CoMI Error | CoAP Error | Description |
 | Code | Code | |
 +----------------+----------------+---------------------------------+
0	4.00	General error
1	4.00	Malformed CBOR data
2	4.00	Incorrect CBOR datatype
3	4.00	Unknown MIB variable
4	4.00	Unknown translation table
5	4.05	Attempt to write read-only
		variable
0..2	5.01	Access exceptions
0..18	5.00	SMI error status
 +----------------+----------------+---------------------------------+

 The CoAP error code 5.01 is associted with the exceptions defined in
 [RFC3416] and CoAP error code 5.00 is associated with the error-
 status defined in [RFC3416].

9. Security Considerations

 TODO: follows CoAP security provisioning.

10. IANA Considerations

 ’rt="core.mg.mib"’ needs registration with IANA.

 Content types to be registered:

 o application/comi+json

 o application/comi+cbor

11. Acknowledgements

 Mehmet Ersue and Bert Wijnen explained the encoding aspects of PDUs
 transported under SNMP. Carsten Bormann has given feedback on the
 use of CBOR. Juergen Schoenwalder has commented on inconsistencies
 and missing aspects of SNMP in earlier versions of the draft. The
 draft has benefited from comments by Thomas Watteyne, Dee Denteneer,
 Esko Dijk, and Michael van Hartskamp. The CBOR encoding borrows

van der Stok & GreevenboscExpires July 13, 2014 [Page 26]

Internet-Draft CoMI January 2014

 extensively from Ladislav Lhotka’s description on conversion from
 YANG to JSON.

12. Changelog

 Changes from version 00 to version 01

 o Focus on MIB only

 o Introduced CBOR, JSON, removed BER

 o defined mappings from SMI to xx

 o Introduced the concept of addressable table rows

 Changes from version 01 to version 02

 o Focus on CBOR, used JSON for examples, removed XML and EXI

 o added uri-query attributes mod and con to specify modules and
 contexts

 o Definition of CBOR string conversion tables for data reduction

 o use of Block for multiple fragments

 o Error returns generalized

 o SMI - YANG - CBOR conversion

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

 [I-D.becker-core-coap-sms-gprs]
 Becker, M., Li, K., Poetsch, T., and K. Kuladinithi,
 "Transport of CoAP over SMS", draft-becker-core-coap-sms-
 gprs-04 (work in progress), August 2013.

van der Stok & GreevenboscExpires July 13, 2014 [Page 27]

Internet-Draft CoMI January 2014

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",
 draft-ietf-core-block-14 (work in progress), October 2013.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-11 (work in progress), October 2013.

 [I-D.ietf-json-rfc4627bis]
 Bray, T., "The JSON Data Interchange Format", draft-ietf-
 json-rfc4627bis-10 (work in progress), December 2013.

 [I-D.lhotka-netmod-yang-json]
 Lhotka, L., "Modeling JSON Text with YANG", draft-lhotka-
 netmod-yang-json-02 (work in progress), September 2013.

13.2. Informative References

 [RFC1213] McCloghrie, K. and M. Rose, "Management Information Base
 for Network Management of TCP/IP-based internets:MIB-II",
 STD 17, RFC 1213, March 1991.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

van der Stok & GreevenboscExpires July 13, 2014 [Page 28]

Internet-Draft CoMI January 2014

 [RFC3416] Presuhn, R., "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3416, December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RFC4088] Black, D., McCloghrie, K., and J. Schoenwaelder, "Uniform
 Resource Identifier (URI) Scheme for the Simple Network
 Management Protocol (SNMP)", RFC 4088, June 2005.

 [RFC4113] Fenner, B. and J. Flick, "Management Information Base for
 the User Datagram Protocol (UDP)", RFC 4113, June 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4293] Routhier, S., "Management Information Base for the
 Internet Protocol (IP)", RFC 4293, April 2006.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241, June 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6643] Schoenwaelder, J., "Translation of Structure of Management
 Information Version 2 (SMIv2) MIB Modules to YANG
 Modules", RFC 6643, July 2012.

 [RFC6650] Falk, J. and M. Kucherawy, "Creation and Use of Email
 Feedback Reports: An Applicability Statement for the Abuse
 Reporting Format (ARF)", RFC 6650, June 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

van der Stok & GreevenboscExpires July 13, 2014 [Page 29]

Internet-Draft CoMI January 2014

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
 "Neighbor Discovery Optimization for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
 November 2012.

 [I-D.ietf-core-groupcomm]
 Rahman, A. and E. Dijk, "Group Communication for CoAP",
 draft-ietf-core-groupcomm-18 (work in progress), December
 2013.

 [I-D.ietf-core-interfaces]
 Shelby, Z. and M. Vial, "CoRE Interfaces", draft-ietf-
 core-interfaces-01 (work in progress), December 2013.

 [I-D.ersue-constrained-mgmt]
 Ersue, M., Romascanu, D., and J. Schoenwaelder,
 "Management of Networks with Constrained Devices: Problem
 Statement, Use Cases and Requirements", draft-ersue-
 constrained-mgmt-03 (work in progress), February 2013.

 [I-D.schoenw-6lowpan-mib]
 Schoenwaelder, J., Sehgal, A., Tsou, T., and C. Zhou,
 "Definition of Managed Objects for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", draft-
 schoenw-6lowpan-mib-03 (work in progress), February 2013.

 [I-D.bierman-netconf-restconf]
 Bierman, A., Bjorklund, M., Watsen, K., and R. Fernando,
 "RESTCONF Protocol", draft-bierman-netconf-restconf-02
 (work in progress), October 2013.

 [STD0001] "Official Internet Protocols Standard", Web
 http://www.rfc-editor.org/rfcxx00.html, .

 [XML] "Extensible Markup Language (XML)", Web
 http://www.w3.org/xml, .

 [JSON] "JavaScript Object Notation (JSON)", Web
 http://www.json.org, .

Appendix A. Notational Convention for CBOR data

 To express CBOR structures [RFC7049], this document uses the
 following conventions:

 A declaration of a CBOR variable has the form:

 name : datatype;

van der Stok & GreevenboscExpires July 13, 2014 [Page 30]

Internet-Draft CoMI January 2014

 where "name" is the name of the variable, and "datatype" its CBOR
 datatype.

 The name of the variable has no encoding in the CBOR data.

 "datatype" can be a CBOR primitive such as:

 tstr: A text string (major type 3)

 uint: An unsigned integer (major type 0)

 map(x,y): A map (major type 5), where each first element of a pair
 is of datatype x, and each second element of datatype y. A ’.’
 character for either x or y means that all datatypes for that
 element are valid.

 A datatype can also be a CBOR structure, in which case the variable’s
 "datatype" field contains the name of the CBOR structure. Such CBOR
 structure is defined by a character sequence consisting of first its
 name, then a ’{’ character, then its subfields and finally a ’}’
 character.

 A CBOR structure can be encapsulated in an array, in which case its
 name in its definition is preceeded by a ’*’ character. Otherwise
 the structure is just a grouping of fields, but without actual
 encoding of such grouping.

 The name of an optional field is preceded by a ’?’ character. This
 means, that the field may be omitted if not required.

Authors’ Addresses

 Peter van der Stok
 consultant

 Phone: +31-492474673 (Netherlands), +33-966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

 Bert Greevenbosch
 Huawei Technologies Co., Ltd.
 Huawei Industrial Base
 Bantian, Longgang District
 Shenzhen 518129
 P.R. China

 Email: bert.greevenbosch@huawei.com

van der Stok & GreevenboscExpires July 13, 2014 [Page 31]

