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Abstract

   This document specifies an algorithm for the detection and
   quantification of packet reordering for TCP.  In the absence of
   explicit congestion notification from the network, TCP uses only
   packet loss as an indication of congestion.  One of the signals TCP
   uses to determine loss is the arrival of three duplicate
   acknowledgments.  However, this heuristic is not always correct,
   notably in the case when paths reorder packets.  This results in
   degraded performance.

   The algorithm for the detection and quantification of reordering in
   this document uses information gathered from the TCP Timestamps
   Option, the TCP SACK Option and its DSACK extension.  When a
   reordering event is detected, the algorithm calculates a reordering
   extent by determining the number of segments the reordered segment
   was late with respect to its position in the sequence number space.
   Additionally, the algorithm computes a second reordering extent that
   is relative to the amount of outstanding data and thus provides a
   better estimation of the reordering delay when other sender state
   changes.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
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   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 22, 2014.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   When the Transmission Control Protocol (TCP) [RFC0793] decides that
   the oldest outstanding segment is lost, it performs a retransmission
   and changes the sending rate [RFC5681].  This occurs when a
   Retransmission Timeout (RTO) occurs for a segment, or when three
   duplicate acknowledgments (ACKs) for a segment have been received
   (Fast Retransmit).  The assumption behind Fast Retransmit is that
   non-congestion events that can cause duplicate ACKs to be generated
   (packet duplication, packet reordering and packet corruption) are
   infrequent.  However, a number of Internet measurement studies have
   shown that packet reordering is not a rare phenomenon [Pax97],
   [BPS99], [BS02], [ZM04], [GPL04], [Jai+07] and has negative
   performance implications on TCP [BA02], [Zha+03].

   The impact that packet reordering has on TCP can be classified by the
   type of reordering: forward-path versus reverse-path reordering.

   From TCP’s perspective, the result of packet reordering on the
   forward-path is the reception of out-of-order segments by the TCP
   receiver.  In response to every received out-of-order segment, the
   TCP receiver immediately sends a duplicate ACK.  (Note: [RFC5681]
   recommends that delayed ACKs not be used when the ACK is triggered by
   an out-of-order segment.)  The sender side, if the number of
   consecutively received duplicate ACKs exceeds the duplicate
   acknowledgment threshold (DupThresh), retransmits the first
   unacknowledged segment [RFC5681] and continues with a loss recovery
   algorithm such as NewReno [RFC6582] or the Selective Acknowledgment
   (SACK) based loss recovery [RFC6675].  If a segment arrives late at
   the receiver because of reordering by more than three segments (the
   default value of DupThresh [RFC5681]), the TCP sender is not able to
   distinguish this reordering event from a segment loss, resulting in
   an unnecessary retransmission and rate reduction.

   Packet reordering may not only cause data segments to arrive out-of-
   order but also ACKs at the receiver.  This reordering on the reverse
   path also has a negative an impact on TCP performance, by causing a
   degradation of TCP’s self-clocking property.  In steady state,
   depending on whether the TCP receiver delays an ACK or not [RFC1122],
   one or two segments are acknowledged per ACK.  If, due to reordering
   on the reverse path, ACKs arrive at the TCP sender in a different
   order than they were sent in by the TCP receiver, in-order ACKs
   acknowledge several segments together rather than only one or two,
   while disordered ACKs arrive either out-of-order or out-of-window and
   are ignored.  (Note: according to [RFC6675], an ACK only counts as a
   duplicate if it carries a SACK block that identifies previously
   unacknowledged and un-SACKed data.)  Overall, this leads to a bursty
   transmission pattern as well as outdated SACK and DSACK information.
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   Since DupThresh is defined in segments rather than bytes [RFC5681],
   TCP usually quantifies packet reordering in terms of segments.
   Informally, the reordering extent [RFC4737] is defined as the maximum
   distance in segments between the reception of a reordered segment and
   the earliest segment received with a larger sequence number.  If a
   segment is received in-order, its reordering extent is undefined
   [RFC4737].  On the basis of the reordering extent, a mechanism to
   make TCP robust to packet reordering can be achieved by directly
   applying the reordering extent as and DupThresh.  A problem that
   arises with this way of quantifying reordering is that even in the
   presence of constant reordering, reordering extents may vary if the
   transmission rate of the TCP sender changes.  Therefore, by using a
   DupThresh that directly reflects the measured reordering extent,
   spurious retransmissions cannot be fully avoided.

   The following example illustrates this issue.  Assume a path with a
   reordering probability of 1%, a reordering delay of 20 ms, and a
   bottleneck bandwidth of 3 Mb/s.  Because segments that are delayed by
   reordering arrive 20 ms too late, the TCP receiver can receive a
   maximum of ((20 * 3 * 10^3) / 8) = 7500 bytes out-of-order before the
   reordered segment arrives.  Hence, with a Sender Maximum Segment Size
   (SMSS) of 1460 bytes, the largest possible reordering extent is close
   to 5 segments.  If the bottleneck bandwidth changes from 3 Mb/s to 4
   Mb/s, the maximum reordering extent will increase to 7 segments,
   although the reordering delay remains constant.

   This simple example shows that even with constant reordering,
   spurious retransmissions cannot be completely avoided if DupThresh
   directly reflects the reordering extent.  On the other hand, the
   reordering extent and the resulting DupThresh can sometimes also be
   much too high and do not correspond to the actual packet reordering
   present on the path.  For example, a slow start overshoot [Hoe96],
   [MM96], [Mat+97] at the end of slow start might induce such a
   problem.

   An obvious solution to the problem would be to quantify packet
   reordering not by calculating a reordering extent, but by using the
   reordering late time offset [RFC4737].  Since the reordering late
   time offset is not specified in segments but captures the difference
   between the expected and actual reception time of a reordered
   segment, this way of quantifying reordering is independent of the
   current transmission rate.  Disadvantages of this approach are
   however a higher complexity and a worse integration into the TCP
   specification, since an implementation would require additional
   timers, whereas TCP itself is self-clocked.

   The approach taken by this specification quantifies the reordering
   extend for a packet not only through an absolute value, but also
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   through a measure that is relative to the amount of outstanding data,
   in an attempt to approximate a time-based measure.  The presented
   scheme can thereby easily be adapted to the Stream Control
   Transmission Protocol (SCTP) [RFC2960], since SCTP uses congestion
   control algorithms similar to TCP.

   The remainder of this document is organized as follows.  Section 3
   provides a high-level description of the packet reordering detection
   mechanisms.  In Section 4, the algorithm is specified.  In Section 5,
   each step of the algorithm is discussed in detail.  Section 6
   provides a discussion of several design decisions of the algorithm.
   Section 7 discusses related work.  Section 9 discusses security
   concerns.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described [RFC2119].

   The reader is expected to be familiar with the TCP state variables
   given in [RFC0793] (SEG.SEQ), [RFC5681] (FlightSize), and [RFC6675]
   (DupThresh, SACK scoreboard).  SND.FACK (forward acknowledgment) is
   used to describe the highest sequence number - plus one - that has
   been either cumulatively or selectively acknowledged by the receiver
   and subsequently seen by the sender [MM96].  Further, the term
   ’acceptable acknowledgment’ is used as defined in [RFC0793].  That
   is, an ACK that increases the connection’s cumulative ACK point by
   acknowledging previously unacknowledged data.  The term ’duplicate
   acknowledgment’ is used as defined in [RFC6675], which is different
   from the definition of duplicate acknowledgment in [RFC5681].

   This specification defines the four TCP sender states ’open’,
   ’disorder’, ’recovery’, and ’loss’ as follows.  As long as no
   duplicate ACK is received and no segment is considered lost, the TCP
   sender is in the ’open’ state.  Upon the reception of the first
   consecutive duplicate ACK, TCP will enter the ’disorder’ state.
   After receiving DupThresh duplicate ACKs, the TCP sender switches to
   the ’recovery’ state and executes standard loss recovery procedures
   like Fast Retransmit and Fast Recovery [RFC5681].  Upon a
   retransmission timeout, the TCP sender enters the ’loss’ state.  The
   ’recovery’ state can only be reached by a transition from the
   ’disorder’ state, the ’loss’ state can be reached from any other
   state.
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3.  Basic Concepts

   The following specification depends on the TCP Timestamps [RFC1323]
   and the TCP Selective Acknowledgment (SACK) [RFC2018] options and the
   latter’s Duplicate Selective Acknowledgment (DSACK) extension
   [RFC2883].  The reader is assumed to be familiar with the algorithms
   specified in these documents.

   Reordering is quantified by an absolute and a relative reordering
   extent.  If a hole in the SACK scoreboard of the TCP sender is closed
   either cumulatively by an acceptable ACK or selectively by a new
   SACK, then the absolute reordering extent is computed as the number
   of segments in the SACK scoreboard between the sequence number of the
   reordered segment and the highest selectively or cumulatively
   acknowledged sequence number.  The relative reordering extent is then
   computed as the ratio between the absolute reordering extent and the
   FlightSize stored when entering the ’disorder’ state.

   If the hole that was closed in the SACK scoreboard corresponds to a
   segment that was not retransmitted, or if the retransmission of such
   a segment can be determined as a spurious retransmission by means of
   the Eifel detection algorithm [RFC3522], then the calculated
   reordering extent is immediately valid.  Otherwise, if the
   verification of the Eifel detection algorithm has not been possible,
   the reordering extent is stored for a possibly subsequent DSACK.  If
   no such DSACK is received in the next two round-trip times (RTTs),
   the reordering extent is discarded.

4.  The Algorithm

   Given that usually both the Nagle algorithm [RFC0896] [RFC1122] and
   the TCP Selective Acknowledgment Option [RFC2018] are enabled, a TCP
   sender MAY employ the following algorithm to detect and quantify the
   current perceived packet reordering in the network.

   Without the Nagle algorithm, there is no straight way to accurately
   calculate the number of outstanding segments in the network (and,
   therefore, no good way to derive an appropriate reordering extent)
   without adding state to the TCP sender.  A TCP connection that does
   not employ the Nagle algorithm SHOULD NOT use this methodology.

   If a TCP sender implements the following algorithm, the
   implementation MUST follow the various specifications provided in
   Sections 4.1 to 4.8.  The algorithm MUST be executed *before* the
   Transmission Control Block or the SACK scoreboard have been updated
   by another loss recovery algorithm.
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4.1.  Initialization During Connection Establishment

   After the completion of the TCP connection establishment, the
   following state variables MUST be initialized in the TCP transmission
   control block:

   (C.1)  The variable Dsack, which indicates whether a DSACK has been
          received so far, and the data structure Samples, which stores
          the computed reordering extents, MUST be initialized as:

             Dsack = false
             Samples = []

   (C.2)  If the TCP Timestamps option [RFC1122] has been negotiated,
          then the variable Timestamps MUST be activated and the data
          structure Retrans_TS, which stores the value of the TSval
          field of the retransmissions sent during Fast Recovery, MUST
          be initialized as:

             Timestamps = true
             Retrans_TS = []

          Otherwise, the Timestamps-based detection SHOULD be
          deactivated:

             Timestamps = false

4.2.  Receiving Acknowledgments

   For each received ACK that either a) carries SACK information, *or*
   b) is a full ACK that terminates the current fast recovery procedure,
   *or* c) is an acceptable ACK that is received immediately after a
   duplicate ACK, execute steps (A.1) to (A.4), otherwise skip to step
   (A.4).

   (A.1)  If a) the ACK carries new SACK information, *and* b) the SACK
          scoreboard is empty (i.e., the TCP sender has received no SACK
          information from the receiver), then the TCP sender MUST save
          the amount of current outstanding data:

             FlightSizePrev = FlightSize

   (A.2)  If the received ACK either a) cumulatively acknowledges at
          most SMSS bytes, *or* b) selectively acknowledges at most SMSS
          bytes in the sequence number space in the SACK scoreboard,
          then:
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             The TCP sender MUST execute steps (S.1) to (S.4)

   (A.3)  If a) Timestamps == false *and* b) the received ACK carries a
          DSACK option [RFC2883] and the segment identified by the DSACK
          option can be marked according to step (A.1) to (A.4) of
          [RFC3708] as a valid duplicate, then:

             The TCP sender MUST execute steps (D.1) to (D.3)

   (A.4)  The TCP sender MUST terminate the processing of the ACK by
          this algorithm and MUST continue with the default processing
          of the ACK.

4.3.  Receiving Acknowledgment Closing Hole

   (S.1)  If (a) the newly cumulatively or selectively acknowledged
          segment SEG is a retransmission *and* b) both equations Dsack
          == false and Timestamps == false hold, then the TCP sender
          MUST skip to step (A.4).

   (S.2)  Compute the relative and absolute reordering extent ReorExtR,
          ReorExtA:

             The TCP sender MUST execute steps (E.1) to (E.4)

   (S.3)  If a) the newly acknowledged segment SEG was not retransmitted
          before *or* b) both equations Timestamps == true and
          Retrans_TS[SEG.SEQ] > ACK.TSecr hold, i.e., the ACK
          acknowledges the original transmission and not a
          retransmission, then hand over the reordering extents to an
          additional reaction algorithm:

             The TCP sender MUST execute step (P)

   (S.4)  If a) the previous step (S.3) was not executed *and* b) both
          equations Dsack == true and Timestamps == false hold, save the
          reordering extents for the newly acknowledged segment SEG for
          at least two RTTs:

             Samples[SEG.SEQ].ReorExtR = ReorExtR
             Samples[SEG.SEQ].ReorExtA = ReorExtA

4.4.  Receiving Duplicate Selective Acknowledgment
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   (D.1)  If no DSACK has been received so far, the sender MUST set:

             Dsack = true

   (D.2)  If a) the previous step (D.1) was not executed *and* a
          reordering extent was calculated for the segment SEG
          identified by the DSACK option, then the TCP sender MUST
          restore the values of the variables ReorExtR and ReorExtA and
          delete the corresponding entries in the data structure:

             ReorExtR = Samples[SEG.SEQ].ReorExtR
             ReorExtA = SAMPLES[SEG.SEQ].ReorExtA

   (D.3)  Hand the newly restored reordering extents over to an
          additional reaction algorithm:

             The TCP sender MUST execute step (P)

4.5.  Reordering Extent Computation

   (E.1)  SEG.SEQ is the sequence number of the newly cumulatively or
          selectively acknowledged segment SEG.

   (E.2)  SND.FACK is the highest either cumulatively or selectively
          acknowledged sequence number so far plus one.

   (E.3)  The TCP sender MUST compute the absolute reordering extent
          ReorExtA as

             ReorExtA = (SND.FACK - SEG.SEQ) / SMSS

   (E.4)  The TCP sender MUST compute the relative reordering extent
          ReorExtR as

             ReorExtR= ReorExtA * (SMSS / FlightSizePrev)

4.6.  Retransmitting Segment

   If the TCP Timestamps option [RFC1323] is used to detect packet
   reordering, the TCP sender must save the TCP Timestamps option of all
   retransmitted segments during fast recovery.

   (RET)  If a) a segment SEG is retransmitted during Fast Recovery,
          *and* b) the equation Timestamps = true holds, the TCP sender
          MUST save the value of the TSval field of the retransmitted
          segment:
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                 Retrans_TS[SEG.SEQ] = SEG.TSval

4.7.  Placeholder for Response Algorithm

   (P)    This is a placeholder for an additional reaction algorithm
          that takes further action using the results of this algorithm,
          for example, the adjustment of the DupThresh based on relative
          and absolute reordering extent ReorExtR and ReorExtA.

4.8.  Retransmission Timeout

   The expiration of the retransmission timer should be interpreted as
   an indication of a change in path characteristics, and the TCP sender
   should consider all saved reordering extents as outdated and delete
   them.

   (RTO)  If an retransmission timeout (RTO) occurs, a TCP sender SHOULD
          reset the following variables:

                 Samples = []
                 Retrans_TS = []
                 FlightSizePrev = 0

5.  Protocol Steps in Detail

   The reception of an ACK represents the starting point for the
   detection scheme above.  For each received SACK, DSACK or acceptable
   ACK that prompts the TCP sender to enter the ’disorder’ state, to
   remain in the ’disorder’ state or to leave the ’disorder’ or
   ’recovery’ states towards the ’open’ state, steps (A.1) to (A.4) are
   performed.  All other received ACKs are not relevant for the
   detection of packet reordering and can be ignored.  If the TCP sender
   changes from the ’open’ to the ’disorder’ state due to the reception
   of a duplicate ACK (i.e., the SACK scoreboard is empty and an ACK
   arrives carrying new SACK information), the current amount of
   outstanding data, FlightSize, is stored for the subsequent
   calculation of the relative reordering extent (step (A.1)).

   Whenever a received acceptable ACK or SACK closes a hole in the
   sequence number space of the SACK scoreboard either partially or
   completely, this is an indication of packet reordering in the network
   (step (A.2)).  The prerequisite for an accurate quantification of the
   reordering is that only one segment is newly acknowledged (maximum
   SMSS bytes of data).  If more than one segment per ACK is
   acknowledged, either by reordering on the reverse path or the loss of
   ACKs, the order in which the segments have been received by the TCP
   receiver is no longer accurately determinable so that in this case a
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   reordering extent is not calculated.  Finally, if the received ACK
   carries a DSACK option that identifies a segment that was
   retransmitted only once, then this is sufficient to conclude
   reordering (step (A.3)), so that a previously calculated reordering
   extent can be passed to another algorithm (steps (D.3) and (P)).

   With just the information provided by the ACK field or SACK
   information above SND.UNA , the TCP sender is unable to distinguish
   whether the ACK that finally acknowledges retransmitted data (either
   cumulatively or selectively) was sent in response to the original
   segment or a retransmission of the segment.  This is described as the
   retransmission ambiguity problem in [KP87].  Therefore, the detection
   and quantification of reordering depends on other means to
   distinguish between acknowledgments for transmission and
   retransmission to detect if a retransmission was spurious.  If
   neither a DSACK has been received (Dsack == false) nor the TCP
   Timestamps option has been enabled on connection establishment
   (Timestamps == false) then there is no possibility for the TCP sender
   to identify spurious retransmissions.  Hence, the processing of the
   received ACK by the detection algorithm must be terminated for
   retransmitted segments (step (S.1)).  Otherwise, if the segment that
   corresponds to the closed hole in the sequence number space of the
   SACK scoreboard has not been retransmitted or the retransmission can
   be identified by the Eifel detection algorithm [RFC3522] as a
   spurious retransmission, the previously calculated reordering extent
   is valid (step (S.2)) and an additional reaction algorithm can be
   executed (step (S.3) and (P)).

   For the use of the Eifel detection it is necessary to store the TCP
   Timestamps option of all retransmissions sent during Fast Recovery
   (step (Ret)).  However, if the use of the Eifel detection algorithm
   is not possible (Timestamps == false), the extent of a possible
   reordering is stored for the possibility of a subsequent arrival of a
   DSACK (step (P.4)).  If no such DSACK is received in the next two
   round-trip times, the reordering extent is discarded.  Since the
   DSACK extension is not negotiated during connection establishment
   [RFC2883], the reordering extent is only stored if a DSACK was
   previously received for the TCP connection (DSACK == true, step
   (D.1)).

   Regardless of whether packet reordering is detected by using the
   SACK-based methodology, the DSACK-based methodology, or the TCP
   Timestamps option, quantification of the reordering will always be
   done when closing a hole in the sequence number space of the SACK
   scoreboard (step (A.2), step (P.2)).  The only difference is the time
   of detection, which is in the case of DSACK-based methodology at
   least one RTT after the time of the quantification.  The absolute
   reordering extent ReorExtA results from the number of segments in the
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   SACK scoreboard between the sequence number of the newly acknowledged
   segment and the highest either cumulatively or selectively
   acknowledged sequence number so far plus one (SND.FACK) (step (E.3)).

   It is worth noting that the absolute reordering extent includes all
   segments (bytes) between the closed hole and the highest acknowledged
   sequence number so far, i.e., it also includes segments (bytes) that
   are not selectively acknowledged.  The reason is that if packet
   reordering is considered from a temporal perspective, it is
   irrelevant whether there are lost segments or not.  The important
   fact is that the lost segments have been sent after the delayed
   segment and before the highest acknowledged segment, which is
   expressed by the metric.  In step (E.4), the relative reordering
   extent ReorExtR is then calculated by the ratio between the absolute
   reordering extent ReorExtA and the amount of outstanding data stored
   by step (A.1).

6.  Discussion of the Algorithm

   The focus of the following discussion is on the quantification of
   reordering by the relative reordering extent and to elaborate on
   possible sources of error, which may lead to an inaccurate detection
   and quantification of reordering in the network.

6.1.  Calculation of the Relative Reordering Extent

   Generally, the characteristics of a relative reordering extent should
   be that if packet reordering on a path is constant in terms of rate
   and delay, the relative reordering extent should also be constant,
   regardless of the current transmission rate of the TCP sender.  The
   scheme proposed in this document is to calculate the relative
   reordering by getting the ratio between absolute reordering (the
   amount of data the reordered segment was received too late) and the
   amount of outstanding data stored when TCP sender was entering the
   ’disorder’ state (the maximum amount of data a reordered segment can
   be received too late).  (Note: A segment can theoretically be delayed
   for an arbitrarily long period during reordering.  However, the
   scheme proposed in this document does not capture such kind of
   reordering.  See Section 6.2.)  Therefore, the relative reordering
   extent expresses the portion of currently outstanding data that is
   selectively acknowledged before the reordered segment is cumulatively
   acknowledged.  If the transmission rate changes, the absolute
   reordering extent changes as well, but together with the amount of
   outstanding data, and hence the relative reordering extent stays
   constant.

   A characteristic of the calculation of the relative reordering extent
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   on the basis of currently outstanding amount of data is that the
   FlightSize reflects the bandwidth-delay-product and not the
   transmission rate.  As a consequence, the relative reordering extent
   is not independent of the RTT.  If the RTT of the communication path
   changes, the amount of outstanding data changes as well, but the
   absolute reordering extent remains constant.  Hence, the relative
   reordering extent adapts.  In principle it is possible to design an
   algorithm to compute the relative reordering extent independently of
   the RTT and to reflect only the characteristics of packet reordering
   of the path.  But since the calculation would be far from trivial and
   introducing more complexity, this is considered to be future
   research.

6.2.  Reordering Delay Longer than RTT

   The quantification of packet reordering always takes place at the
   time when a hole in sequence number space in the SACK scoreboard is
   closed.  In consequence, if a reordered packet is delayed by more
   than the measured RTT, the amount of reordering on the path is
   underestimated, since the ACK that closes the hole in the sequence
   number space was not sent in response to the original transmission,
   but to the retransmission.  Hence, in order to detect and quantify
   these kinds of events, the reordering extent would have to be
   calculated when the ACK for the transmission is received and not at
   the time the hole in the sequence number space is closed.  Although
   it would be possible to take these events into account by evaluating
   DSACKs and the TCP Timestamps option simultaneously, the scheme
   proposed in this document refrains from qualifying a reordering delay
   longer then RTT.  A reordering delay of this magnitude is very
   unlikely, and would lead to a significant overhead in memory usage
   and complexity.  Additionally, taking it into account would result in
   other problems, especially a potential expiration of the RTO
   [I-D.zimmermann-tcpm-reordering-reaction].

6.3.  Persistent Reception of Selective Acknowledgments

   Especially on paths with a high bandwidth-delay-product, it is
   possible that even with a minor packet reordering, several segments
   in a single window of data are delayed.  If, in addition, the
   sequence numbers of those segments are widely spaced in the sequence
   number space and the delay caused by packet reordering is
   sufficiently high, this might lead to a constant reception of out-of-
   order data.  Hence, for each received segment, regardless of whether
   a hole in the sequence number space of the receive window is closed
   or not, an ACK is sent that carries SACK information.  From TCP
   sender’s perspective, this persistent receiving of new SACK
   information leads to the situation that the TCP sender enters the
   ’disorder’ state when receiving the first SACK and never leaves it
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   again during the connection lifetime if no segment is lost in
   between.

   In case of the above reordering detection and quantification scheme,
   the persistent reception of SACK blocks causes the amount of
   outstanding data, which is stored when the TCP sender enters the
   ’disorder’ state, to never be updated, since FlightSize is only saved
   in step (A.1) when the SACK scoreboard is empty.  If the transmission
   rate of the TCP sender, and therefore also the maximum amount of data
   a reordered segment can be received too late, changes significantly
   during its stay in the ’disorder’ state, the actual amount of
   reordering is not accurately determined by the relative reordering
   extent.  A decrease of the transmission rate would result in an
   overestimation of the reordering extent and vice versa.

   A simple solution to the problem would be to store the maximum offset
   in terms of sequence number space by which a reordered segment can be
   received too late only when entering the ’disorder’ state, but
   individually for every potentially reordered segment, that is, for
   every hole in the sequence space of the SACK scoreboard.  (Note: The
   maximum offset in terms of sequence number space by which a reordered
   segment can be received too late is strictly speaking the amount of
   data that have been transmitted later than the reordered segment.
   This amount of data can only be expressed by FlightSize within the
   ’open’ state and not within the ’disorder’ state, since the
   cumulative ACK point may not advance).

   The problem with this simple idea is that for a new hole in the SACK
   scoreboard, it is not possible to determine whether it is a result of
   packet reordering or loss, and therefore it results in increased
   memory usage (to store the amount of data for each hole.)
   Additionally, the packet reordering would be inaccurately quantified
   if the transmission rate changes significantly for a short amount of
   time.  For example, if the amount of outstanding data is low when
   entering the ’disorder’ state is entered, the execution of Careful
   Extended Limited Transmit (as described in
   [I-D.zimmermann-tcpm-reordering-reaction] [RFC4653]) leads to a
   significant short-term change of the transmission rate.  When the
   amount of data by which the reordering segment can be delayed is
   determined individually for every new hole, it leads to an
   overestimation of the relative reordering extent, since the maximum
   amount of data possible is ’artificially’ reduced by Careful Extended
   Limited Transmit.

   A solution to this problem is to store the maximum offset in terms of
   sequence number space by which a reordered segment can be received
   too late not for every segment individually (which does not guarantee
   an accurate calculation of the relative reordering extent) but only
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   sufficiently often, e.g., once per RTT.  The identification of what
   frequency would be adequate, though, is neither trivial nor
   universally applicable, since a concrete solution depends on the
   transmission behavior of the used TCP in the ’disorder’ state and
   whether it is more beneficial for an additional reordering response
   algorithm to over- or underestimate the packet reordering on the
   path.  If, for example, TCP-aNCR
   [I-D.zimmermann-tcpm-reordering-reaction] is used as additional
   reordering response algorithm, the maximum offset in terms of
   sequence number space by which a reordered segment can be received
   too late is not only stored when entering the ’disorder’ state but
   also updated every RTT (every cwnd worth of data transmitted without
   a loss) while the TCP sender stays in the ’disorder’ state.

6.4.  Packet Duplication

   Although the problem of packet duplication in today’s Internet
   [Jai+07], [Mel+08] is negligible, it may happen in rare cases that
   segments on the path to the TCP receiver are duplicated.  If a
   segment is duplicated on the path, the first incoming segment causes
   the receiver to send either an acceptable ACK or a SACK, depending on
   whether the segment is the next expected one or not.  Each subsequent
   identical segment then causes either a duplicate ACK or a DSACK,
   respectively, depending on whether the DSACK extension [RFC3708] is
   implemented or not.

   If by a combination of packet loss and packet duplication the case
   occurs that a Fast Retransmit for a lost segment is duplicated on the
   path, the TCP sender is not able to distinguish this from packet
   reordering.  The first received ACK closes a hole in the sequence
   number space of the SACK scoreboard, while the second received ACK is
   a valid DSACK.  Although both cases are indistinguishable from a
   theoretical point of view, the TCP sender can take measures to ensure
   as far as possible that the DSACK received was not the result of
   packet duplication.

   For this purpose, step (A.3) of the above detection method checks via
   the steps (A.1) to (A.4) of [RFC3708] whether the segment identified
   by the DSACK option is marked as a valid duplicate.  Unfortunately,
   the steps of [RFC3708] do not check that more DSACKs have been
   received than retransmissions have been sent, which is a
   characteristic of suffering both packet reordering and packet
   duplication at the same time.  By simply counting the received
   DSACKs, for example, as additional step (A.5) in [RFC3708], this
   corner case can be covered as well.

Zimmermann, et al.        Expires May 22, 2014                 [Page 16]



Internet-Draft          TCP Reordering Detection           November 2013

7.  Related Work

   Because of retransmission ambiguity problem [KP87], which describes
   TCP sender’s inability to to distinguish whether the first acceptable
   ACK that arrives after a retransmit was sent in response to the
   original transmit or the retransmit, two different approaches can
   generally be taken to detect and quantify packet reordering.  First,
   for transmissions (non-retransmitted segments), the detection is
   usually conducted by detecting a closed hole in sequence number space
   of the SACK scoreboard.  Second, for retransmissions, the detection
   of packet reordering is accompanied by the detection of the spurious
   fast retransmits.

   Within the IETF, several proposals have been published in the RFC
   series to detect and quantify packet reordering.  With [RFC4737] the
   IPPM Working Group [IPPM] defines several metrics to evaluate whether
   a network path has maintained packet order on a packet-by-packet
   basis.  [RFC4737] gives concrete, well-defined metrics, along with a
   methodology for applying the metric to a generic packet stream.  The
   metric discussed in this document has a different purpose from the
   IPPM metrics; this document discusses a TCP specific reordering
   metric calculated on the TCP sender’s SACK scoreboard.

   Besides the IPPM work, several other proposals have been developed to
   detect spurious retransmissions with TCP.  The Eifel detection
   algorithm [RFC3522] uses the TCP Timestamps option to determine
   whether the ACK for a given retransmit is for the original
   transmission or a retransmission.  The F-RTO scheme [RFC5682]
   slightly alters TCP’s sending pattern immediately following a
   retransmission timeout to indicate whether the retransmitted segment
   was needed.  Finally, the DSACK-based algorithm [RFC3708] uses the
   TCP SACK option [RFC2018] with the DSACK extension [RFC2883] to
   identify unnecessary retransmissions.  The mechanism for detecting
   packet reordering outlined in this document rely on the detection
   schemes of those documents (except F-RTO that only works for spurious
   retransmits triggered by TCP’s retransmission timer), although they
   do not provide metrics for the reordering extent whereas the
   algorithm described in this document does.

   RR-TCP [Zha+03] describes a reordering detection and quantification
   scheme that is also based on holes in the sequence number space of
   the SACK scoreboard and the reception of DSACKs.  For every hole in
   the SACK scoreboard, RR-TCP calculates a reordering extent.  If the
   segment was retransmitted before an ACK was received, it waits for a
   DSACK that proves that the segment was spuriously retransmitted.  The
   reordering sample in such a case is the mean between the sample
   calculated due to the hole in the sequence number space and the
   sample calculated in responding to the received DSACK.  In contrast,
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   the methodology in this document is always to quantify the reordering
   at the time of a closed hole and to not take packet reordering with a
   delay larger than one RTT into account (see Section 6.2.

   The Linux kernel [Linux] implements a reordering detection based on
   SACK, DSACK and TCP Timestamps option as well.  The detection and
   quantification of non-retransmitted segments with SACK or for
   retransmitted segments with TCP Timestamps option operates much like
   the scheme described in this document, with the exception of the
   DSACK detection.  First, Linux does not store any information (e.g.,
   reordering extent) below the cumulative ACK point, so that DSACKs
   below the cumulative ACK point are ignored (for the purpose for
   reordering quantification).  Second, Linux also does not store any
   information about a possible reordering event when a hole in the
   sequence number space of the SACK scoreboard is closed.  Therefore,
   for a DSACK reporting a duplicate above the cumulative ACK, Linux
   needs to approximate the reordering on arrival of a DSACK by the
   distance between the DSACK and the highest selectively acknowledged
   segment.

8.  IANA Considerations

   This memo includes no request to IANA.

9.  Security Considerations

   The described algorithm neither improves nor degrades the current
   security of TCP, since this document only detects and quantifies
   reordering and does not change the TCP behavior.  General security
   considerations for SACK based loss recovery are outlined in
   [RFC6675].
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