
TCP Maintenance and Minor Extensions A. Zimmermann
(TCPM) WG NetApp, Inc.
Internet-Draft L. Schulte
Intended status: Experimental Aalto University
Expires: May 22, 2014 C. Wolff
 A. Hannemann
 credativ GmbH
 November 18, 2013

 Detection and Quantification of Packet Reordering with TCP
 draft-zimmermann-tcpm-reordering-detection-00

Abstract

 This document specifies an algorithm for the detection and
 quantification of packet reordering for TCP. In the absence of
 explicit congestion notification from the network, TCP uses only
 packet loss as an indication of congestion. One of the signals TCP
 uses to determine loss is the arrival of three duplicate
 acknowledgments. However, this heuristic is not always correct,
 notably in the case when paths reorder packets. This results in
 degraded performance.

 The algorithm for the detection and quantification of reordering in
 this document uses information gathered from the TCP Timestamps
 Option, the TCP SACK Option and its DSACK extension. When a
 reordering event is detected, the algorithm calculates a reordering
 extent by determining the number of segments the reordered segment
 was late with respect to its position in the sequence number space.
 Additionally, the algorithm computes a second reordering extent that
 is relative to the amount of outstanding data and thus provides a
 better estimation of the reordering delay when other sender state
 changes.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Zimmermann, et al. Expires May 22, 2014 [Page 1]

Internet-Draft TCP Reordering Detection November 2013

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 22, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Zimmermann, et al. Expires May 22, 2014 [Page 2]

Internet-Draft TCP Reordering Detection November 2013

Table of Contents

 1. Introduction . 4
 2. Terminology . 6
 3. Basic Concepts . 7
 4. The Algorithm . 7
 4.1. Initialization During Connection Establishment 8
 4.2. Receiving Acknowledgments 8
 4.3. Receiving Acknowledgment Closing Hole 9
 4.4. Receiving Duplicate Selective Acknowledgment 9
 4.5. Reordering Extent Computation 10
 4.6. Retransmitting Segment 10
 4.7. Placeholder for Response Algorithm 11
 4.8. Retransmission Timeout 11
 5. Protocol Steps in Detail 11
 6. Discussion of the Algorithm 13
 6.1. Calculation of the Relative Reordering Extent 13
 6.2. Reordering Delay Longer than RTT 14
 6.3. Persistent Reception of Selective Acknowledgments 14
 6.4. Packet Duplication . 16
 7. Related Work . 17
 8. IANA Considerations . 18
 9. Security Considerations 18
 10. Acknowledgments . 18
 11. References . 19
 11.1. Normative References 19
 11.2. Informative References 19
 Authors’ Addresses . 22

Zimmermann, et al. Expires May 22, 2014 [Page 3]

Internet-Draft TCP Reordering Detection November 2013

1. Introduction

 When the Transmission Control Protocol (TCP) [RFC0793] decides that
 the oldest outstanding segment is lost, it performs a retransmission
 and changes the sending rate [RFC5681]. This occurs when a
 Retransmission Timeout (RTO) occurs for a segment, or when three
 duplicate acknowledgments (ACKs) for a segment have been received
 (Fast Retransmit). The assumption behind Fast Retransmit is that
 non-congestion events that can cause duplicate ACKs to be generated
 (packet duplication, packet reordering and packet corruption) are
 infrequent. However, a number of Internet measurement studies have
 shown that packet reordering is not a rare phenomenon [Pax97],
 [BPS99], [BS02], [ZM04], [GPL04], [Jai+07] and has negative
 performance implications on TCP [BA02], [Zha+03].

 The impact that packet reordering has on TCP can be classified by the
 type of reordering: forward-path versus reverse-path reordering.

 From TCP’s perspective, the result of packet reordering on the
 forward-path is the reception of out-of-order segments by the TCP
 receiver. In response to every received out-of-order segment, the
 TCP receiver immediately sends a duplicate ACK. (Note: [RFC5681]
 recommends that delayed ACKs not be used when the ACK is triggered by
 an out-of-order segment.) The sender side, if the number of
 consecutively received duplicate ACKs exceeds the duplicate
 acknowledgment threshold (DupThresh), retransmits the first
 unacknowledged segment [RFC5681] and continues with a loss recovery
 algorithm such as NewReno [RFC6582] or the Selective Acknowledgment
 (SACK) based loss recovery [RFC6675]. If a segment arrives late at
 the receiver because of reordering by more than three segments (the
 default value of DupThresh [RFC5681]), the TCP sender is not able to
 distinguish this reordering event from a segment loss, resulting in
 an unnecessary retransmission and rate reduction.

 Packet reordering may not only cause data segments to arrive out-of-
 order but also ACKs at the receiver. This reordering on the reverse
 path also has a negative an impact on TCP performance, by causing a
 degradation of TCP’s self-clocking property. In steady state,
 depending on whether the TCP receiver delays an ACK or not [RFC1122],
 one or two segments are acknowledged per ACK. If, due to reordering
 on the reverse path, ACKs arrive at the TCP sender in a different
 order than they were sent in by the TCP receiver, in-order ACKs
 acknowledge several segments together rather than only one or two,
 while disordered ACKs arrive either out-of-order or out-of-window and
 are ignored. (Note: according to [RFC6675], an ACK only counts as a
 duplicate if it carries a SACK block that identifies previously
 unacknowledged and un-SACKed data.) Overall, this leads to a bursty
 transmission pattern as well as outdated SACK and DSACK information.

Zimmermann, et al. Expires May 22, 2014 [Page 4]

Internet-Draft TCP Reordering Detection November 2013

 Since DupThresh is defined in segments rather than bytes [RFC5681],
 TCP usually quantifies packet reordering in terms of segments.
 Informally, the reordering extent [RFC4737] is defined as the maximum
 distance in segments between the reception of a reordered segment and
 the earliest segment received with a larger sequence number. If a
 segment is received in-order, its reordering extent is undefined
 [RFC4737]. On the basis of the reordering extent, a mechanism to
 make TCP robust to packet reordering can be achieved by directly
 applying the reordering extent as and DupThresh. A problem that
 arises with this way of quantifying reordering is that even in the
 presence of constant reordering, reordering extents may vary if the
 transmission rate of the TCP sender changes. Therefore, by using a
 DupThresh that directly reflects the measured reordering extent,
 spurious retransmissions cannot be fully avoided.

 The following example illustrates this issue. Assume a path with a
 reordering probability of 1%, a reordering delay of 20 ms, and a
 bottleneck bandwidth of 3 Mb/s. Because segments that are delayed by
 reordering arrive 20 ms too late, the TCP receiver can receive a
 maximum of ((20 * 3 * 10^3) / 8) = 7500 bytes out-of-order before the
 reordered segment arrives. Hence, with a Sender Maximum Segment Size
 (SMSS) of 1460 bytes, the largest possible reordering extent is close
 to 5 segments. If the bottleneck bandwidth changes from 3 Mb/s to 4
 Mb/s, the maximum reordering extent will increase to 7 segments,
 although the reordering delay remains constant.

 This simple example shows that even with constant reordering,
 spurious retransmissions cannot be completely avoided if DupThresh
 directly reflects the reordering extent. On the other hand, the
 reordering extent and the resulting DupThresh can sometimes also be
 much too high and do not correspond to the actual packet reordering
 present on the path. For example, a slow start overshoot [Hoe96],
 [MM96], [Mat+97] at the end of slow start might induce such a
 problem.

 An obvious solution to the problem would be to quantify packet
 reordering not by calculating a reordering extent, but by using the
 reordering late time offset [RFC4737]. Since the reordering late
 time offset is not specified in segments but captures the difference
 between the expected and actual reception time of a reordered
 segment, this way of quantifying reordering is independent of the
 current transmission rate. Disadvantages of this approach are
 however a higher complexity and a worse integration into the TCP
 specification, since an implementation would require additional
 timers, whereas TCP itself is self-clocked.

 The approach taken by this specification quantifies the reordering
 extend for a packet not only through an absolute value, but also

Zimmermann, et al. Expires May 22, 2014 [Page 5]

Internet-Draft TCP Reordering Detection November 2013

 through a measure that is relative to the amount of outstanding data,
 in an attempt to approximate a time-based measure. The presented
 scheme can thereby easily be adapted to the Stream Control
 Transmission Protocol (SCTP) [RFC2960], since SCTP uses congestion
 control algorithms similar to TCP.

 The remainder of this document is organized as follows. Section 3
 provides a high-level description of the packet reordering detection
 mechanisms. In Section 4, the algorithm is specified. In Section 5,
 each step of the algorithm is discussed in detail. Section 6
 provides a discussion of several design decisions of the algorithm.
 Section 7 discusses related work. Section 9 discusses security
 concerns.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described [RFC2119].

 The reader is expected to be familiar with the TCP state variables
 given in [RFC0793] (SEG.SEQ), [RFC5681] (FlightSize), and [RFC6675]
 (DupThresh, SACK scoreboard). SND.FACK (forward acknowledgment) is
 used to describe the highest sequence number - plus one - that has
 been either cumulatively or selectively acknowledged by the receiver
 and subsequently seen by the sender [MM96]. Further, the term
 ’acceptable acknowledgment’ is used as defined in [RFC0793]. That
 is, an ACK that increases the connection’s cumulative ACK point by
 acknowledging previously unacknowledged data. The term ’duplicate
 acknowledgment’ is used as defined in [RFC6675], which is different
 from the definition of duplicate acknowledgment in [RFC5681].

 This specification defines the four TCP sender states ’open’,
 ’disorder’, ’recovery’, and ’loss’ as follows. As long as no
 duplicate ACK is received and no segment is considered lost, the TCP
 sender is in the ’open’ state. Upon the reception of the first
 consecutive duplicate ACK, TCP will enter the ’disorder’ state.
 After receiving DupThresh duplicate ACKs, the TCP sender switches to
 the ’recovery’ state and executes standard loss recovery procedures
 like Fast Retransmit and Fast Recovery [RFC5681]. Upon a
 retransmission timeout, the TCP sender enters the ’loss’ state. The
 ’recovery’ state can only be reached by a transition from the
 ’disorder’ state, the ’loss’ state can be reached from any other
 state.

Zimmermann, et al. Expires May 22, 2014 [Page 6]

Internet-Draft TCP Reordering Detection November 2013

3. Basic Concepts

 The following specification depends on the TCP Timestamps [RFC1323]
 and the TCP Selective Acknowledgment (SACK) [RFC2018] options and the
 latter’s Duplicate Selective Acknowledgment (DSACK) extension
 [RFC2883]. The reader is assumed to be familiar with the algorithms
 specified in these documents.

 Reordering is quantified by an absolute and a relative reordering
 extent. If a hole in the SACK scoreboard of the TCP sender is closed
 either cumulatively by an acceptable ACK or selectively by a new
 SACK, then the absolute reordering extent is computed as the number
 of segments in the SACK scoreboard between the sequence number of the
 reordered segment and the highest selectively or cumulatively
 acknowledged sequence number. The relative reordering extent is then
 computed as the ratio between the absolute reordering extent and the
 FlightSize stored when entering the ’disorder’ state.

 If the hole that was closed in the SACK scoreboard corresponds to a
 segment that was not retransmitted, or if the retransmission of such
 a segment can be determined as a spurious retransmission by means of
 the Eifel detection algorithm [RFC3522], then the calculated
 reordering extent is immediately valid. Otherwise, if the
 verification of the Eifel detection algorithm has not been possible,
 the reordering extent is stored for a possibly subsequent DSACK. If
 no such DSACK is received in the next two round-trip times (RTTs),
 the reordering extent is discarded.

4. The Algorithm

 Given that usually both the Nagle algorithm [RFC0896] [RFC1122] and
 the TCP Selective Acknowledgment Option [RFC2018] are enabled, a TCP
 sender MAY employ the following algorithm to detect and quantify the
 current perceived packet reordering in the network.

 Without the Nagle algorithm, there is no straight way to accurately
 calculate the number of outstanding segments in the network (and,
 therefore, no good way to derive an appropriate reordering extent)
 without adding state to the TCP sender. A TCP connection that does
 not employ the Nagle algorithm SHOULD NOT use this methodology.

 If a TCP sender implements the following algorithm, the
 implementation MUST follow the various specifications provided in
 Sections 4.1 to 4.8. The algorithm MUST be executed *before* the
 Transmission Control Block or the SACK scoreboard have been updated
 by another loss recovery algorithm.

Zimmermann, et al. Expires May 22, 2014 [Page 7]

Internet-Draft TCP Reordering Detection November 2013

4.1. Initialization During Connection Establishment

 After the completion of the TCP connection establishment, the
 following state variables MUST be initialized in the TCP transmission
 control block:

 (C.1) The variable Dsack, which indicates whether a DSACK has been
 received so far, and the data structure Samples, which stores
 the computed reordering extents, MUST be initialized as:

 Dsack = false
 Samples = []

 (C.2) If the TCP Timestamps option [RFC1122] has been negotiated,
 then the variable Timestamps MUST be activated and the data
 structure Retrans_TS, which stores the value of the TSval
 field of the retransmissions sent during Fast Recovery, MUST
 be initialized as:

 Timestamps = true
 Retrans_TS = []

 Otherwise, the Timestamps-based detection SHOULD be
 deactivated:

 Timestamps = false

4.2. Receiving Acknowledgments

 For each received ACK that either a) carries SACK information, *or*
 b) is a full ACK that terminates the current fast recovery procedure,
 or c) is an acceptable ACK that is received immediately after a
 duplicate ACK, execute steps (A.1) to (A.4), otherwise skip to step
 (A.4).

 (A.1) If a) the ACK carries new SACK information, *and* b) the SACK
 scoreboard is empty (i.e., the TCP sender has received no SACK
 information from the receiver), then the TCP sender MUST save
 the amount of current outstanding data:

 FlightSizePrev = FlightSize

 (A.2) If the received ACK either a) cumulatively acknowledges at
 most SMSS bytes, *or* b) selectively acknowledges at most SMSS
 bytes in the sequence number space in the SACK scoreboard,
 then:

Zimmermann, et al. Expires May 22, 2014 [Page 8]

Internet-Draft TCP Reordering Detection November 2013

 The TCP sender MUST execute steps (S.1) to (S.4)

 (A.3) If a) Timestamps == false *and* b) the received ACK carries a
 DSACK option [RFC2883] and the segment identified by the DSACK
 option can be marked according to step (A.1) to (A.4) of
 [RFC3708] as a valid duplicate, then:

 The TCP sender MUST execute steps (D.1) to (D.3)

 (A.4) The TCP sender MUST terminate the processing of the ACK by
 this algorithm and MUST continue with the default processing
 of the ACK.

4.3. Receiving Acknowledgment Closing Hole

 (S.1) If (a) the newly cumulatively or selectively acknowledged
 segment SEG is a retransmission *and* b) both equations Dsack
 == false and Timestamps == false hold, then the TCP sender
 MUST skip to step (A.4).

 (S.2) Compute the relative and absolute reordering extent ReorExtR,
 ReorExtA:

 The TCP sender MUST execute steps (E.1) to (E.4)

 (S.3) If a) the newly acknowledged segment SEG was not retransmitted
 before *or* b) both equations Timestamps == true and
 Retrans_TS[SEG.SEQ] > ACK.TSecr hold, i.e., the ACK
 acknowledges the original transmission and not a
 retransmission, then hand over the reordering extents to an
 additional reaction algorithm:

 The TCP sender MUST execute step (P)

 (S.4) If a) the previous step (S.3) was not executed *and* b) both
 equations Dsack == true and Timestamps == false hold, save the
 reordering extents for the newly acknowledged segment SEG for
 at least two RTTs:

 Samples[SEG.SEQ].ReorExtR = ReorExtR
 Samples[SEG.SEQ].ReorExtA = ReorExtA

4.4. Receiving Duplicate Selective Acknowledgment

Zimmermann, et al. Expires May 22, 2014 [Page 9]

Internet-Draft TCP Reordering Detection November 2013

 (D.1) If no DSACK has been received so far, the sender MUST set:

 Dsack = true

 (D.2) If a) the previous step (D.1) was not executed *and* a
 reordering extent was calculated for the segment SEG
 identified by the DSACK option, then the TCP sender MUST
 restore the values of the variables ReorExtR and ReorExtA and
 delete the corresponding entries in the data structure:

 ReorExtR = Samples[SEG.SEQ].ReorExtR
 ReorExtA = SAMPLES[SEG.SEQ].ReorExtA

 (D.3) Hand the newly restored reordering extents over to an
 additional reaction algorithm:

 The TCP sender MUST execute step (P)

4.5. Reordering Extent Computation

 (E.1) SEG.SEQ is the sequence number of the newly cumulatively or
 selectively acknowledged segment SEG.

 (E.2) SND.FACK is the highest either cumulatively or selectively
 acknowledged sequence number so far plus one.

 (E.3) The TCP sender MUST compute the absolute reordering extent
 ReorExtA as

 ReorExtA = (SND.FACK - SEG.SEQ) / SMSS

 (E.4) The TCP sender MUST compute the relative reordering extent
 ReorExtR as

 ReorExtR= ReorExtA * (SMSS / FlightSizePrev)

4.6. Retransmitting Segment

 If the TCP Timestamps option [RFC1323] is used to detect packet
 reordering, the TCP sender must save the TCP Timestamps option of all
 retransmitted segments during fast recovery.

 (RET) If a) a segment SEG is retransmitted during Fast Recovery,
 and b) the equation Timestamps = true holds, the TCP sender
 MUST save the value of the TSval field of the retransmitted
 segment:

Zimmermann, et al. Expires May 22, 2014 [Page 10]

Internet-Draft TCP Reordering Detection November 2013

 Retrans_TS[SEG.SEQ] = SEG.TSval

4.7. Placeholder for Response Algorithm

 (P) This is a placeholder for an additional reaction algorithm
 that takes further action using the results of this algorithm,
 for example, the adjustment of the DupThresh based on relative
 and absolute reordering extent ReorExtR and ReorExtA.

4.8. Retransmission Timeout

 The expiration of the retransmission timer should be interpreted as
 an indication of a change in path characteristics, and the TCP sender
 should consider all saved reordering extents as outdated and delete
 them.

 (RTO) If an retransmission timeout (RTO) occurs, a TCP sender SHOULD
 reset the following variables:

 Samples = []
 Retrans_TS = []
 FlightSizePrev = 0

5. Protocol Steps in Detail

 The reception of an ACK represents the starting point for the
 detection scheme above. For each received SACK, DSACK or acceptable
 ACK that prompts the TCP sender to enter the ’disorder’ state, to
 remain in the ’disorder’ state or to leave the ’disorder’ or
 ’recovery’ states towards the ’open’ state, steps (A.1) to (A.4) are
 performed. All other received ACKs are not relevant for the
 detection of packet reordering and can be ignored. If the TCP sender
 changes from the ’open’ to the ’disorder’ state due to the reception
 of a duplicate ACK (i.e., the SACK scoreboard is empty and an ACK
 arrives carrying new SACK information), the current amount of
 outstanding data, FlightSize, is stored for the subsequent
 calculation of the relative reordering extent (step (A.1)).

 Whenever a received acceptable ACK or SACK closes a hole in the
 sequence number space of the SACK scoreboard either partially or
 completely, this is an indication of packet reordering in the network
 (step (A.2)). The prerequisite for an accurate quantification of the
 reordering is that only one segment is newly acknowledged (maximum
 SMSS bytes of data). If more than one segment per ACK is
 acknowledged, either by reordering on the reverse path or the loss of
 ACKs, the order in which the segments have been received by the TCP
 receiver is no longer accurately determinable so that in this case a

Zimmermann, et al. Expires May 22, 2014 [Page 11]

Internet-Draft TCP Reordering Detection November 2013

 reordering extent is not calculated. Finally, if the received ACK
 carries a DSACK option that identifies a segment that was
 retransmitted only once, then this is sufficient to conclude
 reordering (step (A.3)), so that a previously calculated reordering
 extent can be passed to another algorithm (steps (D.3) and (P)).

 With just the information provided by the ACK field or SACK
 information above SND.UNA , the TCP sender is unable to distinguish
 whether the ACK that finally acknowledges retransmitted data (either
 cumulatively or selectively) was sent in response to the original
 segment or a retransmission of the segment. This is described as the
 retransmission ambiguity problem in [KP87]. Therefore, the detection
 and quantification of reordering depends on other means to
 distinguish between acknowledgments for transmission and
 retransmission to detect if a retransmission was spurious. If
 neither a DSACK has been received (Dsack == false) nor the TCP
 Timestamps option has been enabled on connection establishment
 (Timestamps == false) then there is no possibility for the TCP sender
 to identify spurious retransmissions. Hence, the processing of the
 received ACK by the detection algorithm must be terminated for
 retransmitted segments (step (S.1)). Otherwise, if the segment that
 corresponds to the closed hole in the sequence number space of the
 SACK scoreboard has not been retransmitted or the retransmission can
 be identified by the Eifel detection algorithm [RFC3522] as a
 spurious retransmission, the previously calculated reordering extent
 is valid (step (S.2)) and an additional reaction algorithm can be
 executed (step (S.3) and (P)).

 For the use of the Eifel detection it is necessary to store the TCP
 Timestamps option of all retransmissions sent during Fast Recovery
 (step (Ret)). However, if the use of the Eifel detection algorithm
 is not possible (Timestamps == false), the extent of a possible
 reordering is stored for the possibility of a subsequent arrival of a
 DSACK (step (P.4)). If no such DSACK is received in the next two
 round-trip times, the reordering extent is discarded. Since the
 DSACK extension is not negotiated during connection establishment
 [RFC2883], the reordering extent is only stored if a DSACK was
 previously received for the TCP connection (DSACK == true, step
 (D.1)).

 Regardless of whether packet reordering is detected by using the
 SACK-based methodology, the DSACK-based methodology, or the TCP
 Timestamps option, quantification of the reordering will always be
 done when closing a hole in the sequence number space of the SACK
 scoreboard (step (A.2), step (P.2)). The only difference is the time
 of detection, which is in the case of DSACK-based methodology at
 least one RTT after the time of the quantification. The absolute
 reordering extent ReorExtA results from the number of segments in the

Zimmermann, et al. Expires May 22, 2014 [Page 12]

Internet-Draft TCP Reordering Detection November 2013

 SACK scoreboard between the sequence number of the newly acknowledged
 segment and the highest either cumulatively or selectively
 acknowledged sequence number so far plus one (SND.FACK) (step (E.3)).

 It is worth noting that the absolute reordering extent includes all
 segments (bytes) between the closed hole and the highest acknowledged
 sequence number so far, i.e., it also includes segments (bytes) that
 are not selectively acknowledged. The reason is that if packet
 reordering is considered from a temporal perspective, it is
 irrelevant whether there are lost segments or not. The important
 fact is that the lost segments have been sent after the delayed
 segment and before the highest acknowledged segment, which is
 expressed by the metric. In step (E.4), the relative reordering
 extent ReorExtR is then calculated by the ratio between the absolute
 reordering extent ReorExtA and the amount of outstanding data stored
 by step (A.1).

6. Discussion of the Algorithm

 The focus of the following discussion is on the quantification of
 reordering by the relative reordering extent and to elaborate on
 possible sources of error, which may lead to an inaccurate detection
 and quantification of reordering in the network.

6.1. Calculation of the Relative Reordering Extent

 Generally, the characteristics of a relative reordering extent should
 be that if packet reordering on a path is constant in terms of rate
 and delay, the relative reordering extent should also be constant,
 regardless of the current transmission rate of the TCP sender. The
 scheme proposed in this document is to calculate the relative
 reordering by getting the ratio between absolute reordering (the
 amount of data the reordered segment was received too late) and the
 amount of outstanding data stored when TCP sender was entering the
 ’disorder’ state (the maximum amount of data a reordered segment can
 be received too late). (Note: A segment can theoretically be delayed
 for an arbitrarily long period during reordering. However, the
 scheme proposed in this document does not capture such kind of
 reordering. See Section 6.2.) Therefore, the relative reordering
 extent expresses the portion of currently outstanding data that is
 selectively acknowledged before the reordered segment is cumulatively
 acknowledged. If the transmission rate changes, the absolute
 reordering extent changes as well, but together with the amount of
 outstanding data, and hence the relative reordering extent stays
 constant.

 A characteristic of the calculation of the relative reordering extent

Zimmermann, et al. Expires May 22, 2014 [Page 13]

Internet-Draft TCP Reordering Detection November 2013

 on the basis of currently outstanding amount of data is that the
 FlightSize reflects the bandwidth-delay-product and not the
 transmission rate. As a consequence, the relative reordering extent
 is not independent of the RTT. If the RTT of the communication path
 changes, the amount of outstanding data changes as well, but the
 absolute reordering extent remains constant. Hence, the relative
 reordering extent adapts. In principle it is possible to design an
 algorithm to compute the relative reordering extent independently of
 the RTT and to reflect only the characteristics of packet reordering
 of the path. But since the calculation would be far from trivial and
 introducing more complexity, this is considered to be future
 research.

6.2. Reordering Delay Longer than RTT

 The quantification of packet reordering always takes place at the
 time when a hole in sequence number space in the SACK scoreboard is
 closed. In consequence, if a reordered packet is delayed by more
 than the measured RTT, the amount of reordering on the path is
 underestimated, since the ACK that closes the hole in the sequence
 number space was not sent in response to the original transmission,
 but to the retransmission. Hence, in order to detect and quantify
 these kinds of events, the reordering extent would have to be
 calculated when the ACK for the transmission is received and not at
 the time the hole in the sequence number space is closed. Although
 it would be possible to take these events into account by evaluating
 DSACKs and the TCP Timestamps option simultaneously, the scheme
 proposed in this document refrains from qualifying a reordering delay
 longer then RTT. A reordering delay of this magnitude is very
 unlikely, and would lead to a significant overhead in memory usage
 and complexity. Additionally, taking it into account would result in
 other problems, especially a potential expiration of the RTO
 [I-D.zimmermann-tcpm-reordering-reaction].

6.3. Persistent Reception of Selective Acknowledgments

 Especially on paths with a high bandwidth-delay-product, it is
 possible that even with a minor packet reordering, several segments
 in a single window of data are delayed. If, in addition, the
 sequence numbers of those segments are widely spaced in the sequence
 number space and the delay caused by packet reordering is
 sufficiently high, this might lead to a constant reception of out-of-
 order data. Hence, for each received segment, regardless of whether
 a hole in the sequence number space of the receive window is closed
 or not, an ACK is sent that carries SACK information. From TCP
 sender’s perspective, this persistent receiving of new SACK
 information leads to the situation that the TCP sender enters the
 ’disorder’ state when receiving the first SACK and never leaves it

Zimmermann, et al. Expires May 22, 2014 [Page 14]

Internet-Draft TCP Reordering Detection November 2013

 again during the connection lifetime if no segment is lost in
 between.

 In case of the above reordering detection and quantification scheme,
 the persistent reception of SACK blocks causes the amount of
 outstanding data, which is stored when the TCP sender enters the
 ’disorder’ state, to never be updated, since FlightSize is only saved
 in step (A.1) when the SACK scoreboard is empty. If the transmission
 rate of the TCP sender, and therefore also the maximum amount of data
 a reordered segment can be received too late, changes significantly
 during its stay in the ’disorder’ state, the actual amount of
 reordering is not accurately determined by the relative reordering
 extent. A decrease of the transmission rate would result in an
 overestimation of the reordering extent and vice versa.

 A simple solution to the problem would be to store the maximum offset
 in terms of sequence number space by which a reordered segment can be
 received too late only when entering the ’disorder’ state, but
 individually for every potentially reordered segment, that is, for
 every hole in the sequence space of the SACK scoreboard. (Note: The
 maximum offset in terms of sequence number space by which a reordered
 segment can be received too late is strictly speaking the amount of
 data that have been transmitted later than the reordered segment.
 This amount of data can only be expressed by FlightSize within the
 ’open’ state and not within the ’disorder’ state, since the
 cumulative ACK point may not advance).

 The problem with this simple idea is that for a new hole in the SACK
 scoreboard, it is not possible to determine whether it is a result of
 packet reordering or loss, and therefore it results in increased
 memory usage (to store the amount of data for each hole.)
 Additionally, the packet reordering would be inaccurately quantified
 if the transmission rate changes significantly for a short amount of
 time. For example, if the amount of outstanding data is low when
 entering the ’disorder’ state is entered, the execution of Careful
 Extended Limited Transmit (as described in
 [I-D.zimmermann-tcpm-reordering-reaction] [RFC4653]) leads to a
 significant short-term change of the transmission rate. When the
 amount of data by which the reordering segment can be delayed is
 determined individually for every new hole, it leads to an
 overestimation of the relative reordering extent, since the maximum
 amount of data possible is ’artificially’ reduced by Careful Extended
 Limited Transmit.

 A solution to this problem is to store the maximum offset in terms of
 sequence number space by which a reordered segment can be received
 too late not for every segment individually (which does not guarantee
 an accurate calculation of the relative reordering extent) but only

Zimmermann, et al. Expires May 22, 2014 [Page 15]

Internet-Draft TCP Reordering Detection November 2013

 sufficiently often, e.g., once per RTT. The identification of what
 frequency would be adequate, though, is neither trivial nor
 universally applicable, since a concrete solution depends on the
 transmission behavior of the used TCP in the ’disorder’ state and
 whether it is more beneficial for an additional reordering response
 algorithm to over- or underestimate the packet reordering on the
 path. If, for example, TCP-aNCR
 [I-D.zimmermann-tcpm-reordering-reaction] is used as additional
 reordering response algorithm, the maximum offset in terms of
 sequence number space by which a reordered segment can be received
 too late is not only stored when entering the ’disorder’ state but
 also updated every RTT (every cwnd worth of data transmitted without
 a loss) while the TCP sender stays in the ’disorder’ state.

6.4. Packet Duplication

 Although the problem of packet duplication in today’s Internet
 [Jai+07], [Mel+08] is negligible, it may happen in rare cases that
 segments on the path to the TCP receiver are duplicated. If a
 segment is duplicated on the path, the first incoming segment causes
 the receiver to send either an acceptable ACK or a SACK, depending on
 whether the segment is the next expected one or not. Each subsequent
 identical segment then causes either a duplicate ACK or a DSACK,
 respectively, depending on whether the DSACK extension [RFC3708] is
 implemented or not.

 If by a combination of packet loss and packet duplication the case
 occurs that a Fast Retransmit for a lost segment is duplicated on the
 path, the TCP sender is not able to distinguish this from packet
 reordering. The first received ACK closes a hole in the sequence
 number space of the SACK scoreboard, while the second received ACK is
 a valid DSACK. Although both cases are indistinguishable from a
 theoretical point of view, the TCP sender can take measures to ensure
 as far as possible that the DSACK received was not the result of
 packet duplication.

 For this purpose, step (A.3) of the above detection method checks via
 the steps (A.1) to (A.4) of [RFC3708] whether the segment identified
 by the DSACK option is marked as a valid duplicate. Unfortunately,
 the steps of [RFC3708] do not check that more DSACKs have been
 received than retransmissions have been sent, which is a
 characteristic of suffering both packet reordering and packet
 duplication at the same time. By simply counting the received
 DSACKs, for example, as additional step (A.5) in [RFC3708], this
 corner case can be covered as well.

Zimmermann, et al. Expires May 22, 2014 [Page 16]

Internet-Draft TCP Reordering Detection November 2013

7. Related Work

 Because of retransmission ambiguity problem [KP87], which describes
 TCP sender’s inability to to distinguish whether the first acceptable
 ACK that arrives after a retransmit was sent in response to the
 original transmit or the retransmit, two different approaches can
 generally be taken to detect and quantify packet reordering. First,
 for transmissions (non-retransmitted segments), the detection is
 usually conducted by detecting a closed hole in sequence number space
 of the SACK scoreboard. Second, for retransmissions, the detection
 of packet reordering is accompanied by the detection of the spurious
 fast retransmits.

 Within the IETF, several proposals have been published in the RFC
 series to detect and quantify packet reordering. With [RFC4737] the
 IPPM Working Group [IPPM] defines several metrics to evaluate whether
 a network path has maintained packet order on a packet-by-packet
 basis. [RFC4737] gives concrete, well-defined metrics, along with a
 methodology for applying the metric to a generic packet stream. The
 metric discussed in this document has a different purpose from the
 IPPM metrics; this document discusses a TCP specific reordering
 metric calculated on the TCP sender’s SACK scoreboard.

 Besides the IPPM work, several other proposals have been developed to
 detect spurious retransmissions with TCP. The Eifel detection
 algorithm [RFC3522] uses the TCP Timestamps option to determine
 whether the ACK for a given retransmit is for the original
 transmission or a retransmission. The F-RTO scheme [RFC5682]
 slightly alters TCP’s sending pattern immediately following a
 retransmission timeout to indicate whether the retransmitted segment
 was needed. Finally, the DSACK-based algorithm [RFC3708] uses the
 TCP SACK option [RFC2018] with the DSACK extension [RFC2883] to
 identify unnecessary retransmissions. The mechanism for detecting
 packet reordering outlined in this document rely on the detection
 schemes of those documents (except F-RTO that only works for spurious
 retransmits triggered by TCP’s retransmission timer), although they
 do not provide metrics for the reordering extent whereas the
 algorithm described in this document does.

 RR-TCP [Zha+03] describes a reordering detection and quantification
 scheme that is also based on holes in the sequence number space of
 the SACK scoreboard and the reception of DSACKs. For every hole in
 the SACK scoreboard, RR-TCP calculates a reordering extent. If the
 segment was retransmitted before an ACK was received, it waits for a
 DSACK that proves that the segment was spuriously retransmitted. The
 reordering sample in such a case is the mean between the sample
 calculated due to the hole in the sequence number space and the
 sample calculated in responding to the received DSACK. In contrast,

Zimmermann, et al. Expires May 22, 2014 [Page 17]

Internet-Draft TCP Reordering Detection November 2013

 the methodology in this document is always to quantify the reordering
 at the time of a closed hole and to not take packet reordering with a
 delay larger than one RTT into account (see Section 6.2.

 The Linux kernel [Linux] implements a reordering detection based on
 SACK, DSACK and TCP Timestamps option as well. The detection and
 quantification of non-retransmitted segments with SACK or for
 retransmitted segments with TCP Timestamps option operates much like
 the scheme described in this document, with the exception of the
 DSACK detection. First, Linux does not store any information (e.g.,
 reordering extent) below the cumulative ACK point, so that DSACKs
 below the cumulative ACK point are ignored (for the purpose for
 reordering quantification). Second, Linux also does not store any
 information about a possible reordering event when a hole in the
 sequence number space of the SACK scoreboard is closed. Therefore,
 for a DSACK reporting a duplicate above the cumulative ACK, Linux
 needs to approximate the reordering on arrival of a DSACK by the
 distance between the DSACK and the highest selectively acknowledged
 segment.

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 The described algorithm neither improves nor degrades the current
 security of TCP, since this document only detects and quantifies
 reordering and does not change the TCP behavior. General security
 considerations for SACK based loss recovery are outlined in
 [RFC6675].

10. Acknowledgments

 The authors thank the flowgrind [Flowgrind] authors and contributors
 for their performance measurement tool, which give us a powerful tool
 to analyze TCP’s congestion control and loss recovery behavior in
 detail.

11. References

Zimmermann, et al. Expires May 22, 2014 [Page 18]

Internet-Draft TCP Reordering Detection November 2013

11.1. Normative References

 [I-D.zimmermann-tcpm-reordering-reaction]
 Zimmermann, A., Schulte, L., Wolff, C., and A. Hannemann,
 "An adaptive Robustness of TCP to Non-Congestion Events",
 draft-zimmermann-tcpm-reordering-reaction-00 (work
 in progress), November 2013.

 [MM96] Mathis, M. and J. Mahdavi, "Forward Acknowledgement:
 Refining TCP Congestion Control", ACM SIGCOMM 1996
 Proceedings, in ACM Computer Communication Review 26 (4),
 pp. 281-292, October 1996.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, April 2003.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 February 2004.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

11.2. Informative References

 [BA02] Blanton, E. and M. Allman, "On Making TCP More Robust to
 Packet Reordering", ACM Computer Communication
 Review vol.32, no. 1, pp. 20-30, January 2002.

 [BPS99] Bennett, J., Partridge, C., and N. Shectman, "Packet

Zimmermann, et al. Expires May 22, 2014 [Page 19]

Internet-Draft TCP Reordering Detection November 2013

 reordering is not pathological network behavior", IEEE/ACM
 Transactions on Networking vol. 7, no. 6, pp. 789-798,
 December 1999.

 [BS02] Bellardo, J. and S. Partridge, "Measuring Packet
 Reordering", Proceedings of the 2nd ACM SIGCOMM Workshop
 on Internet Measurment (IMW’02) pp. 97-105, November 2002.

 [Flowgrind]
 "Flowgrind Home Page",
 <https://github.com/flowgrind/flowgrind>.

 [GPL04] Gharai, L., Perkins, C., and T. Lehman, "Packet
 Reordering, High Speed Networks and Transport Protocol
 Performance", Proceedings of the 13th IEEE International
 Conference on Computer Communications and Networks
 (ICCCN’04) pp. 73-78, October 2004.

 [Hoe96] Hoe, J., "Improving the Start-up Behavior of a Congestion
 Control Scheme for TCP", Proceedings of the Conference on
 Applications, Technologies, Architectures, and Protocols
 for Computer Communication (SIGCOMM’96) pp. 270-280,
 August 1996.

 [IPPM] "IP Performance Metrics (IPPM) Working Group",
 <http://www.ietf.org/html.charters/ippm-charter.html>.

 [Jai+07] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., and D.
 Towsley, "Measurement and Classification of Out-of-
 Sequence Packets in a Tier-1 IP Backbone", IEEE/ACM
 Transactions on Networking vol. 15, no. 1, pp. 54-66,
 February 2007.

 [KP87] Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", ACM SIGCOMM
 Computer Communication Review vol. 17, no. 5, pp. 2-7,
 November 1987.

 [Linux] "The Linux Project", <http://www.kernel.org>.

 [Mat+97] Mathis, M., Semke, J., Mahdavi, J., and T. Ott, "The
 Macroscopic Behavior of the TCP Congestion Avoidance
 Algorithm", ACM SIGCOMM Computer Communication Review vol.
 27, no. 3, pp. 67-82, July 1997.

 [Mel+08] Mellia, M., Meo, M., Muscariello, L., and D. Rossi,
 "Passive analysis of TCP anomalies", Computer
 Networks vol. 52, no. 14, pp. 2663-2676, October 2008.

Zimmermann, et al. Expires May 22, 2014 [Page 20]

Internet-Draft TCP Reordering Detection November 2013

 [Pax97] Paxson, V., "End-to-End Internet Packet Dynamics", IEEE/
 ACM Transactions on Networking vol. 7, no.3, pp. 277-292,
 June 1997.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
 RFC 896, January 1984.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, August 2006.

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
 November 2006.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, April 2012.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",
 RFC 6675, August 2012.

 [ZM04] Zhou, X. and P. Mieghem, "Reordering of IP Packets in
 Internet", Lecture Notes in Computer Science vol. 3015,
 pp. 237-246, April 2004.

 [Zha+03] Zhang, M., Karp, B., Floyd, S., and L. Peterson, "RR-TCP:
 A Reordering-Robust TCP with DSACK", Proceedings of the
 11th IEEE International Conference on Network Protocols
 (ICNP’03) pp. 95-106, November 2003.

Zimmermann, et al. Expires May 22, 2014 [Page 21]

Internet-Draft TCP Reordering Detection November 2013

Authors’ Addresses

 Alexander Zimmermann
 NetApp, Inc.
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 89 900594712
 Email: alexander.zimmermann@netapp.com

 Lennart Schulte
 Aalto University
 Otakaari 5 A
 Espoo 02150
 Finland

 Phone: +358 50 4355233
 Email: lennart.schulte@aalto.fi

 Carsten Wolff
 credativ GmbH
 Hohenzollernstrasse 133
 Moenchengladbach 41061
 Germany

 Phone: +49 2161 4643 182
 Email: carsten.wolff@credativ.de

 Arnd Hannemann
 credativ GmbH
 Hohenzollernstrasse 133
 Moenchengladbach 41061
 Germany

 Phone: +49 2161 4643 134
 Email: arnd.hannemann@credativ.de

Zimmermann, et al. Expires May 22, 2014 [Page 22]

