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Chapter 1

Introduction

IDAS is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
[41]. This suite consists of CVODE, ARKODE, KINSOL, and IDAS, and variants of these with sensitivity analysis
capabilities, CVODES and IDAS.

IDAS is a general purpose solver for the initial value problem (IVP) for systems of differential-algebraic equations
(DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with Sensitivity capabilities. IDAS is an
extension of the IDA solver within SUNDIALS, itself based on on DASPK [18, 19], but is written in ANSI-standard C
rather than Fortran77. Its most notable features are that, (1) in the solution of the underlying nonlinear system at each
time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov (iterative) methods; and
(2) it is written in a data-independent manner in that it acts on generic vectors and matrices without any assumptions
on the underlying organization of the data. Thus IDAS shares significant modules previously written within CASC at
LLNL to support the ordinary differential equation (ODE) solvers CVODE [26, 44] and PVODE [22, 23], and also the
nonlinear system solver KINSOL [45].

At present, IDAS may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjunction
with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [60], FGMRES (Flexible General-
ized Minimum RESidual) [59], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [65], TFQMR (Transpose-Free Quasi-
Minimal Residual) [35], and PCG (Preconditioned Conjugate Gradient) [38] linear iterative methods. As Krylov meth-
ods, these require little matrix storage for solving the Newton equations as compared to direct methods. However, the
algorithms allow for a user-supplied preconditioner, and, for most problems, preconditioning is essential for an efficient
solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods, and are often the
only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice.
However, users are encouraged to compare all options, especially if encountering convergence failures with GMRES.
Bi-CGFStab and TFQMR have an advantage in storage requirements, in that the number of workspace vectors they
require is fixed, while that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advan-
tage in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods). PCG exhibits
rapid convergence and minimal workspace vectors, but only works for symmetric linear systems.

IDAS is written with a functionality that is a superset of that of IDA. Sensitivity analysis capabilities, both forward
and adjoint, have been added to the main integrator. Enabling forward sensitivity computations in IDAS will result in
the code integrating the so-called sensitivity equations simultaneously with the original IVP, yielding both the solution
and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when the gradients
of relatively few functionals of the solution with respect to many parameters are sought, involves integration of the
original IVP forward in time followed by the integration of the so-called adjoint equations backward in time. IDAS
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of the original IVP
(in particular the adjoint system).

1
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1.1 Changes to SUNDIALS in release 6.3.0

Major Features

A new discrete adjoint capability for explicit Runge–Kutta methods has been added to the ARKODE ERKStep
and ARKStep stepper modules. This is based on a new set of shared classes, SUNAdjointStepper and SUNAd-
jointCheckpointScheme. A new example demonstrating this capability can be found in examples/arkode/C_-
serial/ark_lotka_volterra_ASA.c. See the Adjoint Sensitivity Analysis section of the ARKODE user guide for
details.

New Features and Enhancements

ARKODE

The following changes have been made to the default ERK, DIRK, and ARK methods in ARKODE to utilize more
efficient methods:

Type Old Default New Default
2nd Order
Explicit

ARKODE_HEUN_EULER_2_1_2 ARKODE_RALSTON_3_1_2

4th Order
Explicit

ARKODE_ZONNEVELD_5_3_4 ARKODE_SOFRONIOU_SPALETTA_5_3_4

5th Order
Explicit

ARKODE_CASH_KARP_6_4_5 ARKODE_TSITOURAS_7_4_5

6th Order
Explicit

ARKODE_VERNER_8_5_6 ARKODE_VERNER_9_5_6

8th Order
Explicit

ARKODE_FEHLBERG_13_7_8 ARKODE_VERNER_13_7_8

2nd Order
Implicit

ARKODE_SDIRK_2_1_2 ARKODE_ARK2_DIRK_3_1_2

3rd Order
Implicit

ARKODE_ARK324L2SA_DIRK_4_2_3 ARKODE_ESDIRK325L2SA_5_2_3

4th Order
Implicit

ARKODE_SDIRK_5_3_4 ARKODE_ESDIRK436L2SA_6_3_4

5th Order
Implicit

ARKODE_ARK548L2SA_DIRK_8_4_5 ARKODE_ESDIRK547L2SA2_7_4_5

4th Order
ARK

ARKODE_ARK436L2SA_ERK_6_3_4 and
ARKODE_ARK436L2SA_DIRK_6_3_4

ARKODE_ARK437L2SA_ERK_7_3_4 and
ARKODE_ARK437L2SA_DIRK_7_3_4

5th Order
ARK

ARKODE_ARK548L2SA_ERK_8_4_5 and
ARKODE_ARK548L2SA_DIRK_8_4_5

ARKODE_ARK548L2SAb_ERK_8_4_5 and
ARKODE_ARK548L2SAb_DIRK_8_4_5

The old default methods can be loaded using the functions ERKStepSetTableName() or ERKStepSetTableNum()
with ERKStep and ARKStepSetTableName() or ARKStepSetTableNum() with ARKStep and passing the desired
method name string or constant, respectively. For example, the following call can be used to load the old default fourth
order method with ERKStep:

/* Load the old 4th order ERK method using the table name */
ierr = ERKStepSetTableName(arkode_mem, "ARKODE_ZONNEVELD_5_3_4");

Similarly with ARKStep, the following calls can be used for ERK, DIRK, or ARK methods, respectively:

/* Load the old 4th order ERK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_DIRK_NONE",

(continues on next page)
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(continued from previous page)

"ARKODE_ZONNEVELD_5_3_4");

/* Load the old 4th order DIRK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_SDIRK_5_3_4",

"ARKODE_ERK_NONE");

/* Load the old 4th order ARK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_ARK436L2SA_DIRK_6_3_4",

"ARKODE_ARK436L2SA_ERK_6_3_4");

Additionally, the following changes have been made to the default time step adaptivity parameters in ARKODE:

Parameter Old Default New Default
Controller PID (PI for ERKStep) I
Safety Factor 0.96 0.9
Bias 1.5 (1.2 for ERKStep) 1.0
Fixed Step Bounds [1.0, 1.5] [1.0, 1.0]
Adaptivity Adjustment -1 0

The following calls can be used to restore the old defaults for ERKStep:

SUNAdaptController controller = SUNAdaptController_Soderlind(ctx);
SUNAdaptController_SetParams_PI(controller, 0.8, -0.31);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.2);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

The following calls can be used to restore the old defaults for other ARKODE integrators:

SUNAdaptController controller = SUNAdaptController_PID(ctx);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.5);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

In both cases above, destroy the controller at the end of the run with SUNAdaptController_Destroy(controller);
.

The Soderlind time step adaptivity controller now starts with an I controller until there is sufficient history of past time
steps and errors.

Added ARKodeSetAdaptControllerByName() to set a time step adaptivity controller with a string. There are
also four new controllers: SUNAdaptController_H0211(), SUNAdaptController_H0321(), SUNAdaptCon-
troller_H211(), and SUNAdaptController_H312().

Added the ARKODE_RALSTON_3_1_2 and ARKODE_TSITOURAS_7_4_5 explicit Runge-Kutta Butcher tables.

Improved the precision of the coefficients for ARKODE_ARK324L2SA_ERK_4_2_3, ARKODE_VERNER_9_5_6, ARKODE_-
VERNER_10_6_7, ARKODE_VERNER_13_7_8, ARKODE_ARK324L2SA_DIRK_4_2_3, and ARKODE_ESDIRK324L2SA_-
4_2_3.
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CVODE / CVODES

Added support for resizing CVODE and CVODES when solving initial value problems where the number of equations
and unknowns changes over time. Resizing requires a user supplied history of solution and right-hand side values at
the new problem size, see CVodeResizeHistory() for more information.

KINSOL

Added support in KINSOL for setting user-supplied functions to compute the damping factor and, when using An-
derson acceleration, the depth in fixed-point or Picard iterations. See KINSetDampingFn() and KINSetDepthFn(),
respectively, for more information.

SUNDIALS Types

A new type, suncountertype, was added for the integer type used for counter variables. It is currently an alias for
long int.

Bug Fixes

ARKODE

Fixed bug in ARKodeResize() which caused it return an error for MRI methods.

Removed error floors from the SUNAdaptController implementations which could unnecessarily limit the time size
growth, particularly after the first step.

Fixed bug in ARKodeSetFixedStep() where it could return ARK_SUCCESS despite an error occurring.

Fixed bug in the ARKODE SPRKStep SPRKStepReInit() function and ARKodeReset() function with SPRKStep
that could cause a segmentation fault when compensated summation is not used.

KINSOL

Fixed a bug in KINSOL where an incorrect damping parameter is applied on the initial iteration with Anderson ac-
celeration unless KINSetDamping() and KINSetDampingAA() are both called with the same value when enabling
damping.

Fixed a bug in KINSOL where errors that occurred when computing Anderson acceleration were not captured.

Added missing return values to KINGetReturnFlagName().

CMake

Fixed the behavior of SUNDIALS_ENABLE_ERROR_CHECKS so additional runtime error checks are disabled by default
with all release build types. Previously, MinSizeRel builds enabled additional error checking by default.

Deprecation Notices

All work space functions, e.g., CVodeGetWorkSpace and ARKodeGetLinWorkSpace, have been deprecated and will
be removed in version 8.0.0.

For changes in prior versions of SUNDIALS see §14.

1.2 Reading this User Guide

The structure of this document is as follows:

• In Chapter §2, we give short descriptions of the numerical methods implemented by IDAS for the solution of ini-
tial value problems for systems of DAEs, along with short descriptions of preconditioning (§2.3) and rootfinding
(§2.4).

• The following chapter describes the software organization of the IDAS solver (§3).
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• Chapter §5.1 is the main usage document for IDAS for simulation applications. It includes a complete description
of the user interface for the integration of DAE initial value problems. Readers that are not interested in using
IDAS for sensitivity analysis can then skip the next two chapters.

• Chapter §5.4 describes the usage of IDAS for forward sensitivity analysis as an extension of its IVP integration
capabilities. We begin with a skeleton of the user main program, with emphasis on the steps that are required
in addition to those already described in Chapter §5.1. Following that we provide detailed descriptions of the
user-callable interface routines specific to forward sensitivity analysis and of the additional optional user-defined
routines.

• Chapter §5.5 describes the usage of IDAS for adjoint sensitivity analysis. We begin by describing the IDAS
checkpointing implementation for interpolation of the original IVP solution during integration of the adjoint
system backward in time, and with an overview of a user’s main program. Following that we provide complete
descriptions of the user-callable interface routines for adjoint sensitivity analysis as well as descriptions of the
required additional user-defined routines.

• Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, as well as details on the N_Vector implementations provided with SUNDIALS.

• Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS.

• Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

• Chapter §9 describes the SUNNonlinearSolver API and nonlinear solver implementations shared among the
various components of SUNDIALS.

• Finally, in the appendices, we provide detailed instructions for the installation of IDAS, within the structure of
SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from IDAS functions
(Appendix §12).

1.3 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT, PETSc,
or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.3. SUNDIALS License and Notices 5
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1.3.1 BSD 3-Clause License

Copyright (c) 2002-2025, Lawrence Livermore National Security and Southern Methodist University.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.
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1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)

1.3. SUNDIALS License and Notices 7
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Chapter 2

Mathematical Considerations

IDAS solves the initial-value problem (IVP) for a DAE system of the general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 (2.1)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and initial values y0, ẏ0 are given.
Often t is time, but it certainly need not be.

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

F (t, y, ẏ, p) = 0

y(t0) = y0(p) , ẏ(t0) = ẏ0(p) ,
(2.2)

IDAS can also compute first order derivative information, performing either forward sensitivity analysis or adjoint
sensitivity analysis. In the first case, IDAS computes the sensitivities of the solution with respect to the parameters p,
while in the second case, IDAS computes the gradient of a derived function with respect to the parameters p.

2.1 Initial Condition

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors y0 and ẏ0 are
both initialized to satisfy the DAE residual F (t0, y0, ẏ0) = 0. For a class of problems that includes so-called semi-
explicit index-one systems, IDAS provides a routine that computes consistent initial conditions from a user’s initial
guess [19]. For this, the user must identify sub-vectors of y (not necessarily contiguous), denoted yd and ya, which
are its differential and algebraic parts, respectively, such that F depends on ẏd but not on any components of ẏa. The
assumption that the system is “index one” means that for a given t and yd, the systemF (t, y, ẏ) = 0 defines ya uniquely.
In this case, a solver within IDAS computes ya and ẏd at t = t0, given yd and an initial guess for ya. A second available
option with this solver also computes all of y(t0) given ẏ(t0); this is intended mainly for quasi-steady-state problems,
where ẏ(t0) = 0 is given. In both cases, IDAS solves the system F (t0, y0, ẏ0) = 0 for the unknown components of y0
and ẏ0, using a Newton iteration augmented with a line search globalization strategy. In doing this, it makes use of the
existing machinery that is to be used for solving the linear systems during the integration, in combination with certain
tricks involving the step size (which is set artificially for this calculation). For problems that do not fall into either of
these categories, the user is responsible for passing consistent values, or risks failure in the numerical integration.

9
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2.2 IVP solution

The integration method used in IDAS is the variable-order, variable-coefficient BDF (Backward Differentiation For-
mula), in fixed-leading-coefficient form [14]. The method order ranges from 1 to 5, with the BDF of order q given by
the multistep formula

q∑
i=0

αn,iyn−i = hnẏn , (2.3)

where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respectively, and the step size is hn = tn−tn−1.
The coefficients αn,i are uniquely determined by the order q, and the history of the step sizes. The application of the
BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic system to be solved at each step:

G(yn) ≡ F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0 . (2.4)

In the process of controlling errors at various levels, IDAS uses a weighted root-mean-square norm, denoted ‖ · ‖WRMS,
for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative and
absolute tolerances input by the user, namely

Wi =
1

rtol · |yi|+ atoli
. (2.5)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.2.1 Nonlinear Solve

By default IDAS solves (2.4) with a Newton iteration but IDAS also allows for user-defined nonlinear solvers (see
Chapter §9). Each Newton iteration requires the solution of a linear system of the form

J [yn(m+1) − yn(m)] = −G(yn(m)) , (2.6)

where yn(m) is the m-th approximation to yn. Here J is some approximation to the system Jacobian

J =
∂G

∂y
=
∂F

∂y
+ α

∂F

∂ẏ
, (2.7)

where α = αn,0/hn. The scalar α changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDAS provides several choices, including the option
of a user-supplied linear solver (see Chapter §8). The linear solvers distributed with SUNDIALS are organized in
two families, a direct family comprising direct linear solvers for dense, banded, or sparse matrices and a spils family
comprising scaled preconditioned iterative (Krylov) linear solvers. The methods offered through these modules are as
follows:

• dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [62] and an interface to the oneMKL library [3],

• band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

• sparse direct solver interfaces to various libraries, including KLU [4, 27], SuperLU_MT [9, 29, 53], SuperLU_-
Dist [8, 37, 54, 55], and cuSPARSE [7],

• SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with or without
restarts,

10 Chapter 2. Mathematical Considerations
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• SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver with or
without restarts,

• SPBCG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or

• PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and a preconditioned
Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear iteration,
and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [17]. For the spils linear solvers with IDAS, preconditioning is allowed only on
the left (see §2.3). Note that the dense, band, and sparse direct linear solvers can only be used with serial and threaded
vector representations.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations, with a coefficient ᾱ in place of α in J .
However, in the case that a matrix-free iterative linear solver is used, the default Newton iteration is an Inexact Newton
iteration, in which J is applied in a matrix-free manner, with matrix-vector products Jv obtained by either difference
quotients or a user-supplied routine. In this case, the linear residual J∆y + G is nonzero but controlled. With the
default Newton iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

• starting the problem,

• the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or

• a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with the slow convergence
due to infrequent updates. To reduce storage costs on an update, Jacobian information is always reevaluated from
scratch.

The default stopping test for nonlinear solver iterations in IDAS ensures that the iteration error yn − yn(m) is small
relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

R =

(
δm
δ1

) 1
m−1

,

where the δm = yn(m) − yn(m−1) is the correction at iteration m = 1, 2, . . .. The nonlinear solver iteration is halted
if R > 0.9. The convergence test at the m-th iteration is then

S‖δm‖ < 0.33 , (2.8)

where S = R/(R − 1) whenever m > 1 and R ≤ 0.9. The user has the option of changing the constant in the
convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and whenever J or P is
updated, and it is reset to S = 100 on a step with α 6= ᾱ. Note that at m = 1, the convergence test (2.8) uses an
old value for S. Therefore, at the first nonlinear solver iteration, we make an additional test and stop the iteration if
‖δ1‖ < 0.33 · 10−4 (since such a δ1 is probably just noise and therefore not appropriate for use in evaluating R). We
allow only a small number (default value 4) of nonlinear iterations. If convergence fails with J or P current, we are
forced to reduce the step size hn, and we replace hn by hnηcf (by default ηcf = 0.25). The integration is halted after a
preset number (default value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations
and the maximum number of nonlinear convergence failures can be changed by the user from their default values.

When an iterative method is used to solve the linear system, to minimize the effect of linear iteration errors on the
nonlinear and local integration error controls, we require the preconditioned linear residual to be small relative to the
allowed error in the nonlinear iteration, i.e., ‖P−1(Jx+G)‖ < 0.05 · 0.33. The safety factor 0.05 can be changed by
the user.
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When the Jacobian is stored using either the SUNMATRIX_DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian J defined in (2.7) can be either supplied by the user or IDAS can compute J internally by difference quotients. In
the latter case, we use the approximation

Jij = [Fi(t, y + σjej , ẏ + ασjej)− Fi(t, y, ẏ)]/σj , with

σj =
√
U max {|yj |, |hẏj |, 1/Wj} sign(hẏj) ,

where U is the unit roundoff, h is the current step size, and Wj is the error weight for the component yj defined by
(2.5). We note that with sparse and user-supplied matrix objects, the Jacobian must be supplied by a user routine.

In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are approximated by

Jv = [F (t, y + σv, ẏ + ασv)− F (t, y, ẏ)]/σ ,

where the increment σ = 1/‖v‖. As an option, the user can specify a constant factor that is inserted into this expression
for σ.

2.2.2 Local Error Test

During the course of integrating the system, IDAS computes an estimate of the local truncation error, LTE, at the n-th
time step, and requires this to satisfy the inequality

‖LTE‖WRMS ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-corrector difference ∆n ≡ yn −
yn(0). Thus there is a constant C such that

LTE = C∆n +O(hq+2) ,

and so the norm of LTE is estimated as |C|·‖∆n‖. In addition, IDAS requires that the error in the associated polynomial
interpolant over the current step be bounded by 1 in norm. The leading term of the norm of this error is bounded by
C̄‖∆n‖ for another constant C̄. Thus the local error test in IDAS is

max{|C|, C̄}‖∆n‖ ≤ 1 . (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the test (2.9), if these
have been so identified.

2.2.3 Step Size and Order Selection

In IDAS, the local error test is tightly coupled with the logic for selecting the step size and order. First, there is an initial
phase that is treated specially; for the first few steps, the step size is doubled and the order raised (from its initial value
of 1) on every step, until (a) the local error test (2.9) fails, (b) the order is reduced (by the rules given below), or (c)
the order reaches 5 (the maximum). For step and order selection on the general step, IDAS uses a different set of local
error estimates, based on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders
q′ equal to q, q − 1 (if q > 1), q − 2 (if q > 2), or q + 1 (if q < 5), there are constants C(q′) such that the norm of the
local truncation error at order q′ satisfies

LTE(q′) = C(q′)‖φ(q′ + 1)‖+O(hq
′+2) ,

where φ(k) is a modified divided difference of order k that is retained by IDAS (and behaves asymptotically as hk).
Thus the local truncation errors are estimated as ELTE(q′) = C(q′)‖φ(q′ + 1)‖ to select step sizes. But the choice of
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order in IDAS is based on the requirement that the scaled derivative norms, ‖hky(k)‖, are monotonically decreasing
with k, for k near q. These norms are again estimated using the φ(k), and in fact

‖hq
′+1y(q

′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTE(q′) .

The step/order selection begins with a test for monotonicity that is made even before the local error test is performed.
Namely, the order is reset to q′ = q−1 if (a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2 and max{T (q−1), T (q−2)} ≤
T (q); otherwise q′ = q. Next the local error test (2.9) is performed, and if it fails, the step is redone at order q ← q′

and a new step size h′. The latter is based on the hq+1 asymptotic behavior of ELTE(q), and, with safety factors, is
given by

η = h′/h = 0.9/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted so that ηmin_ef ≤ η ≤ ηlow (by default ηmin_ef = 0.25 and ηlow = 0.9) before setting
h← h′ = ηh. If the local error test fails a second time, IDA uses η = ηmin_ef , and on the third and subsequent failures
it uses q = 1 and η = ηmin_ef . After 10 failures, IDA returns with a give-up message.

As soon as the local error test has passed, the step and order for the next step may be adjusted. No order change is made
if q′ = q − 1 from the prior test, if q = 5, or if q was increased on the previous step. Otherwise, if the last q + 1 steps
were taken at a constant order q < 5 and a constant step size, IDAS considers raising the order to q + 1. The logic is
as follows:

a. If q = 1, then set q = 2 if T (2) < T (1)/2.

b. If q > 1 then

• set q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)}, else

• set q ← q + 1 if T (q + 1) < T (q), otherwise

• leave q unchanged, in this case T (q − 1) > T (q) ≤ T (q + 1)

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted such that

a. If ηmin_fx < η < ηmax_fx, set η = 1. The defaults are ηmin_fx = 1 and ηmax_fx = 2.

b. If η ≥ ηmax_fx, the step size growth is restricted to ηmax_fx ≤ η ≤ ηmax with ηmax = 2 by default.

c. If η ≤ ηmin_fx, the step size reduction is restricted to ηmin ≤ η ≤ ηlow with ηmin = 0.5 and ηlow = 0.9 by
default.

Thus we do not increase the step size unless it can be doubled. If a step size reduction is called for, the step size will
be cut by at least 10% and up to 50% for the next step. See [14] for details.

Finally h is set to h′ = ηh and |h| is restricted to hmin ≤ |h| ≤ hmax with the defaults hmin = 0.0 and hmax =∞.

Normally, IDAS takes steps until a user-defined output value t = tout is overtaken, and then computes y(tout) by
interpolation. However, a “one step” mode option is available, where control returns to the calling program after each
step. There are also options to force IDAS not to integrate past a given stopping point t = tstop.
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2.2.4 Inequality Constraints

IDAS permits the user to impose optional inequality constraints on individual components of the solution vector y.
Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0, or yi ≤ 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
nonlinear iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, IDAS estimates
a new step size h′ using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the calculation of
consistent initial conditions. If a step fails to satisfy the constraints repeatedly within a step attempt then the integration
is halted and an error is returned. In this case the user may need to employ other strategies as discussed in §5.1.3.2 to
satisfy the inequality constraints.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form J∆y = −G (e.g., the default
Newton iteration), IDAS makes repeated use of a linear solver. If this linear system solve is done with one of the scaled
preconditioned iterative linear solvers supplied with SUNDIALS, these solvers are rarely successful if used without
preconditioning; it is generally necessary to precondition the system in order to obtain acceptable efficiency. A system
Ax = b can be preconditioned on the left, on the right, or on both sides. The Krylov method is then applied to a system
with the matrix P−1A, or AP−1, or P−1L AP−1R , instead of A. However, within IDAS, preconditioning is allowed only
on the left, so that the iterative method is applied to systems (P−1J)∆y = −P−1G. Left preconditioning is required
to make the norm of the linear residual in the nonlinear iteration meaningful; in general, ‖J∆y +G‖ is meaningless,
since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in some sense ap-
proximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix P should be reasonably
efficient to evaluate and solve. Finding a good point in this tradeoff between rapid convergence and low cost can be very
difficult. Good choices are often problem-dependent (for example, see [17] for an extensive study of preconditioners
for reaction-transport systems).

Typical preconditioners used with IDAS are based on approximations to the iteration matrix of the systems involved;

in other words, P ≈ ∂F

∂y
+α

∂F

∂ẏ
, where α is a scalar inversely proportional to the integration step size h. Because the

Krylov iteration occurs within a nonlinear solver iteration and further also within a time integration, and since each of
these iterations has its own test for convergence, the preconditioner may use a very crude approximation, as long as it
captures the dominant numerical feature(s) of the system. We have found that the combination of a preconditioner with
the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be surprisingly superior to
using the same matrix without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-
Krylov method with no preconditioning.

2.4 Rootfinding

The IDAS solver has been augmented to include a rootfinding feature. This means that, while integratnuming the Initial
Value Problem (2.1), IDAS can also find the roots of a set of user-defined functions gi(t, y, ẏ) that depend on t, the
solution vector y = y(t), and its t−derivative ẏ(t). The number of these root functions is arbitrary, and if more than
one gi is found to have a root in any given interval, the various root locations are found and reported in the order that
they occur on the t axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of
gi(t, y(t), ẏ(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity (no sign change), it
will probably be missed by IDAS. If such a root is desired, the user should reformulate the root function so that it
changes sign at the desired root.
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The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [39]. In addition, each time g is computed,
IDAS checks to see if gi(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any gi is found
at a point t, IDAS computes g at t+ δ for a small increment δ, slightly further in the direction of integration, and if any
gi(t+ δ) = 0 also, IDAS stops and reports an error. This way, each time IDAS takes a time step, it is guaranteed that
the values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, IDAS has an
interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is further ahead in the direction of integration,
and all gi(tlo) 6= 0. The endpoint thi is either tn, the end of the time step last taken, or the next requested output time
tout if this comes sooner. The endpoint tlo is either tn−1, or the last output time tout (if this occurred within the last
step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward tn if an exact
zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If no sign changes are found,
then either a root is reported (if some gi(thi) = 0) or we proceed to the next time interval (starting at thi). If one or
more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the closest to tlo of the secant method
values. At each pass through the loop, a new value tmid is set, strictly within the search interval, and the values of
gi(tmid) are checked. Then either tlo or thi is reset to tmid according to which subinterval is found to have the sign
change. If there is none in (tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until
|thi − tlo| < τ , and then the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid the secant method
value. Thereafter, α is reset according to the side of the subinterval (low vs high, i.e. toward tlo vs toward thi) in which
the sign change was found in the previous two passes. If the two sides were opposite, α is set to 1. If the two sides were
the same, α is halved (if on the low side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1
and closer to thi when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (0.5 being the midpoint), and
the actual distance from the endpoint is at least τ/2.

2.5 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity analysis run
§2.7 it is of interest to compute integral quantities of the form

z(t) =

∫ t

t0

q(τ, y(τ), ẏ(τ), p) dτ . (2.10)

The most effective approach to compute z(t) is to extend the original problem with the additional ODEs (obtained by
applying Leibnitz’s differentiation rule):

ż = q(t, y, ẏ, p) , z(t0) = 0 .

Note that this is equivalent to using a quadrature method based on the underlying linear multistep polynomial repre-
sentation for y(t).

This can be done at the “user level” by simply exposing to IDAS the extended DAE system (2.2) + (2.10). However, in
the context of an implicit integration solver, this approach is not desirable since the nonlinear solver module will require
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the Jacobian (or Jacobian-vector product) of this extended DAE. Moreover, since the additional states, z, do not enter
the right-hand side of the ODE (2.10) and therefore the residual of the extended DAE system does not depend on z, it
is much more efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking out”
the additional states z from the nonlinear system (2.4) that must be solved in the correction step of the LMM. Instead,
“corrected” values zn are computed explicitly as

zn =
1

αn,0

(
hnq(tn, yn, ẏn, p)−

q∑
i=1

αn,izn−i

)
,

once the new approximation yn is available.

The quadrature variables z can be optionally included in the error test, in which case corresponding relative and absolute
tolerances must be provided.

2.6 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters, through the right-
hand side vector and/or through the vector of initial conditions, as in (2.2). In addition to numerically solving the DAEs,
it may be desirable to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior of the simulation
or to evaluate optimization gradients (in the setting of dynamic optimization, parameter estimation, optimal control,
etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) = ∂y(t)/∂pi and satisfies
the following forward sensitivity equations (or sensitivity equations for short):

∂F

∂y
si +

∂F

∂ẏ
ṡi +

∂F

∂pi
= 0

si(t0) =
∂y0(p)

∂pi
, ṡi(t0) =

∂ẏ0(p)

∂pi
,

(2.11)

obtained by applying the chain rule of differentiation to the original DAEs (2.2).

When performing forward sensitivity analysis, IDAS carries out the time integration of the combined system, (2.2)
and (2.11), by viewing it as a DAE system of size N(Ns + 1), where Ns is the number of model parameters pi, with
respect to which sensitivities are desired (Ns ≤ Np). However, major improvements in efficiency can be made by
taking advantage of the special form of the sensitivity equations as linearizations of the original DAEs. In particular,
the original DAE system and all sensitivity systems share the same Jacobian matrix J in (2.7).

The sensitivity equations are solved with the same linear multistep formula that was selected for the original DAEs and
the same linear solver is used in the correction phase for both state and sensitivity variables. In addition, IDAS offers
the option of including (full error control) or excluding (partial error control) the sensitivity variables from the local
error test.

2.6.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the combined DAE and
sensitivity system for the vector ŷ = [y, s1, . . . , sNs

].

• Staggered Direct In this approach [25], the nonlinear system (2.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving (2.11) after the BDF
discretization is used to eliminate ṡi. Although the system matrix of the above linear system is based on exactly
the same information as the matrix J in (2.7), it must be updated and factored at every step of the integration, in
contrast to an evaluation of J which is updated only occasionally. For problems with many parameters (relative
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to the problem size), the staggered direct method can outperform the methods described below [52]. However,
the computational cost associated with matrix updates and factorizations makes this method unattractive for
problems with many more states than parameters (such as those arising from semidiscretization of PDEs) and is
therefore not implemented in IDAS.

• Simultaneous Corrector In this method [57], the discretization is applied simultaneously to both the original
equations (2.2) and the sensitivity systems (2.11) resulting in an “extended” nonlinear system Ĝ(ŷn) = 0 where
ŷn = [yn, . . . , si, . . .]. This combined nonlinear system can be solved using a modified Newton method as in
(2.6) by solving the corrector equation

Ĵ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (2.12)

at each iteration, where

Ĵ =


J
J1 J
J2 0 J
...

...
. . . . . .

JNs 0 . . . 0 J

 ,

J is defined as in (2.7), and Ji = (∂/∂y) [Fysi + Fẏ ṡi + Fpi ]. It can be shown that 2-step quadratic convergence
can be retained by using only the block-diagonal portion of Ĵ in the corrector equation (2.12). This results in a
decoupling that allows the reuse of J without additional matrix factorizations. However, the sum Fysi +Fẏ ṡi +
Fpi must still be reevaluated at each step of the iterative process (2.12) to update the sensitivity portions of the
residual Ĝ.

• Staggered corrector In this approach [34], as in the staggered direct method, the nonlinear system (2.4) is solved
first using the Newton iteration (2.6). Then, for each sensitivity vector ξ ≡ si, a separate Newton iteration is
used to solve the sensitivity system (2.11):

J [ξn(m+1) − ξn(m)] =

−

[
Fy(tn, yn, ẏn)ξn(m) + Fẏ(tn, yn, ẏn) · h−1n

(
αn,0ξn(m) +

q∑
i=1

αn,iξn−i

)
+ Fpi(tn, yn, ẏn)

]
.

(2.13)

In other words, a modified Newton iteration is used to solve a linear system. In this approach, the matrices
∂F/∂y, ∂F/∂ẏ and vectors ∂f/∂pi need be updated only once per integration step, after the state correction
phase (2.6) has converged.

IDAS implements both the simultaneous corrector method and the staggered corrector method.

An important observation is that the staggered corrector method, combined with a Krylov linear solver, effectively
results in a staggered direct method. Indeed, the Krylov solver requires only the action of the matrix J on a vector,
and this can be provided with the current Jacobian information. Therefore, the modified Newton procedure (2.13) will
theoretically converge after one iteration.

2.6.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, IDAS provides an automated estimation of absolute tolerances for
the sensitivity variables based on the absolute tolerance for the corresponding state variable. The relative tolerance
for sensitivity variables is set to be the same as for the state variables. The selection of absolute tolerances for the
sensitivity variables is based on the observation that the sensitivity vector si will have units of [y]/[pi]. With this, the
absolute tolerance for the j-th component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute
tolerances for the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute tolerances is
equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector si with weights based on si
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be the same as the weighted root-mean-square norm of the vector of scaled sensitivities s̄i = |p̄i|si with weights based
on the state variables (the scaled sensitivities s̄i being dimensionally consistent with the state variables). However, this
choice of tolerances for the si may be a poor one, and the user of IDAS can provide different values as an option.

2.6.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.11): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or directional derivatives). IDAS pro-
vides all the software hooks for implementing interfaces to automatic differentiation (AD) or complex-step approxi-
mation; future versions will include a generic interface to AD-generated functions. At the present time, besides the
option for analytical sensitivity right-hand sides (user-provided), IDAS can evaluate these quantities using various fi-
nite difference-based approximations to evaluate the terms (∂F/∂y)si+(∂F/∂ẏ)ṡi and (∂f/∂pi), or using directional
derivatives to evaluate [(∂F/∂y)si + (∂F/∂ẏ)ṡi + (∂f/∂pi)]. As is typical for finite differences, the proper choice
of perturbations is a delicate matter. IDAS takes into account several problem-related features: the relative DAE er-
ror tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and the weighted root-mean-square norm of the
sensitivity vector si.

Using central finite differences as an example, the two terms (∂F/∂y)si + (∂F/∂ẏ)ṡi and ∂f/∂pi in (2.11) can be
evaluated either separately:

∂F

∂y
si +

∂F

∂y
pṡi ≈

F (t, y + σysi, ẏ + σy ṡi, p)− F (t, y − σysi, ẏ − σy ṡi, p)
2σy

, (2.14)

∂F

∂pi
≈ F (t, y, ẏ, p+ σiei)− F (t, y, ẏ, p− σiei)

2σi
, (2.15)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)

or simultaneously:

∂F

∂y
si +

∂F

∂y
pṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p+ σei)− F (t, y − σsi, ẏ − σṡi, p− σei)

2σ
, (2.16)

σ = min(σi, σy) ,

or by adaptively switching between (2.14) + (2.15) and (2.16), depending on the relative size of the two finite difference
increments σi and σy . In the adaptive scheme, if ρ = max(σi/σy, σy/σi), we use separate evaluations if ρ > ρmax
(an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (σi, σy , σ) and switching between derivative formulas have also been
implemented for one-sided difference formulas. Forward finite differences can be applied to (∂F/∂y)si + (∂F/∂ẏ)ṡi
and ∂F/∂pi separately, or the single directional derivative formula

∂F

∂y
si +

∂F

∂y
pṡi +

∂F

∂pi
≈ F (t, y + σsi, ẏ + σṡi, p+ σei)− F (t, y, ẏ, p)

σ

can be used. In IDAS, the default value of ρmax = 0 indicates the use of the second-order centered directional derivative
formula (2.16) exclusively. Otherwise, the magnitude of ρmax and its sign (positive or negative) indicates whether this
switching is done with regard to (centered or forward) finite differences, respectively.
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2.6.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.5), IDAS does not carry their sensitivities
automatically. Instead, we provide a more general feature through which integrals depending on both the states y of
(2.2) and the state sensitivities si of (2.11) can be evaluated. In other words, IDAS provides support for computing
integrals of the form:

z̄(t) =

∫ t

t0

q̄(τ, y(τ), ẏ(τ), s1(τ), . . . , sNp(τ), p) dτ .

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed by using:

q̄i = qysi + qẏ ṡi + qpi , i = 1, . . . , Np ,

as integrands for z̄, where qy , qẏ , and qp are the partial derivatives of the integrand function q of (2.10).

As with the quadrature variables z, the new variables z̄ are also excluded from any nonlinear solver phase and “cor-
rected” values z̄n are obtained through explicit formulas.

2.7 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with respect toNs param-
eters is roughly equivalent to solving an DAE system of size (1 + Ns)N . This can become prohibitively expensive,
especially for large-scale problems, if sensitivities with respect to many parameters are desired. In this situation, the
adjoint sensitivity method is a very attractive alternative, provided that we do not need the solution sensitivities si, but
rather the gradients with respect to model parameters of a relatively few derived functionals of the solution. In other
words, if y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) =

∫ T

t0

g(t, y, p)dt , (2.17)

or, alternatively, the gradient dg/dp of the function g(t, y, p) at the final time t = T . The function g must be smooth
enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For details on the derivation
see [24].

2.7.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange multiplier λ, we
form the augmented objective function

I(p) = G(p)−
∫ T

t0

λ∗F (t, y, ẏ, p)dt.

Since F (t, y, ẏ, p) = 0, the sensitivity of G with respect to p is

dG

dp
=
dI

dp
=

∫ T

t0

(gp + gyyp)dt−
∫ T

t0

λ∗(Fp + Fyyp + Fẏ ẏp)dt, (2.18)

where subscripts on functions such as F or g are used to denote partial derivatives. By integration by parts, we have∫ T

t0

λ∗Fẏ ẏpdt = (λ∗Fẏyp)
∣∣T
t0
−
∫ T

t0

(λ∗Fẏ)′ypdt,
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where (· · · )′ denotes the t−derivative. Thus equation (2.18) becomes

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt−
∫ T

t0

[−gy + λ∗Fy − (λ∗Fẏ)′] ypdt− (λ∗Fẏyp)
∣∣T
t0
.

Now by requiring λ to satisfy

(λ∗Fẏ)′ − λ∗Fy = −gy, (2.19)

we obtain

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt− (λ∗Fẏyp)
∣∣T
t0
. (2.20)

Note that yp at t = t0 is the sensitivity of the initial conditions with respect to p, which is easily obtained. To find the
initial conditions (at t = T ) for the adjoint system, we must take into consideration the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

λ∗Fẏ
∣∣
t=T

= 0, (2.21)

yielding the sensitivity equation for dG/dp

dG

dp
=

∫ T

t0

(gp − λ∗Fp) dt+ (λ∗Fẏyp)
∣∣
t=t0

. (2.22)

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final conditions in such
cases, see [24].

The first thing to notice about the adjoint system (2.19) is that there is no explicit specification of the parameters p; this
implies that, once the solution λ is found, the formula (2.20) can then be used to find the gradient of G with respect
to any of the parameters p. The second important remark is that the adjoint system (2.19) is a terminal value problem
which depends on the solution y(t) of the original IVP (2.2). Therefore, a procedure is needed for providing the states
y obtained during a forward integration phase of (2.2) to IDAS during the backward integration phase of (2.19). The
approach adopted in IDAS, based on checkpointing, is described in §2.7.3 below.

2.7.2 Sensitivity of g(T, p)

Now let us consider the computation of dg/dp(T ). From dg/dp(T ) = (d/dT )(dG/dp) and equation (2.20), we have

dg

dp
= (gp − λ∗Fp)(T )−

∫ T

t0

λ∗TFpdt+ (λ∗TFẏyp)

∣∣∣∣
t=t0

− d(λ∗Fẏyp)

dT
(2.23)

where λT denotes ∂λ/∂T . For index-0 and index-1 DAEs, we obtain

d(λ∗Fẏyp)
∣∣
t=T

dT
= 0,

while for a Hessenberg index-2 DAE system we have

d(λ∗Fẏyp)
∣∣
t=T

dT
= −

d(gya(CB)−1f2p )

dt

∣∣∣∣∣
t=T

.

The corresponding adjoint equations are

(λ∗TFẏ)′ − λ∗TFy = 0. (2.24)
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For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary condition for this
equation we write λ as λ(t, T ) because it depends on both t and T . Then

λ∗(T, T )Fẏ

∣∣∣∣
t=T

= 0.

Taking the total derivative, we obtain

(λt + λT )∗(T, T )Fẏ

∣∣∣∣
t=T

+ λ∗(T, T )
dFẏ
dt

∣∣∣∣
t=T

= 0.

Since λt is just λ̇, we have the boundary condition

(λ∗TFẏ)
∣∣
t=T

= −
[
λ∗(T, T )

dFẏ
dt

+ λ̇∗Fẏ

] ∣∣∣∣
t=T

.

For the index-one DAE case, the above relation and (2.19) yield

(λ∗TFẏ)

∣∣∣∣
t=T

= [gy − λ∗Fy]

∣∣∣∣
t=T

.

For the regular implicit ODE case, Fẏ is invertible; thus we have λ(T, T ) = 0, which leads to λT (T ) = −λ̇(T ). As
with the final conditions for λ(T ) in (2.19), the above selection for λT (T ) is not sufficient for index-two Hessenberg
DAEs (see [24] for details).

2.7.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires, at the current
time, the states y which were computed during the forward integration phase. Since IDAS implements variable-step
integration formulas, it is unlikely that the states will be available at the desired time and so some form of interpolation
is needed. The IDAS implementation being also variable-order, it is possible that during the forward integration phase
the order may be reduced as low as first order, which means that there may be points in time where only y and ẏ are
available. These requirements therefore limit the choices for possible interpolation schemes. IDAS implements two
interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial interpolation method
which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size of the vectors y and
ẏ that would need to be stored make this approach computationally intractable. Thus, IDAS settles for a compromise
between storage space and execution time by implementing a so-called checkpointing scheme. At the cost of at most
one additional forward integration, this approach offers the best possible estimate of memory requirements for adjoint
sensitivity analysis. To begin with, based on the problem size N and the available memory, the user decides on the
number Nd of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors in the
case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, after every Nd integration steps a checkpoint is formed by saving enough
information (either in memory or on disk) to allow for a hot restart, that is a restart which will exactly reproduce the
forward integration. In order to avoid storing Jacobian-related data at each checkpoint, a reevaluation of the iteration
matrix is forced before each checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at
t0. During the backward integration stage, the adjoint variables are integrated backwards from T to t0, going from
one checkpoint to the previous one. The backward integration from checkpoint i + 1 to checkpoint i is preceded by
a forward integration from i to i + 1 during which the Nd vectors y (and, if necessary ẏ) are generated and stored in
memory for interpolation.

2.7. Adjoint sensitivity analysis 21



User Documentation for IDAS, v6.3.0

Note

The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation
at the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th
checkpoint, in which case it uses the BDF order at the right-most relevant point). However, because of the FLC
BDF implementation (see §2.2), the resulting interpolation polynomial is only an approximation to the underlying
BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also
used by other adjoint solvers (e.g. DASPKADJOINT). The variable-degree polynomial is more memory-efficient (it
requires only half of the memory storage of the cubic Hermite interpolation) and is more accurate.

Fig. 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during the integration of the
adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward integration phase to uncertainty
in the final number of checkpoints. However, Nc is much smaller than the number of steps taken during the forward
integration, and there is no major penalty for writing/reading the checkpoint data to/from a temporary file. Note that,
at the end of the first forward integration stage, interpolation data are available from the last checkpoint to the end of
the interval of integration. If no checkpoints are necessary (Nd is larger than the number of integration steps taken
in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as one forward plus one
backward integration. In addition, IDAS provides the capability of reusing a set of checkpoints for multiple backward
integrations, thus allowing for efficient computation of gradients of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in IDAS provides the necessary infrastructure to integrate backwards
in time any DAE terminal value problem dependent on the solution of the IVP (2.2), including adjoint systems (2.19)
or (2.24), as well as any other quadrature ODEs that may be needed in evaluating the integrals in (2.20). In particular,
for DAE systems arising from semi-discretization of time-dependent PDEs, this feature allows for integration of either
the discretized adjoint PDE system or the adjoint of the discretized PDE.
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2.8 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute second-order deriva-
tive information. Considering the DAE problem (2.2) and some model output functional g(y), the Hessian d2g/dp2

can be obtained in a forward sensitivity analysis setting as

d2g

dp2
=
(
gy ⊗ INp

)
ypp + yTp gyyyp ,

where ⊗ is the Kronecker product. The second-order sensitivities are solution of the matrix DAE system:(
Fẏ ⊗ INp

)
· ẏpp +

(
Fy ⊗ INp

)
· ypp +

(
IN ⊗ ẏTp

)
· (Fẏẏ ẏp + Fyẏyp) +

(
IN ⊗ yTp

)
· (Fyẏ ẏp + Fyyyp) = 0

ypp(t0) =
∂2y0
∂p2

, ẏpp(t0) =
∂2ẏ0
∂p2

,

where yp denotes the first-order sensitivity matrix, the solution of Np systems (2.11), and ypp is a third-order tensor.
It is easy to see that, except for situations in which the number of parameters Np is very small, the computational cost
of this so-called forward-over-forward approach is exorbitant as it requires the solution of Np + N2

p additional DAE
systems of the same dimension as (2.2).

Note

For the sake of simplifity in presentation, we do not include explicit dependencies of g on time t or parameters p.
Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is
through its initial conditions only. For details on the derivation in the general case, see [58].

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-over-adjoint ap-
proach. This method is based on using the same “trick” as the one used in computing gradients of pointwise func-
tionals with the adjoint method, namely applying a formal directional forward derivation to the gradient of (2.20) (or
the equivalent one for a pointwise functional g(T, y(T ))). With that, the cost of computing a full Hessian is roughly
equivalent to the cost of computing the gradient with forward sensitivity analysis. However, Hessian-vector products
can be cheaply computed with one additional adjoint solve.

As an illustration, consider the ODE problem (the derivation for the general DAE case is too involved for the purposes
of this discussion)

ẏ = f(t, y) , y(t0) = y0(p) ,

depending on some parameters p through the initial conditions only and consider the model functional output G(p) =∫ tf
t0
g(t, y) dt. It can be shown that the product between the Hessian of G (with respect to the parameters p) and some

vector u can be computed as

∂2G

∂p2
u =

[(
λT ⊗ INp

)
yppu+ yTp µ

]
t=t0

,

where λ and µ are solutions of

− µ̇ = fTy µ+
(
λT ⊗ In

)
fyys ; µ(tf ) = 0

− λ̇ = fTy λ+ gTy ; λ(tf ) = 0

ṡ = fys ; s(t0) = y0pu.

In the above equation, s = ypu is a linear combination of the columns of the sensitivity matrix yp. The forward-
over-adjoint approach hinges crucially on the fact that s can be computed at the cost of a forward sensitivity analysis
with respect to a single parameter (the last ODE problem above) which is possible due to the linearity of the forward
sensitivity equations (2.11).
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Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector product is roughly that
of two forward and two backward integrations of a system of DAEs of size N . For more details, including the corre-
sponding formulas for a pointwise model functional output, see the work by Ozyurt and Barton [58] who discuss this
problem for ODE initial value problems. As far as we know, there is no published equivalent work on DAE problems.
However, the derivations given in [58] for ODE problems can be extended to DAEs with some careful consideration
given to the derivation of proper final conditions on the adjoint systems, following the ideas presented in [24].

To allow the foward-over-adjoint approach described above, IDAS provides support for:

• the integration of multiple backward problems depending on the same underlying forward problem (2.2), and

• the integration of backward problems and computation of backward quadratures depending on both the states y
and forward sensitivities (for this particular application, s) of the original problem (2.2).
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Chapter 3

Code Organization

The IDAS package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

Fig. 3.1: Overall structure diagram of the IDAS package. Components specific to IDAS begin with “IDA” (IDALS,
IDANLS, and IDABBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and solver interfaces.

The overall organization of the IDAS package is shown in Fig. 3.1. IDAS utilizes generic linear and nonlinear solvers
defined by the SUNLinearSolver (see §8) and SUNNonlinearSolver interfaces (see §9) respectively. As such, IDAS
has no knowledge of the method being used to solve the linear and nonlinear systems that arise. For any given user
problem, there exists a single nonlinear solver interface and, if necessary, one of the linear system solver interfaces is
specified, and invoked as needed during the integration.

IDAS has a single unified linear solver interface, IDALS, supporting both direct and iterative linear solvers built using
the generic SUNLinearSolver interface (see §8). These solvers may utilize a SUNMatrix object (see §7) for storing
Jacobian information, or they may be matrix-free. Since IDAS can operate on any valid SUNLinearSolver, the set of
linear solver modules available to IDAS will expand as new SUNLinearSolver implementations are developed.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, IDAS includes algorithms for
their approximation through difference quotients, although the user also has the option of supplying a routine to compute
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the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or user-
supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, IDAS includes an algorithm for the approximation by difference
quotients of the product Jv. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [17, 21], together with the example and demonstration programs included with IDAS, offer
considerable assistance in building preconditioners.

IDA’s linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization, (2)
setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution phases
are separate because the evaluation of Jacobians and preconditioners is done only periodically during the integration,
and only as required to achieve convergence. The call list within the central IDAS module to each of the four associated
functions is fixed, thus allowing the central module to be completely independent of the linear system method.

IDAS also provides a preconditioner module, for use with any of the Krylov iterative linear solvers. It works in conjunc-
tion with the NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each block
being a banded matrix.

All state information used by IDAS to solve a given problem is stored in N_Vector instances. There is no global data in
the IDAS package, and so, in this respect, it is reentrant. State information specific to the linear and nonlinear solver are
saved in the SUNLinearSolver and SUNNonlinearSolver instances respectively. The reentrancy of IDAS enables
the setting where two or more problems are solved by intermixed or parallel calls to different instances of the package
from within a single user program.
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Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

Fig. 4.1: High-level diagram of the SUNDIALS suite.
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4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

• sunrealtype – the floating-point type used by the SUNDIALS packages

• sunindextype – the integer type used for vector and matrix indices

• suncountertype – the integer type used for counter variables

• sunbooleantype – the type used for logic operations within SUNDIALS

• SUNOutputFormat – an enumerated type for SUNDIALS output formats

• SUNComm – a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPI.

4.1.1 Floating point types

type sunrealtype
The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, or to 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNRmacros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §11.3).
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4.1.2 Integer types used for indexing

type sunindextype
The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextypemay be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 231 − 1 and with 64-bit integers the limit is 263 − 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.3).

4.1.3 Integer type used for counters

type suncountertype
The type suncountertype is used for counter variables in SUNDIALS (e.g., number of stpes) and is the same
as long int.

Added in version 7.3.0.

4.1.4 Boolean type

type sunbooleantype
As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE

False (0)

SUNTRUE

True (1)

4.1.5 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE
The output will be a table of values
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enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., key1,value1,key2,value2,...

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

4.1.6 MPI types

type SUNComm
A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL

A macro defined as 0 when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

Added in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext
An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

SUNErrCode SUNContext_Create(SUNComm comm, SUNContext *sunctx)
Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Parameters

• comm – the MPI communicator or SUN_COMM_NULL if not using MPI.

• sunctx – [in,out] upon successful exit, a pointer to the newly created SUNContext object.

Returns
SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);

(continues on next page)
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(continued from previous page)

package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);

x = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters

• sunctx – pointer to a valid SUNContext object, NULL upon successful return.

Returns
SUNErrCode indicating success or failure.

Warning

When MPI is being used, the SUNContext_Free() must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError(SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters

• sunctx – a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError(SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters

• sunctx – a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler(SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters

• sunctx – a valid SUNContext object.

• err_fn – a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

• err_user_data – a pointer that will be passed back to the callback function when it is
called.
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Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler(SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.

Parameters

• sunctx – a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_ClearErrHandlers(SUNContext sunctx)
Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

Parameters

• sunctx – a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler(SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• profiler – [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler(SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• profiler – a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger(SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• logger – a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.
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SUNErrCode SUNContext_GetLogger(SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters

• sunctx – a valid SUNContext object.

• logger – [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

1. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

• Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations
execute sequentially, if both are initialized at the same time with the same SUNContext, behavior is unde-
fined.

• It is OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has
completed and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have
been destroyed.

2. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create
for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {
retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;

(continues on next page)
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(continued from previous page)

} else {
retval = CVodeReInit(cvode_mem[tid], ...);

}
CVode(cvode_mem[i], ...);

}

// Destroy
for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree(&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

}

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);

// set optional cvode inputs...

CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree(&cvode_mem);
SUNContext_Free(&sunctx);

}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.
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4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials::Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context(Context&&) = default;

/* disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;
Context& operator=(Context&&) = default;

SUNContext Convert() override
{
return *sunctx_.get();

}
SUNContext Convert() const override
{
return *sunctx_.get();

}
operator SUNContext() override
{
return *sunctx_.get();

}
operator SUNContext() const override
{
return *sunctx_.get();

}

~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());

}

private:
std::unique_ptr<SUNContext> sunctx_;
};

} // namespace sundials
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4.3 Error Checking

Added in version 7.0.0.

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error messages through the
SUNLogger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or
SUNContext_PeekLastError() functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;
int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.
sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.
// Some functions do not return an error code.
// We have to check for errors in these functions using SUNContext_GetLastError.
length = 2;
v = N_VNew_Serial(length, sunctx);
sunerr = SUNContext_GetLastError(sunctx);
if (sunerr) { /* an error occurred, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occurred, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx);
if (sunerr) {
/* an error occurred, do something */
} else {
print("dotprod = %.2f\n", dotprod);

}

The function SUNGetErrMsg() can be used to get a message describing the error code.

const char *SUNGetErrMsg(SUNErrCode code)
Returns a message describing the error code.

Parameters

• code – the error code

Returns
a message describing the error code.
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Note

It is recommended in most cases that users check for an error after calling SUNDIALS functions. However, users
concerned with getting the most performance might choose to exclude or limit these checks.

Warning

If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these functions
do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError() to check these
functions for errors.

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler(). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers(). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.

Parameters

• line – the line number at which the error occurred

• func – the function in which the error occurred

• file – the file in which the error occurred

• msg – the message to log, if this is NULL then the default error message for the error code
will be used

• err_code – the error code for the error that occurred

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occurred.

Parameters

• line – the line number at which the error occurred
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• func – the function in which the error occurred

• file – the file in which the error occurred

• msg – this parameter is ignored

• err_code – the error code for the error that occurred

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

void SUNMPIAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occurred.

Parameters

• line – the line number at which the error occurred

• func – the function in which the error occurred

• file – the file in which the error occurred

• msg – this parameter is ignored

• err_code – the error code for the error that occurred

• err_user_data – the user pointer provided to SUNContext_PushErrHandler()

• sunctx – pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

Added in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to the maximum desired output level
when configuring SUNDIALS. See the SUNDIALS_LOGGING_LEVEL documentation for the numeric values corre-
sponding to errors, warnings, info output, and debug output where errors < warnings < info output < debug output
< extra debug output. By default only warning and error messages are logged.

Note

As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:
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SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

If SUNDIALS_LOGGING_LEVEL was set at build-time to a level lower than the corresponding environment variable, then
setting the environment variable will do nothing. For example, if the logging level is set to 2 (errors and warnings),
setting SUNLOGGER_INFO_FILENAME will do nothing.

Warning

A non-default logger should be created and attached to the context object prior to any other SUNDIALS calls in
order to capture all log events.

Error or warning logs are a single line output with an error or warning message

[level][rank][scope][label] message describing the error or warning

Informational or debugging logs are either a single line output with a comma-separated list of key-value pairs of the
form

[level][rank][scope][label] key1 = value, key2 = value

or multiline output with one value per line for keys corresponding to a vector or array e.g.,

[level][rank][scope][label] y(:) =
y[0]
y[1]
...

In the example log outputs above, the values in brackets have the following meaning:

• level is the log level of the message and will be ERROR, WARNING, INFO, or DEBUG

• rank is the MPI rank the message was written from (0 by default or if SUNDIALS was built without MPI
enabled)

• scope is the message scope i.e., the name of the function from which the message was written

• label provides additional context or information about the logging output e.g., begin-step,
end-linear-solve, etc.

Note

When extra debugging output is enabled, the output will include vector values (so long as the N_Vector used
supports printing). Depending on the problem size, this may result in very large logging files.
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4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:

type SUNLogger
An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL
Represents all output levels

enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR
Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING
Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO
Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG
Represents deubg-level logging messages

The SUNLogger class provides the following methods.

int SUNLogger_Create(SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• output_rank – the MPI rank used for output (can be -1 to print to all ranks).

• logger – [in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_CreateFromEnv(SUNComm comm, SUNLogger *logger)
Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:
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• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• logger – [in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename(SUNLogger logger, const char *error_filename)
Sets the filename for error output.

Arguments:

• logger – a SUNLogger object.

• error_filename – the name of the file to use for error output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename(SUNLogger logger, const char *warning_filename)
Sets the filename for warning output.

Arguments:

• logger – a SUNLogger object.

• warning_filename – the name of the file to use for warning output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename(SUNLogger logger, const char *info_filename)
Sets the filename for info output.

Arguments:

• logger – a SUNLogger object.

• info_filename – the name of the file to use for info output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename(SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

• logger – a SUNLogger object.

• debug_filename – the name of the file to use for debug output.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg(SUNLogger logger, SUNLogLevel lvl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.

Arguments:
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• logger – a SUNLogger object.

• lvl – the message log level (i.e. error, warning, info, debug).

• scope – the message scope (e.g. the function name).

• label – the message label.

• msg_txt – the message text itself.

• ... – the format string arguments

Returns:

• Returns zero if successful, or non-zero if an error occurred.

Warning

When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to pass any user
input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel lvl)
Flush the message queue(s).

Arguments:

• logger – a SUNLogger object.

• lvl – the message log level (i.e. error, warning, info, debug or all).

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank(SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:

• logger – a SUNLogger object.

• output_rank – [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:

• Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy(SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:

• logger – a pointer to the SUNLogger object.

Returns:

• Returns zero if successful, or non-zero if an error occur.
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4.4.3 Example Usage

As noted above, enabling logging must be done when configuring SUNDIALS by setting the CMake option SUN-
DIALS_LOGGING_LEVEL to the desired logging level. When running a program with SUNDIALS logging enabled,
a default logger is created and attached to the SUNContext instance at creation. Environment variables or run-time
functions can be used to determine where the logging output is written. For example, consider the CVODE Roberts
example, where we can direct the informational output to the file sun.log as follows

SUNDIALS_INFO_FILENAME=sun.log ./examples/cvode/serial/cvRoberts_dns

Alternatively, the following examples demonstrate how to use the logging interface via the C API:

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

To assist with extracting informational logging data from output files the tools directory contains a Python module,
suntools, that provides utilities for parsing log files. Some example scripts using the suntools module are included
in the tools directory. For example, we can plot the step size history from the CVODE Roberts problem with

./log_example.py sun.log

4.5 Performance Profiling

Added in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [13] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §11.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print() function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 0. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note

The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.
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Warning

While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively impact
performance. As such, it is recommended that profiling is enabled judiciously.

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END(profobj)
SUNDIALS_WRAP_STATEMENT(profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END(profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION(profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_ENDmacro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler
An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:

• comm – the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

• title – a title or description of the profiler

• p – [in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free(SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

• p – [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL

Returns:
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• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

• p – a SUNProfiler object

• name – a name for the profiling region

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End(SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:

• p – a SUNProfiler object

• name – a name for the profiling region

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime(SUNProfiler p, const char *name, double *time)
Get the elapsed time for the timer “name” in seconds.

Arguments:

• p – a SUNProfiler object

• name – the name for the profiling region of interest

• time – upon return, the elapsed time for the timer

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)
Get the timer resolution in seconds.

Arguments:

• p – a SUNProfiler object

• resolution – upon return, the resolution for the timer

Returns:

• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print(SUNProfiler p, FILE *fp)
Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:

• p – a SUNProfiler object

• fp – the file handler to print to

Returns:
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• Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset(SUNProfiler p)
Resets the region timings and counters to zero.

Arguments:

• p – a SUNProfiler object

Returns:

• Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

/* ... */

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");
umax = N_VMaxNorm(u);
PrintHeader(reltol, abstol, umax);
for(iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics */

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:
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• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:

• The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.

• All of the time-stepping modules in ARKODE:

– The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

– The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

• CVODE via the fcvode_mod module.

• CVODES via the fcvodes_mod module.

• IDA via the fida_mod module.

• IDAS via the fidas_mod module.

• KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.
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use fsundials_core_mod ! this is needed to access core SUNDIALS types, utilities, and data structures
use fcvode_mod ! this is needed to access CVODE functions and types
use fnvector_openmp_mod ! this is needed to access the OpenMP implementation of the N_Vector class

and by linking to the Fortran 2003 library in addition to the C library, e.g. libsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C API.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst() or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C API.
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §11.

The Fortran 2003 interface modules were generated with SWIG Fortran [47], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod
ARKODE::ARKSTEP farkode_arkstep_mod
ARKODE::ERKSTEP farkode_erkstep_mod
ARKODE::MRISTEP farkode_mristep_mod
ARKODE::SPRKSTEP farkode_sprkstep_mod
CVODE fcvode_mod
CVODES fcvodes_mod
IDA fida_mod
IDAS fidas_mod
KINSOL fkinsol_mod
NVECTOR_SERIAL fnvector_serial_mod
NVECTOR_OPENMP fnvector_openmp_mod
NVECTOR_PTHREADS fnvector_pthreads_mod
NVECTOR_PARALLEL fnvector_parallel_mod
NVECTOR_PARHYP Not interfaced
NVECTOR_PETSC Not interfaced
NVECTOR_CUDA Not interfaced
NVECTOR_RAJA Not interfaced
NVECTOR_SYCL Not interfaced
NVECTOR_MANVECTOR fnvector_manyvector_mod
NVECTOR_MPIMANVECTOR fnvector_mpimanyvector_mod
NVECTOR_MPIPLUSX fnvector_mpiplusx_mod
SUNMATRIX_BAND fsunmatrix_band_mod
SUNMATRIX_DENSE fsunmatrix_dense_mod
SUNMATRIX_MAGMADENSE Not interfaced
SUNMATRIX_ONEMKLDENSE Not interfaced

continues on next page
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Table 4.1 – continued from previous page
Class/Module Fortran 2003 Module Name
SUNMATRIX_SPARSE fsunmatrix_sparse_mod
SUNLINSOL_BAND fsunlinsol_band_mod
SUNLINSOL_DENSE fsunlinsol_dense_mod
SUNLINSOL_LAPACKBAND Not interfaced
SUNLINSOL_LAPACKDENSE Not interfaced
SUNLINSOL_MAGMADENSE Not interfaced
SUNLINSOL_ONEMKLDENSE Not interfaced
SUNLINSOL_KLU fsunlinsol_klu_mod
SUNLINSOL_SLUMT Not interfaced
SUNLINSOL_SLUDIST Not interfaced
SUNLINSOL_SPGMR fsunlinsol_spgmr_mod
SUNLINSOL_SPFGMR fsunlinsol_spfgmr_mod
SUNLINSOL_SPBCGS fsunlinsol_spbcgs_mod
SUNLINSOL_SPTFQMR fsunlinsol_sptfqmr_mod
SUNLINSOL_PCG fsunlinsol_pcg_mof
SUNNONLINSOL_NEWTON fsunnonlinsol_newton_mod
SUNNONLINSOL_FIXEDPOINT fsunnonlinsol_fixedpoint_mod
SUNNONLINSOL_PETSCSNES Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunrealtype is
double-precision.

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit
sunindextype.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type
SUNComm in, inout, out, return integer(c_int)
SUNErrCode in, inout, out, return integer(c_int)
double in, inout, out, return real(c_double)
int in, inout, out, return integer(c_int)
long in, inout, out, return integer(c_long)
sunbooleantype in, inout, out, return integer(c_int)
sunrealtype in, inout, out, return real(c_double)
sunindextype in, inout, out, return integer(c_long)
double* in, inout, out real(c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)

continues on next page
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Table 4.2 – continued from previous page
C Type Parameter Direction Fortran 2003 type
int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)
long* return real(c_long), pointer, dimension(:)
sunrealtype* in, inout, out real(c_double), dimension(*)
sunrealtype* return real(c_double), pointer, dimension(:)
sunindextype* in, inout, out real(c_long), dimension(*)
sunindextype* return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real(c_double), dimension(*)
sunindextype[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)
N_Vector return type(N_Vector), pointer
SUNMatrix in, inout, out type(SUNMatrix)
SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type(SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)
void* in, inout, out, return type(c_ptr)
T** in, inout, out, return type(c_ptr)
T*** in, inout, out, return type(c_ptr)
T**** in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial(N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial(N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.
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4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/* create a new serial vector */
x = N_VNew_Serial(N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x
real(c_double), pointer :: xdataptr(:)
real(c_double) :: xdata(N)
integer(c_long) :: leniw(1), lenrw(1)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)
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4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind(C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind(C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type(c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer :: A
type(N_Vector), pointer :: x, b

! Disassociate A
A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
(continues on next page)
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(continued from previous page)

! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray(). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, x);

/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, x)

! Fill each array with ones
do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray() and N_VNewVectorArray() for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.
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4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.

SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Parameters

• filename – the path to the file, that should have Fortran type character(kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr – these two filenames will
result in output going to the standard output file and standard error file, respectively.

• mode – the I/O mode to use for the file. This should have the Fortran type charac-
ter(kind=C_CHAR, len=*). The string begins with one of the following characters:

– r to open a text file for reading

– r+ to open a text file for reading/writing

– w to truncate a text file to zero length or create it for writing

– w+ to open a text file for reading/writing or create it if it does
not exist

– a to open a text file for appending, see documentation of fopen for
your system/compiler

– a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

• fp – The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:

type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", fp)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as
the last input parameter rather then return a FILE*.

SUNErrCode SUNDIALSFileClose(FILE **fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Parameters
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• fp – the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.

Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

1 integer(c_int) function ff(t, yvec, ydotvec, user_data) &
2 result(ierr) bind(C)
3

4 use, intrinsic :: iso_c_binding
5 use fsundials_nvector_mod
6 implicit none
7

8 real(c_double) :: t ! <===== Missing value attribute
9 type(N_Vector) :: yvec

10 type(N_Vector) :: ydotvec
11 type(c_ptr) :: user_data
12

13 real(c_double) :: e
14 real(c_double) :: u, v
15 real(c_double) :: tmp1, tmp2
16 real(c_double), pointer :: yarr(:)
17 real(c_double), pointer :: ydotarr(:)
18

19 ! get N_Vector data arrays
20 yarr => FN_VGetArrayPointer(yvec)
21 ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE
22

23 ! extract variables
24 u = yarr(1)
25 v = yarr(2)

(continues on next page)
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(continued from previous page)

26

27 ! fill in the RHS function:
28 ! [0 0]*[(-1+u^2-r(t))/(2*u)] + [ 0 ]
29 ! [e -1] [(-2+v^2-s(t))/(2*v)] [sdot(t)/(2*vtrue(t))]
30 tmp1 = (-ONE+u*u-r(t))/(TWO*u)
31 tmp2 = (-TWO+v*v-s(t))/(TWO*v)
32 ydotarr(1) = ZERO
33 ydotarr(2) = e*tmp1 - tmp2 + sdot(t)/(TWO*vtrue(t))
34

35 ! return success
36 ierr = 0
37 return
38

39 end function

The subtle bug in the code causing the segfault is on line 8. It should read real(c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [12], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANYVECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3–Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilities will be leveraged since SUNDI-
ALS operates on data through these APIs.
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In addition, SUNDIALS provides a memory management helper module (see §10) to support applications which im-
plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_VectorModules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrixModules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-
ules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X1 X1 X1 X1 X1

SUNLINSOL_SPFGMR X1 X1 X1 X1 X1

SUNLINSOL_SPTFQMR X1 X1 X1 X1 X1

SUNLINSOL_SPBCGS X1 X1 X1 X1 X1

SUNLINSOL_PCG X1 X1 X1 X1 X1

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver
Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON X1 X1 X1 X1 X1

SUNNONLINSOL_FIXEDPOINT X1 X1 X1 X1 X1

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.
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3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1. Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

2. Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).

3. Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).

4. Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

5. Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evaluation function, or the preconditioner evaluation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.
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Chapter 5

Using IDAS

5.1 Using IDAS for IVP Solution

This chapter is concerned with the use of IDAS for the integration of DAEs.

The following sections treat the header files and the layout of the user’s main program, and provide descriptions of the
IDAS user-callable functions and user-supplied functions. The sample programs described in the companion document
[46] may also be helpful. Those codes may be used as templates (with the removal of some lines used in testing) and
are included in the IDAS package.

IDAS uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in §12.

The user should be aware that not all SUNLinearSolver and SUNMatrix objects are compatible with all N_Vector
implementations. Details on compatibility are given in the documentation for each SUNMatrix (Chapter §7) and
SUNLinearSolver (Chapter §8) implementation. For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver objects.
Please check Chapters §7 and §8 to verify compatibility between these objects. In addition to that documentation,
we note that the IDABBDPRE preconditioner can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector object with SuperLU_MT unless it is the NVECTOR_OPENMP module, and SuperLU_MT is also
compiled with OpenMP.

5.1.1 Access to library and header files

At this point, it is assumed that the installation of IDAS, following the procedure described in §11, has been completed
successfully. In the proceeding text, the directories libdir and incdir are the installation library and include di-
rectories, respectively. For a default installation, these are instdir/lib and instdir/include, respectively, where
instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by IDAS. IDAS symbols are found in
libdir/libsundials_idas.lib. Thus, in addition to linking to libdir/libsundials_core.lib, IDAS users
need to link to the IDAS library. Symbols for additional SUNDIALS modules, vectors and algebraic solvers, are found
in

<libdir>/libsundials_nvec*.lib
<libdir>/libsundials_sunmat*.lib
<libdir>/libsundials_sunlinsol*.lib

(continues on next page)
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(continued from previous page)

<libdir>/libsundials_sunnonlinsol*.lib
<libdir>/libsundials_sunmem*.lib

The file extension .lib is typically .so for shared libraries and .a for static libraries.

The relevant header files for IDAS are located in the subdirectories incdir/include/idas. To use IDAS the appli-
cation needs to include the header file for IDAS in addition to the SUNDIALS core header file:

#include <sundials/sundials_core.h> // Provides core SUNDIALS types
#include <idas/idas.h> // IDAS provides methods for DAEs with sensitivity analysis

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §6 for the appropriate name.

If using a non-default nonlinear solver object, or when interacting with a SUNNonlinearSolver object directly, the
calling program must also include a SUNNonlinearSolver implementation header file, of the form sunnonlinsol/
sunnonlinsol_*.h where * is the name of the nonlinear solver (see Chapter §9 for more information).

If using a nonlinear solver that requires the solution of a linear system of the form (2.4) (e.g., the default Newton itera-
tion), the calling program must also include a SUNLinearSolver implementation header file, of the from sunlinsol/
sunlinsol_*.h where * is the name of the linear solver (see Chapter §8 for more information).

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/
sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver. (see Chapter §7
for more information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example idasFood-
Web_kry_p (see [46]), preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_-
SPGMR linear solver is used, the header sundials/sundials_dense.h is included for access to the underlying generic
dense matrix arithmetic routines.

5.1.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE IVP. Most of
the steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implemen-
tations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the specific name of the function to be
called or macro to be referenced.

1. Initialize parallel or multi-threaded environment (if appropriate)

For example, call MPI_Init to initialize MPI if used.

2. Create the SUNDIALS context object

Call SUNContext_Create() to allocate the SUNContext object.

3. Create the vector of initial values

Construct an N_Vector of initial values using the appropriate functions defined by the particular N_Vector
implementation (see §6 for details).

For native SUNDIALS vector implementations, use a call of the form y0 = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y0). Here, *** is the name of the vector implementation.

For hypre, PETSc, and Trilinos vector wrappers, first create and initialize the underlying vector, and then create
an N_Vector wrapper with a call of the form y0 = N_VMake_***(yvec), where yvec is a hypre, PETSc, or
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Trilinos vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for
these vector wrappers.

Set the vector yp0 of initial conditions for ẏ similarly.

4. Create matrix object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver) and the linear solver will be a matrix-
based linear solver, then a template Jacobian matrix must be created by calling the appropriate constructor defined
by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where *** is the name of the matrix (see §7 for details).

5. Create linear solver object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver), then the desired linear solver object must
be created by calling the appropriate constructor defined by the particular SUNLinearSolver implementation.

For any of the native SUNDIALS SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_***(...);where *** is the name of the linear
solver (see §8 for details).

6. Create nonlinear solver object (if appropriate)

If using a non-default nonlinear solver, then the desired nonlinear solver object must be created by calling the
appropriate constructor defined by the particular SUNNonlinearSolver implementation.

For any of the native SUNDIALS SUNNonLinearSolver implementations, the nonlinear solver object may be
created using a call of the form SUNNonlinearSolver NLS = SUNNonlinSol_***(...); where *** is the
name of the nonlinear solver (see §9 for details).

7. Create IDAS object

Call IDACreate() to create the IDAS solver object.

8. Initialize IDAS solver

Call IDAInit() to provide the initial condition vectors created above, set the DAE residual function, and ini-
tialize IDAS.

9. Specify integration tolerances

Call one of the following functions to set the integration tolerances:

• IDASStolerances() to specify scalar relative and absolute tolerances.

• IDASVtolerances() to specify a scalar relative tolerance and a vector of absolute tolerances.

• IDAWFtolerances() to specify a function which sets directly the weights used in evaluating WRMS vector
norms.

See §5.1.3.3 for general advice on selecting tolerances and §5.1.3.4 for advice on controlling unphysical values.

10. Attach the linear solver (if appropriate)

If a linear solver was created above, initialize the IDALS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with IDASetLinearSolver().

11. Set linear solver optional inputs (if appropriate)

See Table 5.2 for IDALS optional inputs and Chapter §8 for linear solver specific optional inputs.

12. Attach nonlinear solver module (if appropriate)

If a nonlinear solver was created above, initialize the IDANLS nonlinear solver interface by attaching the non-
linear solver object with IDASetNonlinearSolver().
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13. Set nonlinear solver optional inputs (if appropriate)

See Table 5.3 for IDANLS optional inputs and Chapter §9 for nonlinear solver specific optional inputs. Note,
solver specific optional inputs must be called after IDASetNonlinearSolver(), otherwise the optional inputs
will be overridden by IDAS defaults.

14. Specify rootfinding problem (optional)

Call IDARootInit() to initialize a rootfinding problem to be solved during the integration of the ODE system.
See Table 5.6 for relevant optional input calls.

15. Set optional inputs

Call IDASet*** functions to change any optional inputs that control the behavior of IDAS from their default
values. See §5.1.3.10 for details.

16. Correct initial values (optional)

Call IDACalcIC() to correct the initial values y0 and yp0 passed to IDAInit(). See Table 5.4 for relevant
optional input calls.

17. Advance solution in time

For each point at which output is desired, call ier = IDASolve(ida_mem, tout, &tret, yret, ypret,
itask). Here itask specifies the return mode. The vector yret (which can be the same as the vector y0 above)
will contain y(t), while the vector ypret (which can be the same as the vector yp0 above) will contain ẏ(t).

See IDASolve() for details.

18. Get optional outputs

Call IDAGet*** functions to obtain optional output. See §5.1.3.12 for details.

19. Destroy objects

Upon completion of the integration call the following functions, as necessary, to destroy any objects created
above:

• Call N_VDestroy() to free vector objects.

• Call SUNMatDestroy() to free matrix objects.

• Call SUNLinSolFree() to free linear solvers objects.

• Call SUNNonlinSolFree() to free nonlinear solvers objects.

• Call IDAFree() to free the memory allocated by IDAS.

• Call SUNContext_Free() to free the SUNDIALS context.

20. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.1.3 User-callable functions

This section describes the IDAS functions that are called by the user to setup and then solve an IVP. Some of these are
required. However, starting with §5.1.3.10, the functions listed involve optional inputs/outputs or restarting, and those
paragraphs may be skipped for a casual use of IDAS. In any case, refer to §5.1.2 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.1.3.10).
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5.1.3.1 IDAS initialization and deallocation functions

void *IDACreate(SUNContext sunctx)
The function IDACreate() instantiates an IDAS solver object.

Arguments:

• sunctx – the SUNContext object (see §4.2)

Return value:

• void* pointer the IDAS solver object.

int IDAInit(void *ida_mem, IDAResFn res, sunrealtype t0, N_Vector y0, N_Vector yp0)
The function IDAInit() provides required problem and solution specifications, allocates internal memory, and
initializes IDAS.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• res – is the function which computes the residual function F (t, y, ẏ) for the DAE. For full details see
IDAResFn.

• t0 – is the initial value of t.

• y0 – is the initial value of y.

• yp0 – is the initial value of ẏ.

Return value:

• IDA_SUCCESS – The call was successful.

• IDA_MEM_NULL – The ida_mem argument was NULL.

• IDA_MEM_FAIL – A memory allocation request has failed.

• IDA_ILL_INPUT – An input argument to IDAInit() has an illegal value.

Notes:
If an error occurred, IDAInit() also sends an error message to the error handler function.

void IDAFree(void **ida_mem)
The function IDAFree() frees the pointer allocated by a previous call to IDACreate().

Arguments:

• ida_mem – pointer to the IDAS solver object.

Return value:

• void
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5.1.3.2 IDAS tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly specify the weights
used in evaluating WRMS vector norms). Note that this call must be made after the call to IDAInit().

int IDASStolerances(void *ida_mem, sunrealtype reltol, sunrealtype abstol)
The function IDASStolerances() specifies scalar relative and absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• reltol – is the scalar relative error tolerance.

• abstol – is the scalar absolute error tolerance.

Return value:

• IDA_SUCCESS – The call was successful.

• IDA_MEM_NULL – The ida_mem argument was NULL.

• IDA_NO_MALLOC – The allocation function IDAInit() has not been called.

• IDA_ILL_INPUT – One of the input tolerances was negative.

int IDASVtolerances(void *ida_mem, sunrealtype reltol, N_Vector abstol)
The function IDASVtolerances() specifies scalar relative tolerance and vector absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• reltol – is the scalar relative error tolerance.

• abstol – is the vector of absolute error tolerances.

Return value:

• IDA_SUCCESS – The call was successful.

• IDA_MEM_NULL – The ida_mem argument was NULL.

• IDA_NO_MALLOC – The allocation function IDAInit() has not been called.

• IDA_ILL_INPUT – The relative error tolerance was negative or the absolute tolerance vector had a
negative component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

int IDAWFtolerances(void *ida_mem, IDAEwtFn efun)
The function IDAWFtolerances() specifies a user-supplied function efun that sets the multiplicative error
weights Wi for use in the weighted RMS norm, which are normally defined by (2.5).

Arguments:

• ida_mem – pointer to the IDAS solver object. IDACreate()

• efun – is the function which defines the ewt vector. For full details see IDAEwtFn.

Return value:

• IDA_SUCCESS – The call was successful.

• IDA_MEM_NULL – The ida_mem argument was NULL.
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• IDA_NO_MALLOC – The allocation function IDAInit() has not been called.

5.1.3.3 General advice on choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So reltol of 10−4 means that errors
are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10−15).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector ymay be so small that pure relative error control is meaningless. For example,
if y[i] starts at some nonzero value, but in time decays to zero, then pure relative error control on y[i] makes
no sense (and is overly costly) after y[i] is below some noise level. Then abstol (if a scalar) or abstol[i] (if
a vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. See the example idaRoberts_dns in the IDAS package, and the discussion of it in the
IDAS Examples document [46]. In that problem, the three components vary between 0 and 1, and have different
noise levels; hence the abstol vector. It is impossible to give any general advice on abstol values, because the
appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

3. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual time step. The final (global) errors are some sort of accumulation of those per-step errors. A
good rule of thumb is to reduce the tolerances by a factor of .01 from the actual desired limits on errors. So if you
want .01% accuracy (globally), a good choice is to is a reltol of 10−6. But in any case, it is a good idea to do
a few experiments with the tolerances to see how the computed solution values vary as tolerances are reduced.

5.1.3.4 Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (hence unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are relevant.

1. The way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again this
requires some knowledge of the noise level of these components, which may or may not be different for different
components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in yret returned by IDAS, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s residual function res should never change a negative value in the solution vector yy to a non-negative
value, as a “solution” to this problem. This can cause instability. If the res routine cannot tolerate a zero or
negative value (e.g., because there is a square root or log of it), then the offending value should be changed to
zero or a tiny positive number in a temporary variable (not in the input yy vector) for the purposes of computing
F (t, y, ẏ).

4. IDAS provides the option of enforcing positivity or non-negativity on components. Also, such constraints can be
enforced by use of the recoverable error return feature in the user-supplied residual function. However, because
these options involve some extra overhead cost, they should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.
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5.1.3.5 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.6), e.g., the default
Newton solver, then the solution of these linear systems is handled with the IDALS linear solver interface. This interface
supports all valid SUNLinearSolver objects. Here, a matrix-based SUNLinearSolver utilizes SUNMatrix objects

to store the Jacobian matrix J =
∂F

∂y
+ α

∂F

∂ẏ
and factorizations used throughout the solution process. Conversely,

matrix-free SUNLinearSolver object instead use iterative methods to solve the linear systems of equations, and only
require the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only, on both the left and
the right, or not at all. The exceptions to this rule are SPFGMR that supports right preconditioning only and PCG that
performs symmetric preconditioning. However, in IDAS only left preconditioning is supported. For the specification
of a preconditioner, see the iterative linear solver sections in §5.1.3.10 and §5.1.4. A preconditioner matrix P must
approximate the Jacobian J , at least crudely.

To attach a generic linear solver to IDAS, after the call to IDACreate() but before any calls to IDASolve(), the user’s
program must create the appropriate SUNLinearSolver object and call the function IDASetLinearSolver(). To
create the SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinearSolver construc-
tors via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

Alternately, a user-supplied SUNLinearSolver object may be created and used instead. The use of each of the generic
linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed in the user
code. These are available in the corresponding header file associated with the specific SUNMatrix or SUNLinear-
Solver object in question, as described in Chapters §7 and §8.

Once this solver object has been constructed, the user should attach it to IDAS via a call to IDASetLinearSolver().
The first argument passed to this function is the IDAS memory pointer returned by IDACreate(); the second argument
is the desired SUNLinearSolver object to use for solving systems. The third argument is an optional SUNMatrix
object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers, the third argument should
be NULL). A call to this function initializes the IDALS linear solver interface, linking it to the main IDAS integrator,
and allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

int IDASetLinearSolver(void *ida_mem, SUNLinearSolver LS, SUNMatrix J)
The function IDASetLinearSolver() attaches a SUNLinearSolver object LS and corresponding template
Jacobian SUNMatrix object J (if applicable) to IDAS, initializing the IDALS linear solver interface.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• LS – SUNLinearSolver object to use for solving linear systems of the form (2.6).

• J – SUNMatrix object for used as a template for the Jacobian or NULL if not applicable.

Return value:

• IDALS_SUCCESS – The IDALS initialization was successful.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_ILL_INPUT – The IDALS interface is not compatible with the LS or J input objects or is
incompatible with the N_Vector object passed to IDAInit().

• IDALS_SUNLS_FAIL – A call to the LS object failed.

• IDALS_MEM_FAIL – A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
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so if additional storage is required within the SUNMatrix object (e.g., for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMatrix in Chapter §7 for further information).

Added in version 3.0.0: Replaces the deprecated function IDADlsSetLinearSolver.

5.1.3.6 Nonlinear solver interface function

By default IDAS uses the SUNNonlinearSolver implementation of Newton’s method (see §9.3). To attach a different
nonlinear solver in IDAS, the user’s program must create a SUNNonlinearSolver object by calling the appropriate
constructor routine. The user must then attach the SUNNonlinearSolver object to IDAS by calling IDASetNonlin-
earSolver().

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver() must be called after IDAInit(). If any
calls to IDASolve() have been made, then IDAS will need to be reinitialized by calling IDAReInit() to ensure that
the nonlinear solver is initialized correctly before any subsequent calls to IDASolve().

The first argument passed to IDASetNonlinearSolver() is the IDAS memory pointer returned by IDACreate() and
the second argument is the SUNNonlinearSolver object to use for solving the nonlinear system (2.4). A call to this
function attaches the nonlinear solver to the main IDAS integrator. We note that at present, the SUNNonlinearSolver
object must be of type SUNNONLINEARSOLVER_ROOTFIND.

int IDASetNonlinearSolver(void *ida_mem, SUNNonlinearSolver NLS)
The function IDASetNonlinearSolver() attaches a SUNNonlinearSolver object (NLS) to IDAS.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• NLS – SUNNonlinearSolver object to use for solving nonlinear systems.

Return value:

• IDA_SUCCESS – The nonlinear solver was successfully attached.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The SUNNonlinearSolver object is NULL , does not implement the required non-
linear solver operations, is not of the correct type, or the residual function, convergence test function,
or maximum number of nonlinear iterations could not be set.

Notes:
When forward sensitivity analysis capabilities are enabled and the IDA_STAGGERED corrector method is
used this function sets the nonlinear solver method for correcting state variables (see §5.4.2.3 for more
details).

5.1.3.7 Initial condition calculation function

IDACalcIC() calculates corrected initial conditions for the DAE system for certain index-one problems including a
class of systems of semi-implicit form (see §2.2 and [19]). It uses a Newton iteration combined with a linesearch
algorithm. Calling IDACalcIC() is optional. It is only necessary when the initial conditions do not satisfy the given
system. Thus if y0 and yp0 are known to satisfy F (t0, y0, ẏ0) = 0, then a call to IDACalcIC() is generally not
necessary.

A call to the function IDACalcIC() must be preceded by successful calls to IDACreate() and IDAInit() (or
IDAReInit()), and by a successful call to the linear system solver specification function. The call to IDACalcIC()
should precede the call(s) to IDASolve() for the given problem.
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int IDACalcIC(void *ida_mem, int icopt, sunrealtype tout1)
The function IDACalcIC() corrects the initial values y0 and yp0 at time t0.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• icopt – is one of the following two options for the initial condition calculation.

– IDA_YA_YDP_INIT directs IDACalcIC() to compute the algebraic components of y and differ-
ential components of ẏ, given the differential components of y. This option requires that the N_-
Vector id was set through IDASetId(), specifying the differential and algebraic components.

– IDA_Y_INIT directs IDACalcIC() to compute all components of y, given ẏ. In this case, id is
not required.

• tout1 – is the first value of t at which a solution will be requested (from IDASolve()). This value is
needed here only to determine the direction of integration and rough scale in the independent variable
t.

Return value:

• IDA_SUCCESS – IDACalcIC() succeeded.

• IDA_MEM_NULL – The argument ida_mem was NULL.

• IDA_NO_MALLOC – The allocation function IDAInit() has not been called.

• IDA_ILL_INPUT – One of the input arguments was illegal.

• IDA_LSETUP_FAIL – The linear solver’s setup function failed in an unrecoverable manner.

• IDA_LINIT_FAIL – The linear solver’s initialization function failed.

• IDA_LSOLVE_FAIL – The linear solver’s solve function failed in an unrecoverable manner.

• IDA_BAD_EWT – Some component of the error weight vector is zero (illegal), either for the input value
of y0 or a corrected value.

• IDA_FIRST_RES_FAIL – The user’s residual function returned a recoverable error flag on the first call,
but IDACalcIC() was unable to recover.

• IDA_RES_FAIL – The user’s residual function returned a nonrecoverable error flag.

• IDA_NO_RECOVERY – The user’s residual function, or the linear solver’s setup or solve function had a
recoverable error, but IDACalcIC() was unable to recover.

• IDA_CONSTR_FAIL – IDACalcIC()was unable to find a solution satisfying the inequality constraints.

• IDA_LINESEARCH_FAIL – The linesearch algorithm failed to find a solution with a step larger than
steptol in weighted RMS norm, and within the allowed number of backtracks.

• IDA_CONV_FAIL – IDACalcIC() failed to get convergence of the Newton iterations.

Notes:
IDACalcIC() will correct the values of y(t0) and ẏ(t0) which were specified in the previous call to
IDAInit() or IDAReInit(). To obtain the corrected values, call IDAGetConsistentIC().
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5.1.3.8 Rootfinding initialization function

While solving the IVP, IDAS has the capability to find the roots of a set of user-defined functions. To activate the root
finding algorithm, call the following function. This is normally called only once, prior to the first call to IDASolve(),
but if the rootfinding problem is to be changed during the solution, IDARootInit() can also be called prior to a
continuation call to IDASolve().

int IDARootInit(void *ida_mem, int nrtfn, IDARootFn g)
The function IDARootInit() specifies that the roots of a set of functions gi(t, y) are to be found while the IVP
is being solved.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nrtfn – is the number of root functions.

• g – is the function which defines the nrtfn functions gi(t, y, ẏ) whose roots are sought. See IDA-
RootFn for more details.

Return value:

• IDA_SUCCESS – The call was successful.

• IDA_MEM_NULL – The ida_mem argument was NULL.

• IDA_MEM_FAIL – A memory allocation failed.

• IDA_ILL_INPUT – The function g is NULL, but nrtfn > 0.

Notes:
If a new IVP is to be solved with a call to IDAReInit(), where the new IVP has no rootfinding problem
but the prior one did, then call IDARootInit() with nrtfn = 0.

5.1.3.9 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. The input arguments
(itask) specifies one of two modes as to where IDAS is to return a solution. These modes are modified if the user has
set a stop time (with IDASetStopTime()) or requested rootfinding (with IDARootInit()).

int IDASolve(void *ida_mem, sunrealtype tout, sunrealtype *tret, N_Vector yret, N_Vector ypret, int itask)
The function IDASolve() integrates the DAE over an interval in t.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• tout – the next time at which a computed solution is desired.

• tret – the time reached by the solver output.

• yret – the computed solution vector y.

• ypret – the computed solution vector ẏ.

• itask – a flag indicating the job of the solver for the next user step

– IDA_NORMAL – the solver will take internal steps until it has reached or just passed the user specified
tout parameter. The solver then interpolates in order to return approximate values of y(tout) and
ẏ(tout).

– IDA_ONE_STEP – the solver will just take one internal step and return the solution at the point
reached by that step.
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Return value:

• IDA_SUCCESS – The call was successful.

• IDA_TSTOP_RETURN – IDASolve() succeeded by reaching the stop point specified through the op-
tional input function IDASetStopTime().

• IDA_ROOT_RETURN – IDASolve() succeeded and found one or more roots. In this case, tret is the
location of the root. If nrtfn >1, call IDAGetRootInfo() to see which gi were found to have a root.

• IDA_MEM_NULL – The ida_mem argument was NULL.

• IDA_ILL_INPUT – One of the inputs to IDASolve() was illegal, or some other input to the solver was
either illegal or missing. The latter category includes the following situations:

– The tolerances have not been set.

– A component of the error weight vector became zero during internal time-stepping.

– The linear solver initialization function called by the user after calling IDACreate() failed to set
the linear solver-specific lsolve field in ida_mem.

– A root of one of the root functions was found both at a point t and also very near t.

In any case, the user should see the printed error message for details.

• IDA_TOO_MUCH_WORK – The solver took mxstep internal steps but could not reach tout. The default
value for mxstep is MXSTEP_DEFAULT = 500.

• IDA_TOO_MUCH_ACC – The solver could not satisfy the accuracy demanded by the user for some inter-
nal step.

• IDA_ERR_FAIL – Error test failures occurred too many times (MXNEF = 10) during one internal time
step or occurred with |h| = hmin.

• IDA_CONV_FAIL – Convergence test failures occurred too many times (MXNCF = 10) during one in-
ternal time step or occurred with |h| = hmin.

• IDA_LINIT_FAIL – The linear solver’s initialization function failed.

• IDA_LSETUP_FAIL – The linear solver’s setup function failed in an unrecoverable manner.

• IDA_LSOLVE_FAIL – The linear solver’s solve function failed in an unrecoverable manner.

• IDA_CONSTR_FAIL – The inequality constraints were violated and the solver was unable to recover.

• IDA_REP_RES_ERR – The user’s residual function repeatedly returned a recoverable error flag, but the
solver was unable to recover.

• IDA_RES_FAIL – The user’s residual function returned a nonrecoverable error flag.

• IDA_RTFUNC_FAIL – The rootfinding function failed.

Notes:
The vectors yret and ypret can occupy the same space as the initial condition vectors y0 and yp0, re-
spectively, that were passed to IDAInit().

In the IDA_ONE_STEP mode, tout is used on the first call only, and only to get the direction and rough
scale of the independent variable.

If a stop time is enabled (through a call to IDASetStopTime()), then IDASolve() returns the solution
at tstop. Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be
re-enabled only though a new call to IDASetStopTime()).

All failure return values are negative and therefore a test flag < 0 will trap all IDASolve() failures.
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On any error return in which one or more internal steps were taken by IDASolve(), the returned values
of tret, yret, and ypret correspond to the farthest point reached in the integration. On all other error
returns, these values are left unchanged from the previous IDASolve() return.

5.1.3.10 Optional input functions

There are numerous optional input parameters that control the behavior of the IDAS solver. IDAS provides functions
that can be used to change these optional input parameters from their default values. The main inputs are divided in
the following categories:

• Table 5.1 list the main IDAS optional input functions,

• Table 5.2 lists the IDALS linear solver interface optional input functions,

• Table 5.3 lists the IDANLS nonlinear solver interface optional input functions,

• Table 5.4 lists the initial condition calculation optional input functions,

• Table 5.5 lists the IDAS step size adaptivity optional input functions, and

• Table 5.6 lists the rootfinding optional input functions.

These optional inputs are described in detail in the remainder of this section. For the most casual use of IDAS, the
reader can skip to §5.1.4.

We note that, on an error return, all of the optional input functions also send an error message to the error handler
function. All error return values are negative, so the test flag < 0 will catch all errors.

The optional input calls can, unless otherwise noted, be executed in any order. Finally, a call to an IDASet*** func-
tion can, unless otherwise noted, be made at any time from the user’s calling program and, if successful, takes effect
immediately.

Main solver optional input functions

Table 5.1: Optional inputs for IDAS

Optional input Function name Default
User data IDASetUserData() NULL
Maximum order for BDF method IDASetMaxOrd() 5
Maximum no. of internal steps before tout IDASetMaxNumSteps() 500
Initial step size IDASetInitStep() estimated
Minimum absolute step size hmin IDASetMinStep() 0
Maximum absolute step size hmax IDASetMaxStep() ∞
Value of tstop IDASetStopTime() undefined
Disable the stop time IDAClearStopTime() N/A
Maximum no. of error test failures IDASetMaxErrTestFails() 10
Suppress alg. vars. from error test IDASetSuppressAlg() SUNFALSE
Variable types (differential/algebraic) IDASetId() NULL
Inequality constraints on solution IDASetConstraints() NULL

int IDASetUserData(void *ida_mem, void *user_data)
The function IDASetUserData() attaches a user-defined data pointer to the main IDAS solver object.

Arguments:

• ida_mem – pointer to the IDAS solver object.
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• user_data – pointer to the user data.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
If specified, the pointer to user_data is passed to all user-supplied functions that have it as an argument.
Otherwise, a NULL pointer is passed.

Warning

If user_data is needed in user linear solver or preconditioner functions, the call to IDASetUserData()
must be made before the call to specify the linear solver.

int IDASetMaxOrd(void *ida_mem, int maxord)
The function IDASetMaxOrd() specifies the maximum order of the linear multistep method.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxord – value of the maximum method order. This must be positive.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The input value maxord is≤ 0 , or larger than the max order value when IDAInit()
was called.

Notes:
The default value is 5. If the input value exceeds 5, the value 5 will be used. If called before IDAInit(),
maxord limits the memory requirements for the internal IDAS memory block and its value cannot be in-
creased past the value set when IDAInit() was called.

int IDASetMaxNumSteps(void *ida_mem, long int mxsteps)
The function IDASetMaxNumSteps() specifies the maximum number of steps to be taken by the solver in its
attempt to reach the next output time.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• mxsteps – maximum allowed number of steps.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
Passing mxsteps = 0 results in IDAS using the default value (500). Passing mxsteps < 0 disables the test
(not recommended).
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int IDASetInitStep(void *ida_mem, sunrealtype hin)
The function IDASetInitStep() specifies the initial step size.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• hin – value of the initial step size to be attempted. Pass 0.0 to have IDAS use the default value.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
By default, IDAS estimates the initial step as the solution of ‖hẏ‖WRMS = 1/2, with an added restriction
that |h| ≤ .001|tout − t0|.

int IDASetMinStep(void *ida_mem, sunrealtype hmin)
The function IDASetMinStep() specifies the minimum absolute value of the step size.

Pass hmin = 0 to obtain the default value of 0.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• hmin – minimum absolute value of the step size.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – hmin is negative.

Added in version 5.2.0.

int IDASetMaxStep(void *ida_mem, sunrealtype hmax)
The function IDASetMaxStep() specifies the maximum absolute value of the step size.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• hmax – maximum absolute value of the step size.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – Either hmax is not positive or it is smaller than the minimum allowable step.

Notes:
Pass hmax = 0 to obtain the default value∞.

int IDASetStopTime(void *ida_mem, sunrealtype tstop)
The function IDASetStopTime() specifies the value of the independent variable t past which the solution is not
to proceed.

Arguments:

• ida_mem – pointer to the IDAS solver object.
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• tstop – value of the independent variable past which the solution should not proceed.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The value of tstop is not beyond the current t value, tn.

Notes:
The default, if this routine is not called, is that no stop time is imposed. Once the integrator returns at
a stop time, any future testing for tstop is disabled (and can be re-enabled only though a new call to
IDASetStopTime()).

A stop time not reached before a call to IDAReInit() will remain active but can be disabled by calling
IDAClearStopTime().

int IDAClearStopTime(void *ida_mem)
Disables the stop time set with IDASetStopTime().

Arguments:

• ida_mem – pointer to the IDA memory block.

Return value:

• IDA_SUCCESS if successful

• IDA_MEM_NULL if the IDA memory is NULL

Notes:
The stop time can be re-enabled though a new call to IDASetStopTime().

Added in version 6.5.1.

int IDASetMaxErrTestFails(void *ida_mem, int maxnef)
The function IDASetMaxErrTestFails() specifies the maximum number of error test failures in attempting
one step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxnef – maximum number of error test failures allowed on one step (>0).

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
The default value is 10.

int IDASetSuppressAlg(void *ida_mem, sunbooleantype suppressalg)
The function IDASetSuppressAlg() indicates whether or not to suppress algebraic variables in the local error
test.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• suppressalg – indicates whether to suppress (SUNTRUE) or include (SUNFALSE) the algebraic vari-
ables in the local error test.

Return value:
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• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
The default value is SUNFALSE. If suppressalg = SUNTRUE is selected, then the id vector must be set
(through IDASetId()) to specify the algebraic components. In general, the use of this option (with sup-
pressalg = SUNTRUE) is discouraged when solving DAE systems of index 1, whereas it is generally
encouraged for systems of index 2 or more. See pp. 146-147 of [14] for more on this issue.

int IDASetId(void *ida_mem, N_Vector id)
The function IDASetId() specifies algebraic/differential components in the y vector.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• id – a vector of values identifying the components of y as differential or algebraic variables. A value
of 1.0 indicates a differential variable, while 0.0 indicates an algebraic variable.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
The vector id is required if the algebraic variables are to be suppressed from the local error test (see
IDASetSuppressAlg()) or if IDACalcIC() is to be called with icopt = IDA_YA_YDP_INIT.

int IDASetConstraints(void *ida_mem, N_Vector constraints)
The function IDASetConstraints() specifies a vector defining inequality constraints for each component of
the solution vector y.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• constraints – vector of constraint flags.

– If constraints[i] = 0, no constraint is imposed on yi.

– If constraints[i] = 1, yi will be constrained to be yi ≥ 0.0.

– If constraints[i] = -1, yi will be constrained to be yi ≤ 0.0.

– If constraints[i] = 2, yi will be constrained to be yi > 0.0.

– If constraints[i] = -2, yi will be constrained to be yi < 0.0.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The constraints vector contains illegal values or the simultaneous corrector option
has been selected when doing forward sensitivity analysis.

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints vector will result in an illegal
input return. A NULL input will disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous corrector option is cur-
rently disallowed and will result in an illegal input return.
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Linear solver interface optional input functions

Table 5.2: Optional inputs for the IDALS linear solver interface

Optional input Function name Default
Jacobian function IDASetJacFn() DQ
Set parameter determining if a cj change requires a linear solver
setup call

IDASetDeltaCjLSetup() 0.25

Enable or disable linear solution scaling IDASetLinearSolution-
Scaling()

on

Jacobian-times-vector function IDASetJacTimes() NULL, DQ
Preconditioner functions IDASetPreconditioner() NULL,

NULL
Ratio between linear and nonlinear tolerances IDASetEpsLin() 0.05
Increment factor used in DQ Jv approx. IDASetIncrementFactor() 1.0
Jacobian-times-vector DQ Res function IDASetJacTimesResFn() NULL
Newton linear solve tolerance conversion factor IDASetLSNormFactor() vector

length

The mathematical explanation of the linear solver methods available to IDAS is provided in §2.2. We group the user-
callable routines into four categories: general routines concerning the overall IDALS linear solver interface, optional
inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and optional inputs for iterative
linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive, whereas the “iterative”
tag can apply to either case.

When using matrix-based linear solver modules, the IDALS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix J(t, y, ẏ). This function must be of type IDALsJacFn. The user can supply a Jacobian
function or, if using the SUNMATRIX_DENSE or SUNMATRIX_BAND modules for the matrix J , can use the default
internal difference quotient approximation that comes with the IDALS interface. To specify a user-supplied Jacobian
function jac, IDALS provides the function IDASetJacFn(). The IDALS interface passes the pointer user_data to
the Jacobian function. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied Jacobian function, without using global data in the program. The pointer
user_data may be specified through IDASetUserData().

int IDASetJacFn(void *ida_mem, IDALsJacFn jac)
The function IDASetJacFn() specifies the Jacobian approximation function to be used for a matrix-based solver
within the IDALS interface.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• jac – user-defined Jacobian approximation function. See IDALsJacFn for more details.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver interface has not been initialized.

Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolver(). By default, IDALS uses an internal difference quotient function for the SUN-
MATRIX_DENSE and SUNMATRIX_BAND modules. If NULL is passed to jac, this default function is
used. An error will occur if no jac is supplied when using other matrix types.
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Added in version 3.0.0: Replaces the deprecated function IDADlsSetJacFn.

When using a matrix-based linear solver the matrix information will be updated infrequently to reduce matrix construc-
tion and, with direct solvers, factorization costs. As a result the value of α may not be current and a scaling factor is
applied to the solution of the linear system to account for the lagged value of α. See §8.2.1 for more details. The func-
tion IDASetLinearSolutionScaling() can be used to disable this scaling when necessary, e.g., when providing a
custom linear solver that updates the matrix using the current α as part of the solve.

int IDASetDeltaCjLSetup(void *ida_mem, sunrealtype dcj)
The function IDASetDeltaCjLSetup specifies the parameter that determines the bounds on a change in cj
that require a linear solver setup call. If cj_current / cj_previous < (1 - dcj) / (1 + dcj) or cj_-
current / cj_previous > (1 + dcj) / (1 - dcj), the linear solver setup function is called.

If dcj is < 0 or ≥ 1 then the default value (0.25) is used.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• dcj – the cj change threshold.

Return value:

• IDA_SUCCESS – The flag value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.

int IDASetLinearSolutionScaling(void *ida_mem, sunbooleantype onoff)
The function IDASetLinearSolutionScaling() enables or disables scaling the linear system solution to ac-
count for a change in α in the linear system. For more details see §8.2.1.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• onoff – flag to enable (SUNTRUE) or disable (SUNFALSE) scaling.

Return value:

• IDALS_SUCCESS – The flag value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver interface has not been initialized.

• IDALS_ILL_INPUT – The attached linear solver is not matrix-based.

Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolver(). By default scaling is enabled with matrix-based linear solvers.

When using matrix-free linear solver modules, the IDALS solver interface requires a function to compute an approxima-
tion to the product between the Jacobian matrix J(t, y, ẏ) and a vector v. The user can supply a Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the IDALS solver
interface.

A user-defined Jacobian-vector product function must be of type IDALsJacTimesVecFn and can be specified through a
call to IDASetJacTimes(). The evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-
vector product function may be done in the optional user-supplied function jtsetup (see §5.1.4.6 for specification
details). The pointer user_data received through IDASetUserData() (or a pointer to NULL if user_data was not
specified) is passed to the Jacobian-vector product setup and product functions, jtsetup and jtimes, each time they
are called. This allows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied functions without using global data in the program.
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int IDASetJacTimes(void *ida_mem, IDALsJacTimesSetupFn jsetup, IDALsJacTimesVecFn jtimes)
The function IDASetJacTimes() specifies the Jacobian-vector product setup and product functions.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• jtsetup – user-defined function to set up the Jacobian-vector product. See IDALsJacTimesSetupFn
for more details. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function. See IDALsJacTimesVecFn for more details.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_SUNLS_FAIL – An error occurred when setting up the system matrix-times-vector routines in
the SUNLinearSolver object used by the IDALS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to omit jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup
inputs. This function must be called after the IDALS linear solver interface has been initialized through a
call to IDASetLinearSolver().

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetJacTimes.

When using the default difference-quotient approximation to the Jacobian-vector product, the user may specify the
factor to use in setting increments for the finite-difference approximation, via a call to IDASetIncrementFactor().

int IDASetIncrementFactor(void *ida_mem, sunrealtype dqincfac)
The function IDASetIncrementFactor() specifies the increment factor to be used in the difference-quotient
approximation to the product Jv. Specifically, Jv is approximated via the formula

Jv =
1

σ

[
F (t, ỹ, ˜̇y)− F (t, y, ẏ)

]
,

where ỹ = y + σv, ˜̇y = ẏ + cjσv, cj is a BDF parameter proportional to the step size, σ = dqincfac
√
N , and

N is the number of equations in the DAE system.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• dqincfac – user-specified increment factor positive.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_ILL_INPUT – The specified value of dqincfac is ≤ 0.

Notes:
The default value is 1.0. This function must be called after the IDALS linear solver interface has been
initialized through a call to IDASetLinearSolver().

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetIncrementFactor.
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Additionally, when using the internal difference quotient, the user may also optionally supply an alternative residual
function for use in the Jacobian-vector product approximation by calling IDASetJacTimesResFn(). The alternative
residual function should compute a suitable (and differentiable) approximation to the residual function provided to
IDAInit(). For example, as done in [31] for an ODE in explicit form, the alternative function may use lagged values
when evaluating a nonlinearity to avoid differencing a potentially non-differentiable factor.

int IDASetJacTimesResFn(void *ida_mem, IDAResFn jtimesResFn)
The function IDASetJacTimesResFn() specifies an alternative DAE residual function for use in the internal
Jacobian-vector product difference quotient approximation.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• jtimesResFn – is the function which computes the alternative DAE residual function to use in
Jacobian-vector product difference quotient approximations. See IDAResFn for more details.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_ILL_INPUT – The internal difference quotient approximation is disabled.

Notes:
The default is to use the residual function provided to IDAInit() in the internal difference quotient. If the
input resudual function is NULL, the default is used. This function must be called after the IDALS linear
solver interface has been initialized through a call to IDASetLinearSolver().

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to IDAS using the function
IDASetPreconditioner(). The psetup function supplied to this routine should handle evaluation and preprocessing
of any Jacobian data needed by the user’s preconditioner solve function, psolve. Both of these functions are fully
specified in §5.1.4.7 and §5.1.4.8). The user data pointer received through IDASetUserData() (or NULL if a user data
pointer was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

int IDASetPreconditioner(void *ida_mem, IDALsPrecSetupFn psetup, IDALsPrecSolveFn psolve)
The function IDASetPreconditioner() specifies the preconditioner setup and solve functions.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• psetup – user-defined function to set up the preconditioner. See IDALsPrecSetupFn for more details.
Pass NULL if no setup is necessary.

• psolve – user-defined preconditioner solve function. See IDALsPrecSolveFn for more details.

Return value:

• IDALS_SUCCESS – The optional values have been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_SUNLS_FAIL – An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the IDALS interface.
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Notes:
The default is NULL for both arguments (i.e., no preconditioning). This function must be called after the
IDALS linear solver interface has been initialized through a call to IDASetLinearSolver().

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetPreconditioner.

Also, as described in §2.2, the IDALS interface requires that iterative linear solvers stop when the norm of the precon-
ditioned residual satisfies

‖r‖ ≤ εLε

10

where ε is the nonlinear solver tolerance, and the default εL = 0.05; this value may be modified by the user through
the IDASetEpsLin() function.

int IDASetEpsLin(void *ida_mem, sunrealtype eplifac)
The function IDASetEpsLin() specifies the factor by which the Krylov linear solver’s convergence test constant
is reduced from the nonlinear iteration test constant.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eplifac – linear convergence safety factor ≥ 0.0.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_ILL_INPUT – The factor eplifac is negative.

Notes:
The default value is 0.05. This function must be called after the IDALS linear solver interface has been
initialized through a call to IDASetLinearSolver(). If eplifac = 0.0 is passed, the default value is
used.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetEpsLin.

int IDASetLSNormFactor(void *ida_mem, sunrealtype nrmfac)
The function IDASetLSNormFactor() specifies the factor to use when converting from the integrator tolerance
(WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac *
tol_WRMS.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nrmfac – the norm conversion factor.

– If nrmfac > 0, the provided value is used.

– If nrmfac = 0 then the conversion factor is computed using the vector length i.e., nrmfac =
N_VGetLength(y) (default).

– If nrmfac < 0 then the conversion factor is computed using the vector dot product nrmfac =
N_VDotProd(v,v) where all the entries of v are one.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.
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Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolver(). Prior to the introduction of N_VGetLength() in SUNDIALS v5.0.0 (IDAS
v4.0.0) the value of nrmfac was computed using N_VDotProd() i.e., the nrmfac < 0 case.

Nonlinear solver interface optional input functions

Table 5.3: Optional inputs for the IDANLS nonlinear solver interface

Optional input Function name Default
Maximum no. of nonlinear iterations IDASetMaxNonlinIters() 4
Maximum no. of convergence failures IDASetMaxConvFails() 10
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef() 0.33
Residual function for nonlinear system evaluations IDASetNlsResFn() NULL

The following functions can be called to set optional inputs controlling the nonlinear solver.

int IDASetMaxNonlinIters(void *ida_mem, int maxcor)
The function IDASetMaxNonlinIters() specifies the maximum number of nonlinear solver iterations in one
solve attempt.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxcor – maximum number of nonlinear solver iterations allowed in one solve attempt (>0).

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_MEM_FAIL – The SUNNonlinearSolver object is NULL.

Notes:
The default value is 4.

int IDASetMaxConvFails(void *ida_mem, int maxncf)
The function IDASetMaxConvFails() specifies the maximum number of nonlinear solver convergence failures
in one step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxncf – maximum number of allowable nonlinear solver convergence failures in one step (>0).

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
The default value is 10.

int IDASetNonlinConvCoef(void *ida_mem, sunrealtype nlscoef)
The function IDASetNonlinConvCoef() specifies the safety factor in the nonlinear convergence test; see (2.8).

Arguments:
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• ida_mem – pointer to the IDAS solver object.

• nlscoef – coefficient in nonlinear convergence test (>0.0).

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The value of nlscoef is ≤ 0.0.

Notes:
The default value is 0.33.

int IDASetNlsResFn(void *ida_mem, IDAResFn res)
The function IDASetNlsResFn() specifies an alternative residual function for use in nonlinear system function
evaluations.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• res – the alternative function which computes the DAE residual function F (t, y, ẏ). See IDAResFn
for more details.

Return value:

• IDA_SUCCESS – The optional function has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
The default is to use the residual function provided to IDAInit() in nonlinear system function evaluations.
If the input residual function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after IDASetNonlinearSolver().

When doing forward sensitivity analysis with the simultaneous solver strategy is function must be called
after IDASetNonlinearSolverSensSim().

Initial condition calculation optional input functions

Table 5.4: Optional inputs for IDAS initial condition calculation

Optional input Function name Default
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC() 0.0033
Maximum no. of steps IDASetMaxNumStepsIC() 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC() 4
Maximum no. of Newton iterations IDASetMaxNumItersIC() 10
Max. linesearch backtracks per Newton iter. IDASetMaxBacksIC() 100
Turn off linesearch IDASetLineSearchOffIC() SUNFALSE
Lower bound on Newton step IDASetStepToleranceIC() uround2/3

The following functions can be called just prior to calling IDACalcIC() to set optional inputs controlling the initial
condition calculation.

int IDASetNonlinConvCoefIC(void *ida_mem, sunrealtype epiccon)
The function IDASetNonlinConvCoefIC() specifies the positive constant in the Newton iteration convergence
test within the initial condition calculation.
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Arguments:

• ida_mem – pointer to the IDAS solver object.

• epiccon – coefficient in the Newton convergence test (> 0).

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The epiccon factor is ≤ 0.0.

Notes:
The default value is 0.01 · 0.33. This test uses a weighted RMS norm (with weights defined by the
tolerances). For new initial value vectors y and ẏ to be accepted, the norm of J−1F (t0, y, ẏ) must be
≤ epiccon, where J is the system Jacobian.

int IDASetMaxNumStepsIC(void *ida_mem, int maxnh)
The function IDASetMaxNumStepsIC() specifies the maximum number of steps allowed when icopt = IDA_-

YA_YDP_INIT in IDACalcIC(), where h appears in the system Jacobian, J =
∂F

∂y
+

(
1

h

)
∂F

∂ẏ
.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxnh – maximum allowed number of values for h.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – maxnh is non-positive.

Notes:
The default value is 5.

int IDASetMaxNumJacsIC(void *ida_mem, int maxnj)
The function IDASetMaxNumJacsIC() specifies the maximum number of the approximate Jacobian or precon-
ditioner evaluations allowed when the Newton iteration appears to be slowly converging.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxnj – maximum allowed number of Jacobian or preconditioner evaluations.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – maxnj is non-positive.

Notes:
The default value is 4.

int IDASetMaxNumItersIC(void *ida_mem, int maxnit)
The function IDASetMaxNumItersIC() specifies the maximum number of Newton iterations allowed in any
one attempt to solve the initial conditions calculation problem.

Arguments:
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• ida_mem – pointer to the IDAS solver object.

• maxnit – maximum number of Newton iterations.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – maxnit is non-positive.

Notes:
The default value is 10.

int IDASetMaxBacksIC(void *ida_mem, int maxbacks)
The function IDASetMaxBacksIC() specifies the maximum number of linesearch backtracks allowed in any
Newton iteration, when solving the initial conditions calculation problem.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• maxbacks – maximum number of linesearch backtracks per Newton step.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – maxbacks is non-positive.

Notes:
The default value is 100.

If IDASetMaxBacksIC() is called in a Forward Sensitivity Analysis, the the limit maxbacks applies in
the calculation of both the initial state values and the initial sensitivities.

int IDASetLineSearchOffIC(void *ida_mem, sunbooleantype lsoff)
The function IDASetLineSearchOffIC() specifies whether to turn on or off the linesearch algorithm.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• lsoff – a flag to turn off (SUNTRUE) or keep (SUNFALSE) the linesearch algorithm.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:

The default value is SUNFALSE.

int IDASetStepToleranceIC(void *ida_mem, int steptol)
The function IDASetStepToleranceIC() specifies a positive lower bound on the Newton step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• steptol – Minimum allowed WRMS-norm of the Newton step (> 0.0).

Return value:
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• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The steptol tolerance is ≤ 0.0.

Notes:
The default value is (unit roundoff)2/3.

Time step adaptivity optional input functions

Table 5.5: Optional inputs for IDAS time step adaptivity

Optional input Function name Default
Fixed step size bounds ηmin_fx and ηmax_fx IDASetEtaFixedStep-

Bounds()
1.0 and
2.0

Maximum step size growth factor ηmax IDASetEtaMax() 2.0
Minimum step size reduction factor ηmin IDASetEtaMin() 0.5
Maximum step size reduction factor ηlow IDASetEtaLow() 0.9
Minimum step size reduction factor after an error test failure ηmin_ef IDASetEtaMinErrFail() 0.25
Step size reduction factor after a nonlinear solver convergence fail-
ure ηcf

IDASetEtaConvFail() 0.25

The following functions can be called to set optional inputs to control the step size adaptivity.

Note

The default values for the step size adaptivity tuning parameters have a long history of success and changing the
values is generally discouraged. However, users that wish to experiment with alternative values should be careful
to make changes gradually and with testing to determine their effectiveness.

int IDASetEtaFixedStepBounds(void *ida_mem, sunrealtype eta_min_fx, sunrealtype eta_max_fx)
The function IDASetEtaFixedStepBounds specifies the bounds ηmin_fx and ηmax_fx. If step size change factor
η satisfies ηmin_fx < η < ηmax_fx the current step size is retained.

The default values are ηfxmin = 1 and ηfxmax = 2.

eta_fxmin should satisfy 0 < ηfxmin ≤ 1, otherwise the default value is used. eta_fxmax should satisfy
ηfxmin ≥ 1, otherwise the default value is used.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eta_min_fx – value of the fixed step size lower bound.

• eta_max_fx – value of the fixed step size upper bound.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.
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int IDASetEtaMax(void *ida_mem, sunrealtype eta_max)
The function IDASetEtaMax specifies the maximum step size growth factor ηmax.

The default value is ηmax = 2.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eta_max – maximum step size growth factor.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.

int IDASetEtaMin(void *ida_mem, sunrealtype eta_min)
The function IDASetEtaMin specifies the minimum step size reduction factor ηmin.

The default value is ηmin = 0.5.

eta_min should satisfy 0 < ηmin < 1, otherwise the default value is used.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eta_min – value of the minimum step size reduction factor.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.

int IDASetEtaLow(void *ida_mem, sunrealtype eta_low)
The function IDASetEtaLow specifies the maximum step size reduction factor ηlow.

The default value is ηlow = 0.9.

eta_low should satisfy 0 < ηlow ≤ 1, otherwise the default value is used.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eta_low – value of the maximum step size reduction factor.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.

int IDASetEtaMinErrFail(void *ida_mem, sunrealtype eta_min_ef)
The function IDASetEtaMinErrFail specifies the minimum step size reduction factor ηmin_ef after an error
test failure.

The default value is ηmin_ef = 0.25.

If eta_min_ef is ≤ 0 or ≥ 1, the default value is used.
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Arguments:

• ida_mem – pointer to the IDAS solver object.

• eta_low – value of the minimum step size reduction factor.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.

int IDASetEtaConvFail(void *ida_mem, sunrealtype eta_cf)
The function IDASetEtaConvFail specifies the step size reduction factor ηcf after a nonlinear solver conver-
gence failure.

The default value is ηcf = 0.25.

If eta_cf is ≤ 0 or ≥ 1, the default value is used.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eta_low – value of the step size reduction factor.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.2.0.

Rootfinding optional input functions

Table 5.6: Optional inputs for IDAS rootfinding

Optional input Function name Default
Direction of zero-crossing IDASetRootDirection() both
Disable rootfinding warnings IDASetNoInactiveRootWarn() none

The following functions can be called to set optional inputs to control the rootfinding algorithm.

int IDASetRootDirection(void *ida_mem, int *rootdir)
The function IDASetRootDirection() specifies the direction of zero-crossings to be located and returned to
the user.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• rootdir – state array of length nrtfn , the number of root functions gi , as specified in the call to the
function IDARootInit().

– A value of 0 for rootdir[i] indicates that crossing in either direction should be reported for gi.

– A value of +1 or −1 for rootdir[i] indicates that the solver should report only zero-crossings
where gi is increasing or decreasing, respectively.

Return value:
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• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – rootfinding has not been activated through a call to IDARootInit().

Notes:
The default behavior is to locate both zero-crossing directions.

int IDASetNoInactiveRootWarn(void *ida_mem)
The function IDASetNoInactiveRootWarn() disables issuing a warning if some root function appears to be
identically zero at the beginning of the integration.

Arguments:

• ida_mem – pointer to the IDAS solver object.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
IDAS will not report the initial conditions as a possible zero-crossing (assuming that one or more compo-
nents gi are zero at the initial time). However, if it appears that some gi is identically zero at the initial time
(i.e., gi is zero at the initial time and after the first step), IDAS will issue a warning which can be disabled
with this optional input function.

5.1.3.11 Interpolated output function

An optional function IDAGetDky() is available to obtain additional output values. This function must be called after
a successful return from IDASolve() and provides interpolated values of y or its derivatives of order up to the last
internal order used for any value of t in the last internal step taken by IDAS.

int IDAGetDky(void *ida_mem, sunrealtype t, int k, N_Vector dky)
The function IDAGetDky() computes the interpolated values of the kth derivative of y for any value of t in the
last internal step taken by IDAS. The value of k must be non-negative and smaller than the last internal order
used. A value of 0 for k means that the y is interpolated. The value of t must satisfy tn − hu ≤ t ≤ tn, where
tn denotes the current internal time reached, and hu is the last internal step size used successfully.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• t – time at which to interpolate.

• k – integer specifying the order of the derivative of y wanted.

• dky – vector containing the interpolated kth derivative of y(t).

Return value:

• IDA_SUCCESS – IDAGetDky() succeeded.

• IDA_MEM_NULL – The ida_mem argument was NULL.

• IDA_BAD_T – t is not in the interval [tn − hu, tn].

• IDA_BAD_K – k is not one of 0, 1, . . . , klast.

• IDA_BAD_DKY – dky is NULL.
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Notes:
It is only legal to call the function IDAGetDky() after a successful return from IDASolve(). Functions
IDAGetCurrentTime(), IDAGetLastStep() and IDAGetLastOrder() can be used to access tn, hu,
and klast.

5.1.3.12 Optional output functions

IDAS provides an extensive list of functions that can be used to obtain solver performance information. Table 5.7 lists
all optional output functions in IDAS, which are then described in detail in the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining how successful the
IDAS solver is in doing its job. For example, the counters nsteps and nrevals provide a rough measure of the overall
cost of a given run, and can be compared among runs with differing input options to suggest which set of options is
most efficient. The ratio nniters/nsteps measures the performance of the nonlinear solver in solving the nonlinear
systems at each time step; typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of
a matrix-based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian or preconditioner being
used. Thus, for example, njevals/nniters can indicate if a user-supplied Jacobian is inaccurate, if this ratio is larger
than for the case of the corresponding internal Jacobian. The ratio nliters/nniters measures the performance of
the Krylov iterative linear solver, and thus (indirectly) the quality of the preconditioner.

Table 5.7: Optional outputs for IDAS, IDALS, and IDANLS

Optional output Function name

Size of IDAS real and integer workspace IDAGetWorkSpace()
Cumulative number of internal steps IDAGetNumSteps()
No. of calls to residual function IDAGetNumResEvals()
No. of calls to linear solver setup function IDAGetNumLinSolvSetups()

No. of local error test failures that have occurred | IDAGetNumErrTestFails()
No. of failed steps due to a nonlinear solver failure | IDAGetNumStepSolveFails()

Order used during the last step IDAGetLastOrder()
Order to be attempted on the next step IDAGetCurrentOrder()
Actual initial step size used IDAGetActualInitStep()
Step size used for the last step IDAGetLastStep()
Step size to be attempted on the next step IDAGetCurrentStep()
Current internal time reached by the solver IDAGetCurrentTime()
Suggested factor for tolerance scaling IDAGetTolScaleFactor()
Error weight vector for state variables IDAGetErrWeights()
Estimated local errors IDAGetEstLocalErrors()
All IDA integrator statistics IDAGetIntegratorStats()
No. of nonlinear solver iterations IDAGetNumNonlinSolvIters()
No. of nonlinear convergence failures IDAGetNumNonlinSolvConvFails()
IDA nonlinear solver statistics IDAGetNonlinSolvStats()
User data pointer IDAGetUserData()
Array showing roots found IDAGetRootInfo()
No. of calls to user root function IDAGetNumGEvals()
Print all statistics IDAPrintAllStats()
Name of constant associated with a return flag IDAGetReturnFlagName()
Number of backtrack operations IDAGetNumBacktrackOps()
Corrected initial conditions IDAGetConsistentIC()
Stored Jacobian of the DAE residual function IDAGetJac()
cj value used in the Jacobian evaluation IDAGetJacCj()

continues on next page

5.1. Using IDAS for IVP Solution 89



User Documentation for IDAS, v6.3.0

Table 5.7 – continued from previous page

Optional output
Function name

Time at which the Jacobian was evaluated IDAGetJacTime()
Step number at which the Jacobian was evaluated IDAGetJacNumSteps()
Size of real and integer workspace IDAGetLinWorkSpace()
No. of Jacobian evaluations IDAGetNumJacEvals()
No. of residual calls for finite diff. Jacobian-vector evals. IDAGetNumLinResEvals()
No. of linear iterations IDAGetNumLinIters()
No. of linear convergence failures IDAGetNumLinConvFails()
No. of preconditioner evaluations IDAGetNumPrecEvals()
No. of preconditioner solves IDAGetNumPrecSolves()
No. of Jacobian-vector setup evaluations IDAGetNumJTSetupEvals()
No. of Jacobian-vector product evaluations IDAGetNumJtimesEvals()
Last return from a linear solver function IDAGetLastLinFlag()
Name of constant associated with a return flag IDAGetLinReturnFlagName()

Main solver optional output functions

IDAS provides several user-callable functions that can be used to obtain different quantities that may be of interest to
the user, such as solver workspace requirements, solver performance statistics, as well as additional data from the IDAS
solver object (a suggested tolerance scaling factor, the error weight vector, and the vector of estimated local errors).
Also provided are functions to extract statistics related to the performance of the nonlinear solver being used. As a
convenience, additional extraction functions provide the optional outputs in groups. These optional output functions
are described next.

int IDAGetWorkSpace(void *ida_mem, long int *lenrw, long int *leniw)
The function IDAGetWorkSpace() returns the IDAS real and integer workspace sizes.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• lenrw – number of real values in the IDAS workspace.

• leniw – number of integer values in the IDAS workspace.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
In terms of the problem size N , the maximum method order maxord, and the number of root functions
nrtfn (see §5.1.3.8), the actual size of the real workspace, in sunrealtype words, is given by the follow-
ing:

• base value: lenrw = 55 + (m+ 6) ∗Nr + 3 ∗ nrtfn;

• with IDASVtolerances(): lenrw = lenrw +Nr;

• with constraint checking (see IDASetConstraints()): lenrw = lenrw +Nr;

• with id specified (see IDASetId()): lenrw = lenrw +Nr;

where m = max(maxord, 3), and Nr is the number of real words in one N_Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words) is given by:
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• base value: leniw = 38 + (m+ 6) ∗Ni + nrtfn;

• with IDASVtolerances(): leniw = leniw +Ni;

• with constraint checking: lenrw = lenrw +Ni;

• with id specified (see IDASetId()): lenrw = lenrw +Ni;

where Ni is the number of integer words in one N_Vector (= 1 for the serial N_Vector and 2 * npes
for the parallel N_Vector on npes processors). For the default value of maxord, with no rootfinding, no
id, no constraints, and with no call to IDASVtolerances(), these lengths are given roughly by lenrw =
55 + 11 ∗N and leniw = 49.

Note that additional memory is allocated if quadratures and/or forward sensitivity integration is enabled.
See §5.2.1 and §5.4.2.1 for more details.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int IDAGetNumSteps(void *ida_mem, long int *nsteps)
The function IDAGetNumSteps() returns the cumulative number of internal steps taken by the solver (total so
far).

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nsteps – number of steps taken by IDAS.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetNumResEvals(void *ida_mem, long int *nrevals)
The function IDAGetNumResEvals() returns the number of calls to the user’s residual evaluation function.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nrevals – number of calls to the user’s res function.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
The nrevals value returned by IDAGetNumResEvals() does not account for calls made to res from a
linear solver or preconditioner module.

int IDAGetNumLinSolvSetups(void *ida_mem, long int *nlinsetups)
The function IDAGetNumLinSolvSetups() returns the cumulative number of calls made to the linear solver’s
setup function (total so far).

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nlinsetups – number of calls made to the linear solver setup function.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

5.1. Using IDAS for IVP Solution 91



User Documentation for IDAS, v6.3.0

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetNumErrTestFails(void *ida_mem, long int *netfails)
The function IDAGetNumErrTestFails() returns the cumulative number of local error test failures that have
occurred (total so far).

Arguments:

• ida_mem – pointer to the IDAS solver object.

• netfails – number of error test failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetNumStepSolveFails(void *ida_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• ncnf – number of step failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetLastOrder(void *ida_mem, int *klast)
The function IDAGetLastOrder() returns the integration method order used during the last internal step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• klast – method order used on the last internal step.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetCurrentOrder(void *ida_mem, int *kcur)
The function IDAGetCurrentOrder() returns the integration method order to be used on the next internal step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• kcur – method order to be used on the next internal step.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetLastStep(void *ida_mem, sunrealtype *hlast)
The function IDAGetLastStep() returns the integration step size taken on the last internal step (if from IDA-
Solve()), or the last value of the artificial step size h (if from IDACalcIC()).

Arguments:
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• ida_mem – pointer to the IDAS solver object.

• hlast – step size taken on the last internal step by IDAS, or last artificial step size used in IDACal-
cIC() , whichever was called last.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetCurrentStep(void *ida_mem, sunrealtype *hcur)
The function IDAGetCurrentStep() returns the integration step size to be attempted on the next internal step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• hcur – step size to be attempted on the next internal step.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetActualInitStep(void *ida_mem, sunrealtype *hinused)
The function IDAGetActualInitStep() returns the value of the integration step size used on the first step.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• hinused – actual value of initial step size.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:

Even if the value of the initial integration step size was specified by the user through a call to IDASetInitStep(),
this value might have been changed by IDAS to ensure that the step size is within the prescribed bounds (hmin ≤
h0 ≤ hmax), or to meet the local error test.

int IDAGetCurrentTime(void *ida_mem, sunrealtype *tcur)
The function IDAGetCurrentTime() returns the current internal time reached by the solver.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• tcur – current internal time reached.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetTolScaleFactor(void *ida_mem, sunrealtype *tolsfac)
The function IDAGetTolScaleFactor() returns a suggested factor by which the user’s tolerances should be
scaled when too much accuracy has been requested for some internal step.

Arguments:
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• ida_mem – pointer to the IDAS solver object.

• tolsfac – suggested scaling factor for user tolerances.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetErrWeights(void *ida_mem, N_Vector eweight)
The function IDAGetErrWeights() returns the solution error weights at the current time. These are the Wi

given by (2.5) (or by the user’s IDAEwtFn).

Arguments:

• ida_mem – pointer to the IDAS solver object.

• eweight – solution error weights at the current time.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Warning

The user must allocate space for eweight.

int IDAGetEstLocalErrors(void *ida_mem, N_Vector ele)
The function IDAGetEstLocalErrors() returns the estimated local errors.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• ele – estimated local errors at the current time.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Warning

The user must allocate space for ele. The values returned in ele are only valid if IDASolve() returned a
non-negative value.

Note

The ele vector, together with the eweight vector from IDAGetErrWeights(), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the RMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].
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int IDAGetIntegratorStats(void *ida_mem, long int *nsteps, long int *nrevals, long int *nlinsetups, long int
*netfails, int *klast, int *kcur, sunrealtype *hinused, sunrealtype *hlast, sunrealtype
*hcur, sunrealtype *tcur)

The function IDAGetIntegratorStats() returns the IDAS integrator stats in one function call.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nsteps – cumulative number of steps taken by IDAS.

• nrevals – cumulative number of calls to the user’s res functions.

• nlinsetups – cumulative number of calls made to the linear solver setup function.

• netfails – cumulative number of error test failures.

• klast – method order used on the last internal step.

• kcur – method order to be used on the next internal step.

• hinused – actual value of initial step size.

• hlast – step sized taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• IDA_SUCCESS – The optional output values have been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetNumNonlinSolvIters(void *ida_mem, long int *nniters)
The function IDAGetNumNonlinSolvIters() returns the cumulative number of nonlinear iterations performed.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nniters – number of nonlinear iterations performed.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_MEM_FAIL – The SUNNonlinearSolver object is NULL.

int IDAGetNumNonlinSolvConvFails(void *ida_mem, long int *nncfails)
The function IDAGetNumNonlinSolvConvFails() returns the cumulative number of nonlinear convergence
failures that have occurred.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nncfails – number of nonlinear convergence failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.
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int IDAGetNonlinSolvStats(void *ida_mem, long int *nniters, long int *nncfails)
The function IDAGetNonlinSolvStats() returns the IDAS nonlinear solver statistics as a group.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nniters – cumulative number of nonlinear iterations performed.

• nncfails – cumulative number of nonlinear convergence failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_MEM_FAIL – The SUNNonlinearSolver object is NULL.

int IDAGetUserData(void *ida_mem, void **user_data)
The function IDAGetUserData returns the user data pointer provided to IDASetUserData().

Arguments:

• ida_mem – pointer to the IDAS memory block.

• user_data – memory reference to a user data pointer.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Added in version 5.3.0.

int IDAPrintAllStats(void *ida_mem, FILE *outfile, SUNOutputFormat fmt)
The function IDAPrintAllStats outputs all of the integrator, nonlinear solver, linear solver, and other statistics.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• outfile – pointer to output file.

• fmt – the output format:

– SUN_OUTPUTFORMAT_TABLE – prints a table of values

– SUN_OUTPUTFORMAT_CSV – prints a comma-separated list of key and value pairs e.g., key1,
value1,key2,value2,...

Return value:

• IDA_SUCCESS – The output was successfully.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – An invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 5.2.0.
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char *IDAGetReturnFlagName(long int flag)
The function IDAGetReturnFlagName() returns the name of the IDAS constant corresponding to flag.

Arguments:

• flag – the flag returned by a call to an IDAS function.

Return value:

• char* – the flag name string.

Initial condition calculation optional output functions

int IDAGetNumBacktrackOps(void *ida_mem, long int *nbacktr)
The function IDAGetNumBacktrackOps() returns the number of backtrack operations done in the linesearch
algorithm in IDACalcIC().

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nbacktr – the cumulative number of backtrack operations.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetConsistentIC(void *ida_mem, N_Vector yy0_mod, N_Vector yp0_mod)
The function IDAGetConsistentIC() returns the corrected initial conditions calculated by IDACalcIC().

Arguments:

• ida_mem – pointer to the IDAS solver object.

• yy0_mod – consistent solution vector.

• yp0_mod – consistent derivative vector.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_ILL_INPUT – The function was not called before the first call to IDASolve().

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
If the consistent solution vector or consistent derivative vector is not desired, pass NULL for the correspond-
ing argument.

Warning

The user must allocate space for yy0_mod and yp0_mod (if not NULL).
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Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

int IDAGetRootInfo(void *ida_mem, int *rootsfound)
The function IDAGetRootInfo() returns an array showing which functions were found to have a root.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have a root.
For i = 0, . . . , nrtfn− 1, rootsfound[i] 6= 0 if gi has a root, and = 0 if not.

Return value:

• IDA_SUCCESS – The optional output values have been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
Note that, for the components gi for which a root was found, the sign of rootsfound[i] indicates the
direction of zero-crossing. A value of +1 indicates that gi is increasing, while a value of −1 indicates a
decreasing gi.

Warning

The user must allocate memory for the vector rootsfound.

int IDAGetNumGEvals(void *ida_mem, long int *ngevals)
The function IDAGetNumGEvals() returns the cumulative number of calls to the user root function g.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• ngevals – number of calls to the user’s function g so far.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

IDALS linear solver interface optional output functions

The following optional outputs are available from the IDALS modules:

int IDAGetJac(void *ida_mem, SUNMatrix *J)
Returns the internally stored copy of the Jacobian matrix of the DAE residual function.

Parameters

• ida_mem – the IDAS memory structure

• J – the Jacobian matrix

Return values

• IDALS_SUCCESS – the output value has been successfully set
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• IDALS_MEM_NULL – ida_mem was NULL

• IDALS_LMEM_NULL – the linear solver interface has not been initialized

Warning

With linear solvers that overwrite the input Jacobian matrix as part of the linear solver setup (e.g., performing
an in-place LU factorization) the matrix returned by IDAGetJac() may differ from the matrix returned by
the last Jacobian evaluation.

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

int IDAGetJacCj(void *ida_mem, sunrealtype *cj_J)
Returns the cj value used to compute the internally stored copy of the Jacobian matrix of the DAE residual
function.

Parameters

• ida_mem – the IDAS memory structure

• cj_J – the cj value used in the Jacobian was evaluation

Return values

• IDALS_SUCCESS – the output value has been successfully set

• IDALS_MEM_NULL – ida_mem was NULL

• IDALS_LMEM_NULL – the linear solver interface has not been initialized

int IDAGetJacTime(void *ida_mem, sunrealtype *t_J)
Returns the time at which the internally stored copy of the Jacobian matrix of the DAE residual function was
evaluated.

Parameters

• ida_mem – the IDAS memory structure

• t_J – the time at which the Jacobian was evaluated

Return values

• IDALS_SUCCESS – the output value has been successfully set

• IDALS_MEM_NULL – ida_mem was NULL

• IDALS_LMEM_NULL – the linear solver interface has not been initialized

int IDAGetJacNumSteps(void *ida_mem, long int *nst_J)
Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
DAE residual function was evaluated.

Parameters

• ida_mem – the IDAS memory structure

• nst_J – the value of the internal step counter at which the Jacobian was evaluated

Return values
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• IDALS_SUCCESS – the output value has been successfully set

• IDALS_MEM_NULL – ida_mem was NULL

• IDALS_LMEM_NULL – the linear solver interface has not been initialized

int IDAGetLinWorkSpace(void *ida_mem, long int *lenrwLS, long int *leniwLS)
The function IDAGetLinWorkSpace() returns the sizes of the real and integer workspaces used by the IDALS
linear solver interface.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• lenrwLS – the number of real values in the IDALS workspace.

• leniwLS – the number of integer values in the IDALS workspace.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of IDALS is not included in this report.

Added in version 3.0.0: Replaces the deprecated functions IDADlsGetWorkspace and IDASpilsGet-
Workspace.

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int IDAGetNumJacEvals(void *ida_mem, long int *njevals)
The function IDAGetNumJacEvals() returns the cumulative number of calls to the IDALS Jacobian approxi-
mation function.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• njevals – the cumulative number of calls to the Jacobian function total so far.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Added in version 3.0.0: Replaces the deprecated function IDADlsGetNumJacEvals.

int IDAGetNumLinResEvals(void *ida_mem, long int *nrevalsLS)
The function IDAGetNumLinResEvals() returns the cumulative number of calls to the user residual function
due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approximation.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nrevalsLS – the cumulative number of calls to the user residual function.

Return value:
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• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Notes:
The value nrevalsLS is incremented only if one of the default internal difference quotient functions is
used.

Added in version 3.0.0: Replaces the deprecated functions IDADlsGetNumRhsEvals and IDASpilsGetNum-
RhsEvals.

int IDAGetNumLinIters(void *ida_mem, long int *nliters)
The function IDAGetNumLinIters() returns the cumulative number of linear iterations.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nliters – the current number of linear iterations.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Added in version 3.0.0: Replaces the deprecated function IDASpilsGetNumLinIters.

int IDAGetNumLinConvFails(void *ida_mem, long int *nlcfails)
The function IDAGetNumLinConvFails() returns the cumulative number of linear convergence failures.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• nlcfails – the current number of linear convergence failures.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Added in version 3.0.0: Replaces the deprecated function IDASpilsGetNumConvFails.

int IDAGetNumPrecEvals(void *ida_mem, long int *npevals)
The function IDAGetNumPrecEvals() returns the cumulative number of preconditioner evaluations, i.e., the
number of calls made to psetup.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• npevals – the cumulative number of calls to psetup.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.
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Added in version 3.0.0: Replaces the deprecated function IDASpilsGetNumPrecEvals.

int IDAGetNumPrecSolves(void *ida_mem, long int *npsolves)
The function IDAGetNumPrecSolves() returns the cumulative number of calls made to the preconditioner solve
function, psolve.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• npsolves – the cumulative number of calls to psolve.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Added in version 3.0.0: Replaces the deprecated function IDASpilsGetNumPrecSolves.

int IDAGetNumJTSetupEvals(void *ida_mem, long int *njtsetup)
The function IDAGetNumJTSetupEvals() returns the cumulative number of calls made to the Jacobian-vector
product setup function jtsetup.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• njtsetup – the current number of calls to jtsetup.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Added in version 3.0.0: Replaces the deprecated function IDASpilsGetNumJTSetupEvals.

int IDAGetNumJtimesEvals(void *ida_mem, long int *njvevals)
The function IDAGetNumJtimesEvals() returns the cumulative number of calls made to the Jacobian-vector
product function, jtimes.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• njvevals – the cumulative number of calls to jtimes.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Added in version 3.0.0: Replaces the deprecated function IDASpilsGetNumJtimesEvals.

int IDAGetLastLinFlag(void *ida_mem, long int *lsflag)
The function IDAGetLastLinFlag() returns the last return value from an IDALS routine.

Arguments:

• ida_mem – pointer to the IDAS solver object.
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• lsflag – the value of the last return flag from an IDALS function.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

Notes:
If the IDALS setup function failed (i.e., IDASolve() returned IDA_LSETUP_FAIL) when using the SUN-
LINSOL_DENSE or SUNLINSOL_BAND modules, then the value of lsflag is equal to the column index
(numbered from one) at which a zero diagonal element was encountered during the LU factorization of the
(dense or banded) Jacobian matrix. If the IDALS setup function failed when using another SUNLinear-
Solver object, then lsflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or SUN_-
ERR_EXT_FAIL. If the IDALS solve function failed (IDASolve() returned IDA_LSOLVE_FAIL), lsflag
contains the error return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_-
CORRUPTRRUPT, indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC,
indicating an unrecoverable failure in the J ∗ v function; SUNLS_PSOLVE_FAIL_UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in
the Gram-Schmidt procedure (generated only in SPGMR or SPFGMR); SUNLS_QRSOL_FAIL, indicating
that the matrix R was found to be singular during the QR solve phase (SPGMR and SPFGMR only); or
SUN_ERR_EXT_FAIL, indicating an unrecoverable failure in an external iterative linear solver package.

Added in version 3.0.0: Replaces the deprecated functions IDADlsGetLastFlag and IDASpilsGetLastFlag.

char *IDAGetLinReturnFlagName(long int lsflag)
The function IDAGetLinReturnFlagName() returns the name of the IDALS constant corresponding to lsflag.

Arguments:

• flag – the flag returned by a call to an IDAS function.

Return value:

• char* – the flag name string or if 1 ≤ lsflag ≤ N (LU factorization failed), this function returns
“NONE”.

Added in version 3.0.0: Replaces the deprecated functions IDADlsGetReturnFlagName and IDASpilsGetRe-
turnFlagName.

5.1.3.13 IDAS reinitialization function

The function IDAReInit() reinitializes the main IDAS solver for the solution of a new problem, where a prior call to
IDAInit() has been made. The new problem must have the same size as the previous one. IDAReInit() performs
the same input checking and initializations that IDAInit() does, but does no memory allocation, as it assumes that
the existing internal memory is sufficient for the new problem. A call to IDAReInit() deletes the solution history that
was stored internally during the previous integration. Following a successful call to IDAReInit(), call IDASolve()
again for the solution of the new problem.

The use of IDAReInit() requires that the maximum method order, maxord, is no larger for the new problem than
for the problem specified in the last call to IDAInit(). In addition, the same N_Vector module set for the previous
problem will be reused for the new problem.

If there are changes to the linear solver specifications, make the appropriate calls to either the linear solver objects
themselves, or to the IDALS interface routines, as described in §5.1.3.5.

If there are changes to any optional inputs, make the appropriate IDASet*** calls, as described in §5.1.3.10. Otherwise,
all solver inputs set previously remain in effect.
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One important use of the IDAReInit() function is in the treating of jump discontinuities in the residual function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted DAE model, using a call to IDAReInit(). To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined
by the solution, use the rootfinding feature. In either case, it is critical that the residual function not incorporate the
discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent
rootfinding, if used) can be done efficiently. Then use a switch within the residual function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted problem
uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent variable
vector.

int IDAReInit(void *ida_mem, sunrealtype t0, N_Vector y0, N_Vector yp0)
The function IDAReInit() provides required problem specifications and reinitializes IDAS.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• t0 – is the initial value of t.

• y0 – is the initial value of y.

• yp0 – is the initial value of ẏ.

Return value:

• IDA_SUCCESS – The call to was successful.

• IDA_MEM_NULL – The IDAS solver object was not initialized through a previous call to IDACreate().

• IDA_NO_MALLOC – Memory space for the IDAS solver object was not allocated through a previous call
to IDAInit().

• IDA_ILL_INPUT – An input argument to IDAReInit() has an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, IDAReInit() also sends an error message to the error handler function.

5.1.4 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function that handles error
and warning messages, (optionally) a function that provides the error weight vector, (optionally) one or two functions
that provide Jacobian-related information for the linear solver, and (optionally) one or two functions that define the
preconditioner for use in any of the Krylov iteration algorithms.

5.1.4.1 DAE residual function

The user must provide a function of type IDAResFn defined as follows:

typedef int (*IDAResFn)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector rr, void *user_data)
This function computes the problem residual for given values of the independent variable t, state vector y, and
derivative ẏ.

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t).
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• yp – is the current value of ẏ(t).

• rr – is the output residual vector F (t, y, ẏ).

• user_data – is a pointer to user data, the same as the user_data pointer parameter passed to IDASe-
tUserData().

Return value:
An IDAResFn function type should return a value of 0 if successful, a positive value if a recoverable error
occurred (e.g., yy has an illegal value), or a negative value if a nonrecoverable error occurred. In the last
case, the integrator halts. If a recoverable error occurred, the integrator will attempt to correct and retry.

Notes:
A recoverable failure error return from the IDAResFn is typically used to flag a value of the dependent
variable y that is “illegal” in some way (e.g., negative where only a non-negative value is physically mean-
ingful). If such a return is made, IDAS will attempt to recover (possibly repeating the nonlinear solve, or
reducing the step size) in order to avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solution of the nonlinear
solver. Therefore, in general, a recoverable error in that converged value cannot be corrected. (It may be
detected when the residual function is called the first time during the following integration step, but a
successful step cannot be undone.)

However, if the user program also includes quadrature integration, the state variables can be checked for
legality in the call to IDAQuadRhsFn, which is called at the converged solution of the nonlinear system,
and therefore IDAS can be flagged to attempt to recover from such a situation. Also, if sensitivity analysis
is performed with the staggered method, the DAE residual function is called at the converged solution of
the nonlinear system, and a recoverable error at that point can be flagged, and IDAS will then try to correct
it.

5.1.4.2 Error weight function

typedef int (*IDAEwtFn)(N_Vector y, N_Vector ewt, void *user_data)
This function computes the WRMS error weights for the vector y.

Arguments:

• y – is the value of the dependent variable vector at which the weight vector is to be computed.

• ewt – is the output vector containing the error weights.

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:

• 0 – if it the error weights were successfully set.

• -1 – if any error occurred.

Notes:
Allocation of memory for ewt is handled within IDAS.

Warning

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.
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5.1.4.3 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must supply a function of
type IDARootFn, defined as follows:

typedef int (*IDARootFn)(sunrealtype t, N_Vector y, N_Vector yp, sunrealtype *gout, void *user_data)
This function computes a vector-valued function g(t, y, ẏ) such that the roots of the nrtfn components gi(t, y, ẏ)
are to be found during the integration.

Arguments:

• t – is the current value of the independent variable.

• y – is the current value of the dependent variable vector, y(t).

• yp – is the current value of ẏ(t), the t− derivative of y.

• gout – is the output array, of length nrtfn, with components gi(t, y, ẏ).

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
0 if successful or non-zero if an error occurred (in which case the integration is halted and IDASolve()
returns IDA_RTFUNC_FAIL).

Notes:
Allocation of memory for gout is handled within IDAS.

5.1.4.4 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL SUNMatrix object was supplied to IDASetLinear-
Solver()), the user may provide a function of type IDALsJacFn defined as follows:

typedef int (*IDALsJacFn)(sunrealtype t, sunrealtype c_j, N_Vector y, N_Vector yp, N_Vector r, SUNMatrix Jac,
void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix J of the DAE system (or an approximation to it), defined by (2.7).

Arguments:

• tt – is the current value of the independent variable t.

• cj – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• yy – is the current value of the dependent variable vector, y(t).

• yp – is the current value of ẏ(t).

• rr – is the current value of the residual vector F (t, y, ẏ).

• Jac – is the output (approximate) Jacobian matrix (of type SUNMatrix), J =
∂F

∂y
+ cj

∂F

∂ẏ
.

• user_data - is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

• tmp1, tmp2, and tmp3 – are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacFn() function as temporary storage or work space.

Return value:
An IDALsJacFn should return 0 if successful, a positive value if a recoverable error occurred, or a negative
value if a nonrecoverable error occurred.
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In the case of a recoverable error return, the integrator will attempt to recover by reducing the stepsize, and
hence changing α in (2.7).

Notes:
Information regarding the structure of the specific SUNMatrix structure (e.g., number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see Chapter §7 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(t, y, ẏ) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need
to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the user’s IDALs-
JacFn() function is preceded by a call to the IDAResFn() user function with the same (t, y, ẏ) arguments.
Thus the Jacobian function can use any auxiliary data that is computed and saved during the evaluation of
the DAE residual. In the case of a user-supplied or external nonlinear solver, this is also true if the residual
function is evaluated prior to calling the linear solver setup function (see §9.1.4 for more information).

If the user’s IDALsJacFn function uses difference quotient approximations, it may need to access quantities
not in the call list. These quantities may include the current stepsize, the error weights, etc. To obtain these,
the user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions described
in §5.1.3.12. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the Neq× Neq dense matrix Jacwith an approximation
to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp). The accessor macros SM_ELEMENT_D and SM_-
COLUMN_D allow the user to read and write dense matrix elements without making explicit references to the
underlying representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i,
j)-th element of the dense matrix Jac (with i, j= 0 . . . N− 1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m and n ranging from 1
to N , the Jacobian element Jm,n can be set using the statement SM_ELEMENT_D(J, m-1, n-1) = Jm,n.
Alternatively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th column of Jac (with
j= 0 . . . N − 1), and the elements of the j-th column can then be accessed using ordinary array indexing.
Consequently, Jm,n can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1]
= Jm,n. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that
both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor
macros are documented in §7.3.

banded:

A user-supplied banded Jacobian function must load the Neq× Neq banded matrix Jacwith an approxima-
tion to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp). The accessor macros SM_ELEMENT_B, SM_-
COLUMN_B, and SM_COLUMN_ELEMENT_B allow the user to read and write banded matrix elements without
making specific references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_-
B(J, i, j) references the (i, j)-th element of the banded matrix Jac, counting from 0. This macro is
meant for use in small problems for which efficiency of access is not a major concern. Thus, in terms of
the indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and mlower, the
Jacobian element Jm,n can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = Jm,n. The
elements within the band are those with -mupper ≤ m-n ≤ mlower. Alternatively, SM_COLUMN_B(J, j)
returns a pointer to the diagonal element of the j-th column of Jac, and if we assign this address to sunre-
altype *col_j, then the i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j,
i, j), counting from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col_n = SM_-
COLUMN_B(J, n-1); and SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = Jm,n. The elements of the
j-th column can also be accessed via ordinary array indexing, but this approach requires knowledge of
the underlying storage for a band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from
−mupper to mlower. For large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_EL-
EMENT_B than to use the SM_ELEMENT_B macro. As in the dense case, these macros all number rows and
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columns starting from 0. The SUNMATRIX_BAND type and accessor macros are documented in §7.6.

sparse:

A user-supplied sparse Jacobian function must load the Neq × Neq compressed-sparse-column or
compressed-sparse-row matrix Jac with an approximation to the Jacobian matrix J(t, y, ẏ) at the point
(tt, yy, yp). Storage for Jac already exists on entry to this function, although the user should ensure that
sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient
the user may reallocate the data and index arrays as needed. The amount of allocated space in a SUNMA-
TRIX_SPARSE object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ.
The SUNMATRIX_SPARSE type and accessor macros are documented in §7.8.

Added in version 3.0.0: Replaces the deprecated type IDADlsJacFn.

5.1.4.5 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMatrix was supplied to IDASetLinearSolver()),
the user may provide a function of type IDALsJacTimesVecFn in the following form, to compute matrix-vector prod-
ucts Jv. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*IDALsJacTimesVecFn)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector rr, N_Vector v, N_Vector
Jv, sunrealtype cj, void *user_data, N_Vector tmp1, N_Vector tmp2)

This function computes the product Jv of the DAE system Jacobian J (or an approximation to it) and a given
vector v, where J is defined by (2.7).

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t).

• yp – is the current value of ẏ(t).

• rr – is the current value of the residual vector F (t, y, ẏ).

• v – is the vector by which the Jacobian must be multiplied to the right.

• Jv – is the computed output vector.

• cj – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

• tmp1 and tmp2 – are pointers to memory allocated for variables of type N_Vector which can be used
by IDALsJacTimesVecFn as temporary storage or work space.

Return value:
The value returned by the Jacobian-times-vector function should be 0 if successful. A nonzero value indi-
cates that a nonrecoverable error occurred.

Notes:
This function must return a value of Jv that uses an approximation to the current value of J , i.e. as
evaluated at the current (t, y, ẏ).

If the user’s IDALsJacTimesVecFn() function uses difference quotient approximations, it may need to
access quantities not in the call list. These include the current stepsize, the error weights, etc. To obtain
these, the user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions
described in §5.1.3.12. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_-
types.h.

Added in version 3.0.0: Replaces the deprecated type IDASpilsJacTimesVecFn.

108 Chapter 5. Using IDAS



User Documentation for IDAS, v6.3.0

5.1.4.6 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-vector product function requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type IDALsJacTimesSetupFn, defined as follows:

typedef int (*IDALsJacTimesSetupFn)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector rr, sunrealtype cj, void
*user_data);

This function setups any data needed by Jv product function (see IDALsJacTimesVecFn).

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t).

• yp – is the current value of ẏ(t).

• rr – is the current value of the residual vector F (t, y, ẏ).

• cj – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
The value returned by the Jacobian-vector setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
Each call to the Jacobian-vector product setup function is preceded by a call to the IDAResFn user function
with the same (t, y, ẏ) arguments. Thus, the setup function can use any auxiliary data that is computed and
saved during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current stepsize, the error weights, etc. To obtain these, the
user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions described
in §5.1.3.12. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 3.0.0: Replaces the deprecated type IDASpilsJacTimesSetupFn

5.1.4.7 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver solver module, then the user must provide
a function to solve the linear system Pz = r where P is a left preconditioner matrix which approximates (at least
crudely) the Jacobian matrix J = ∂F/∂y + cj ∂F/∂ẏ. This function must be of type IDALsPrecSolveFn, defined
as follows:

typedef int (*IDALsPrecSolveFn)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector rr, N_Vector rvec, N_Vector
zvec, sunrealtype cj, sunrealtype delta, void *user_data)

This function solves the preconditioning system Pz = r.

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t).

• yp – is the current value of ẏ(t).

• rr – is the current value of the residual vector F (t, y, ẏ).
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• rvec – is the right-hand side vector r of the linear system to be solved.

• zvec – is the computed output vector.

• cj – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• delta – is an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector Res = r−Pz of the system should be made less than delta in weighted l2 norm,
i.e.,

√∑
i(Resi · ewti)2 < delta. To obtain the N_Vector ewt, call IDAGetErrWeights().

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
The value returned by the preconditioner solve function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

5.1.4.8 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then this needs to be
done in a user-supplied function of type IDALsPrecSetupFn, defined as follows:

typedef int (*IDALsPrecSetupFn)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector rr, sunrealtype cj, void
*user_data)

This function solves the preconditioning system Pz = r.

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t).

• yp – is the current value of ẏ(t).

• rr – is the current value of the residual vector F (t, y, ẏ).

• cj – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
The value returned by the preconditioner setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the IDAResFn user function with the same (t, y, ẏ) arguments.
Thus the preconditioner setup function can use any auxiliary data that is computed and saved during the
evaluation of the DAE residual. In the case of a user-supplied or external nonlinear solver, this is also true
if the residual function is evaluated prior to calling the linear solver setup function (see §9.1.4 for more
information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the nonlinear solver.

If the user’s IDALsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current stepsize, the error weights, etc. To obtain these, the
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user will need to add a pointer to ida_mem to user_data and then use the IDAGet* functions described
in §5.1.3.12. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

5.2 Integration of pure quadrature equations

IDAS allows the DAE system to include pure quadratures. In this case, it is more efficient to treat the quadratures
separately by excluding them from the nonlinear solution stage. To do this, begin by excluding the quadrature variables
from the vectors yy and yp and the quadrature equations from within res. Thus a separate vector yQ of quadrature
variables is to satisfy (d/dt)yQ = fQ(t, y, ẏ).

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton program presented in §5.1.2 are grayed out and new or modified steps are in bold.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Create the SUNDIALS context object

3. Set vector of initial values

4. Create matrix object

5. Create linear solver object

6. Create nonlinear solver object

7. Create IDAS object

8. Initialize IDAS solver

9. Specify integration tolerances

10. Set linear solver optional inputs

11. Attach linear solver module

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

15. Initialize quadrature integration

Call IDAQuadInit() to specify the quadrature equation right-hand side function and to allocate internal memory
related to quadrature integration. See §5.2.1 for details.

16. Set optional inputs for quadrature integration

Call IDASetQuadErrCon() to indicate whether or not quadrature variables should be used in the step size control
mechanism, and to specify the integration tolerances for quadrature variables. See §5.2.4 for details.

17. Specify rootfinding problem

18. Set optional inputs

19. Correct initial values

20. Advance solution in time

21. Extract quadrature variables

Call IDAGetQuad() to obtain the values of the quadrature variables at the current time.

22. Get optional outputs
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23. Get quadrature optional outputs

Call IDAGetQuad** functions to obtain optional output related to the integration of quadratures. See §5.2.5 for
details.

24. Destroy objects

25. Finalize MPI, if used

5.2.1 Quadrature initialization and deallocation functions

The function IDAQuadInit() activates integration of quadrature equations and allocates internal memory related to
these calculations. The form of the call to this function is as follows:

int IDAQuadInit(void *ida_mem, IDAQuadRhsFn rhsQ, N_Vector yQ0)
The function IDAQuadInit() provides required problem specifications, allocates internal memory, and initial-
izes quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• rhsQ – is the C function which computes fQ , the right-hand side of the quadrature equations. This
function has the form f(Qt, yy, yp, rhsQ, user_data) for full details see §5.2.6.

• yQ0 – is the initial value of yQ.

Return value:

• IDA_SUCCESS – The call to IDAQuadInit() was successful.

• IDA_MEM_NULL – The IDAS memory was not initialized by a prior call to IDACreate().

• IDA_MEM_FAIL – A memory allocation request failed.

Notes:

If an error occurred, IDAQuadInit() also sends an error message to the error handler function.

In terms of the number of quadrature variables,Nq , and maximum method order, maxord, the size of the real and
integer workspaces are increased by (maxord + 5)Nq . If IDAQuadSVtolerances() is called, the workspaces
are further increased by Nq .

The function IDAQuadReInit(), useful during the solution of a sequence of problems of same size, reinitializes the
quadrature-related internal memory and must follow a call to IDAQuadInit() (and maybe a call to IDAReInit()).
The number Nq of quadratures is assumed to be unchanged from the prior call to IDAQuadInit(). The call to the
IDAQuadReInit() function has the following form:

int IDAQuadReInit(void *ida_mem, N_Vector yQ0)
The function IDAQuadReInit() provides required problem specifications and reinitializes the quadrature inte-
gration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• yQ0 – is the initial value of yQ.

Return value:

• IDA_SUCCESS – The call to IDAReInit() was successful.

• IDA_MEM_NULL – The IDAS memory was not initialized by a prior call to IDACreate().
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• IDA_NO_QUAD – Memory space for the quadrature integration was not allocated by a prior call to
IDAQuadInit().

Notes:
If an error occurred, IDAQuadReInit() also sends an error message to the error handler function.

void IDAQuadFree(void *ida_mem)

The function IDAQuadFree() frees the memory allocated for quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

Return value:

• The function has no return value.

Notes:
In general, IDAQuadFree() need not be called by the user as it is invoked automatically by IDAFree().

5.2.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve() is exactly the same.
However, in this case the return value flag can also be one of the following:

• IDA_QRHS_FAIL – The quadrature right-hand side function failed in an unrecoverable manner.

• IDA_FIRST_QRHS_ERR – The quadrature right-hand side function failed at the first call.

• IDA_REP_QRHS_ERR – Convergence test failures occurred too many times due to repeated recoverable errors
in the quadrature right-hand side function. This value will also be returned if the quadrature right-hand side
function had repeated recoverable errors during the estimation of an initial step size (assuming the quadrature
variables are included in the error tests).

5.2.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to IDAQuadInit(), or reinitialized by a call to
IDAQuadReInit(), then IDAS computes both a solution and quadratures at time t. However, IDASolve() will still
return only the solution y in y. Solution quadratures can be obtained using the following function:

int IDAGetQuad(void *ida_mem, sunrealtype *tret, N_Vector yQ)
The function IDAGetQuad() returns the quadrature solution vector after a successful return from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• tret – the time reached by the solver output.

• yQ – the computed quadrature vector.

Return value:

• IDA_SUCCESS – IDAGetQuad() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_QUAD – Quadrature integration was not initialized.

• IDA_BAD_DKY – yQ is NULL.
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The function IDAGetQuadDky() computes the k-th derivatives of the interpolating polynomials for the quadrature vari-
ables at time t. This function is called by IDAGetQuad() with k = 0 and with the current time at which IDASolve()
has returned, but may also be called directly by the user.

int IDAGetQuadDky(void *ida_mem, sunrealtype t, int k, N_Vector dkyQ)
The function IDAGetQuadDky() returns derivatives of the quadrature solution vector after a successful return
from IDA.

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• t – the time at which quadrature information is requested. The time t must fall within the interval
defined by the last successful step taken by IDAS.

• k – order of the requested derivative. This must be ≤ klast.

• dkyQ – the vector containing the derivative. This vector must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetQuadDky() succeeded.

• IDA_MEM_NULL – The pointer to ida_mem was NULL.

• IDA_NO_QUAD – Quadrature integration was not initialized.

• IDA_BAD_DKY – The vector dkyQ is NULL.

• IDA_BAD_K – k is not in the range 0, 1, . . . , klast.

• IDA_BAD_T – The time t is not in the allowed range.

Notes:
In case of an error return, an error message is also sent to the error handler function.

5.2.4 Optional inputs for quadrature integration

IDAS provides the following optional input functions to control the integration of quadrature equations.

int IDASetQuadErrCon(void *ida_mem, sunbooleantype errconQ)
The function IDASetQuadErrCon() specifies whether or not the quadrature variables are to be used in the
step size control mechanism within IDAS. If they are, the user must call either IDAQuadSStolerances() or
IDAQuadSVtolerances() to specify the integration tolerances for the quadrature variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• errconQ – specifies whether quadrature variables are included SUNTRUE or not SUNFALSE in the error
control mechanism.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUAD – Quadrature integration has not been initialized.

Notes:
By default, errconQ is set to SUNFALSE.
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Warning

It is illegal to call IDASetQuadErrCon() before a call to IDAQuadInit().

If the quadrature variables are part of the step size control mechanism, one of the following functions must be called
to specify the integration tolerances for quadrature variables.

int IDAQuadSStolerances(void *ida_mem, sunrealtype reltolQ, sunrealtype abstolQ)
The function IDAQuadSStolerances() specifies scalar relative and absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• reltolQ – tolerances is the scalar relative error tolerance.

• abstolQ – is the scalar absolute error tolerance.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_NO_QUAD – Quadrature integration was not initialized.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – One of the input tolerances was negative.

int IDAQuadSVtolerances(void *ida_mem, sunrealtype reltolQ, N_Vector abstolQ)
The function IDAQuadSVtolerances() specifies scalar relative and vector absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• reltolQ – tolerances is the scalar relative error tolerance.

• abstolQ – is the vector absolute error tolerance.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_NO_QUAD – Quadrature integration was not initialized.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – One of the input tolerances was negative.

5.2.5 Optional outputs for quadrature integration

IDAS provides the following functions that can be used to obtain solver performance information related to quadrature
integration.

int IDAGetQuadNumRhsEvals(void *ida_mem, long int *nrhsQevals)
The function IDAGetQuadNumRhsEvals() returns the number of calls made to the user’s quadrature right-hand
side function.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nrhsQevals – number of calls made to the user’s rhsQ function.
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Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUAD – Quadrature integration has not been initialized.

int IDAGetQuadNumErrTestFails(void *ida_mem, long int *nQetfails)
The function IDAGetQuadNumErrTestFails() returns the number of local error test failures due to quadrature
variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nQetfails – number of error test failures due to quadrature variables.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUAD – Quadrature integration has not been initialized.

int IDAGetQuadErrWeights(void *ida_mem, N_Vector eQweight)
The function IDAGetQuadErrWeights() returns the quadrature error weights at the current time.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• eQweight – quadrature error weights at the current time.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUAD – Quadrature integration has not been initialized.

Warning

The user must allocate memory for eQweight. If quadratures were not included in the error control mech-
anism (through a call to IDASetQuadErrCon() with errconQ = SUNTRUE), IDAGetQuadErrWeights()
does not set the eQweight vector.

int IDAGetQuadStats(void *ida_mem, long int *nrhsQevals, long int *nQetfails)
The function IDAGetQuadStats() returns the IDAS integrator statistics as a group.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nrhsQevals – number of calls to the user’s rhsQ function.

• nQetfails – number of error test failures due to quadrature variables.

Return value:

• IDA_SUCCESS – the optional output values have been successfully set.

• IDA_MEM_NULL – the ida_mem pointer is NULL.
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• IDA_NO_QUAD – Quadrature integration has not been initialized.

5.2.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand side of the quadra-
ture equations (in other words, the integrand function of the integral that must be evaluated). This function must be of
type IDAQuadRhsFn() defined as follows:

typedef int (*IDAQuadRhsFn)(sunrealtype tres, N_Vector yy, N_Vector yp, N_Vector rrQ, void *user_data)
This function computes the quadrature equation right-hand side for a given value of the independent variable t
and state vectors y and ẏ.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t) .

• yp – is the current value of the dependent variable derivative vector, ẏ(t) .

• rrQ – is the output vector fQ(t, y, ẏ) .

• user_data – is the user_data pointer passed to IDASetUserData() .

Return value:

A IDAQuadRhsFn() should return 0 if successful, a positive value if a recoverable error occurred (in which case
IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration is halted
and IDA_QRHS_FAIL is returned).

Notes:

Allocation of memory for rhsQ is automatically handled within IDAS.

Both y and rhsQ are of type N_Vector, but they typically have different internal representations. It is the user’s
responsibility to access the vector data consistently.

There is one situation in which recovery is not possible even if IDAQuadRhsFn() function returns a recoverable
error flag. This is when this occurs at the very first call to the IDAQuadRhsFn() (in which case IDAS returns
IDA_FIRST_QRHS_ERR).

5.3 Preconditioner modules

A principal reason for using a parallel DAE solver such as IDAS lies in the solution of partial differential equations
(PDEs). Moreover, the use of a Krylov iterative method for the solution of many such problems is motivated by the
nature of the underlying linear system of equations (2.6) that must be solved at each time step. The linear algebraic
system is large, sparse, and structured. However, if a Krylov iterative method is to be effective in this setting, then a
nontrivial preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative method is usually
unacceptably slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It
has been successfully used for several realistic, large-scale problems [42] and is included in a software module within
the IDAS package. This module works with the parallel vector module NVECTOR_PARALLEL and generates a pre-
conditioner that is a block-diagonal matrix with each block being a band matrix. The blocks need not have the same
number of super- and sub-diagonals, and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called IDABBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE problem as being sub-
divided into M non-overlapping sub-domains. Each of these sub-domains is then assigned to one of the M processors
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to be used to solve the DAE system. The basic idea is to isolate the preconditioning so that it is local to each proces-
sor, and also to use a (possibly cheaper) approximate residual function. This requires the definition of a new function
G(t, y, ẏ) which approximates the function F (t, y, ẏ) in the definition of the DAE system (2.1). However, the user may
set G = F . Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and ẏ into
M disjoint blocks ym and ẏm, and a decomposition of G into blocks Gm. The block Gm depends on ym and ẏm, and
also on components of ym′ and ẏm′ associated with neighboring sub-domains (so-called ghost-cell data). Let ȳm and
¯̇ym denote ym and ẏm (respectively) augmented with those other components on which Gm depends. Then we have

G(t, y, ẏ) = [G1(t, ȳ1, ¯̇y1), G2(t, ȳ2, ¯̇y2), . . . , GM (t, ȳM , ¯̇yM )]T ,

and each of the blocks Gm(t, ȳm, ¯̇ym) is uncoupled from the others.

The preconditioner associated with this decomposition has the form

P =


P1

P2

. . .
PM


where

Pm ≈
∂Gm
∂ym

+ α
∂Gm
∂ẏm

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as the number of non-
zero diagonals above and below the main diagonal, respectively. The difference quotient approximation is computed
using mudq + mldq +2 evaluations of Gm, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of G, if smaller values
provide a more efficient preconditioner. Such an efficiency gain may occur if the couplings in the DAE system outside
a certain bandwidth are considerably weaker than those within the band. Reducing mukeep and mlkeep while keeping
mudq and mldq at their true values, discards the elements outside the narrower band. Reducing both pairs has the
additional effect of lumping the outer Jacobian elements into the computed elements within the band, and requires
more caution and experimentation.

The solution of the complete linear system

Px = b

reduces to solving each of the equations

Pmxm = bm

and this is done by banded LU factorization of Pm followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatment of the blocks Pm. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

5.3.1 A parallel band-block-diagonal preconditioner module

The IDABBDPRE module calls two user-provided functions to construct P : a required function Gres (of type ID-
ABBDLocalFn) which approximates the residual function G(t, y, ẏ) ≈ F (t, y, ẏ) and which is computed locally, and
an optional function Gcomm (of type IDABBDCommFn) which performs all inter-process communication necessary to
evaluate the approximate residual G. These are in addition to the user-supplied residual function res. Both functions
take as input the same pointer user_data as passed by the user to IDASetUserData() and passed to the user’s func-
tion res. The user is responsible for providing space (presumably within user_data) for components of yy and yp
that are communicated by Gcomm from the other processors, and that are then used by Gres, which should not do any
communication.
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typedef int (*IDABBDLocalFn)(sunindextype Nlocal, sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector gval, void
*user_data)

This Gres function computes G(t, y, ẏ). It loads the vector gval as a function of tt, yy, and yp.

Arguments:

• Nlocal – is the local vector length.

• tt – is the value of the independent variable.

• yy – is the dependent variable.

• yp – is the derivative of the dependent variable.

• gval – is the output vector.

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:

An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable error, or -1 for a
non-recoverable error.

Notes:

This function must assume that all inter-processor communication of data needed to calculate gval has already
been done, and this data is accessible within user_data.

The case where G is mathematically identical to F is allowed.

typedef int (*IDABBDCommFn)(sunindextype Nlocal, sunrealtype tt, N_Vector yy, N_Vector yp, void *user_data)
This Gcomm function performs all inter-processor communications necessary for the execution of the Gres func-
tion above, using the input vectors yy and yp.

Arguments:

• Nlocal – is the local vector length.

• tt – is the value of the independent variable.

• yy – is the dependent variable.

• yp – is the derivative of the dependent variable.

• gval – is the output vector.

• user_data – is a pointer to user data, the same as the user_data parameter passed to IDASetUser-
Data().

Return value:
An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable error, or -1 for a
non-recoverable error.

Notes:

The Gcomm function is expected to save communicated data in space defined within the structure user_data.

Each call to the Gcomm function is preceded by a call to the residual function res with the same (t, y, ẏ) argu-
ments. Thus Gcomm can omit any communications done by res if relevant to the evaluation of Gres. If all nec-
essary communication was done in res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit().

Besides the header files required for the integration of the DAE problem (see §5.1.1), to use the IDABBDPRE module,
the main program must include the header file ida_bbdpre.h which declares the needed function prototypes.
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The following is a summary of the usage of this module and describes the sequence of calls in the user main program.
Steps that are unchanged from the user main program presented in §5.1.2 are grayed out and new or modified steps are
in bold.

1. Initialize parallel or multi-threaded environment

2. Create the vector of initial values

3. Create matrix object

4. Create linear solver object

When creating the iterative linear solver object, specify the use of left preconditioning (SUN_PREC_LEFT) as
IDAS only supports left preconditioning.

5. Create nonlinear solver object

6. Create IDAS object

7. Initialize IDAS solver

8. Specify integration tolerances

9. Attach the linear solver

10. Set linear solver optional inputs

Warning

The user should not overwrite the preconditioner setup function or solve function through calls to IDASet-
Preconditioner() optional input function.

11. Initialize the IDABBDPRE preconditioner module

Call IDABBDPrecInit() to allocate memory and initialize the internal preconditioner data. The last two argu-
ments of IDABBDPrecInit() are the two user-supplied functions described above.

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Specify rootfinding problem

15. Set optional inputs

16. Advance solution in time

17. Get optional outputs

Additional optional outputs associated with IDABBDPRE are available by way of two routines described below,
IDABBDPrecGetWorkSpace() and IDABBDPrecGetNumGfnEvals().

18. Destroy objects

19. Finalize MPI, if used

The user-callable functions that initialize or re-initialize the IDABBDPRE preconditioner module are described next.

int IDABBDPrecInit(void *ida_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq, sunindextype
mukeep, sunindextype mlkeep, sunrealtype dq_rel_yy, IDABBDLocalFn Gres,
IDABBDCommFn Gcomm);

The function IDABBDPrecInit() initializes and allocates (internal) memory for the IDABBDPRE precondi-
tioner.

Arguments:
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• ida_mem – pointer to the IDAS solver object.

• Nlocal – local vector dimension.

• mudq – upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mukeep – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeep – lower half-bandwidth of the retained banded approximate Jacobian block.

• dq_rel_yy – the relative increment in components of y used in the difference quotient approximations.
The default is dq_rel_yy =

√
unit roundoff , which can be specified by passing dq_rel_yy = 0.0.

• Gres – the function which computes the local residual approximation G(t, y, ẏ).

• Gcomm – the optional function which performs all inter-process communication required for the com-
putation of G(t, y, ẏ).

Return value:

• IDALS_SUCCESS – The call was successful.

• IDALS_MEM_NULL – The ida_mem pointer was NULL.

• IDALS_MEM_FAIL – A memory allocation request has failed.

• IDALS_LMEM_NULL – An IDALS linear solver memory was not attached.

• IDALS_ILL_INPUT – The supplied vector implementation was not compatible with the block band
preconditioner.

Notes:

If one of the half-bandwidths mudq or mldq to be used in the difference-quotient calculation of the approximate
Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jacobian of the local block of
G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The IDABBDPRE module also provides a reinitialization function to allow for a sequence of problems of the same size,
with the same linear solver choice, provided there is no change in local_N, mukeep, or mlkeep. After solving one prob-
lem, and after calling IDAReInit() to re-initialize IDAS for a subsequent problem, a call to IDABBDPrecReInit()
can be made to change any of the following: the half-bandwidths mudq and mldq used in the difference-quotient Jaco-
bian approximations, the relative increment dq_rel_yy, or one of the user-supplied functions Gres and Gcomm. If there
is a change in any of the linear solver inputs, an additional call to the “Set”routines provided by the SUNLinearSolver
object, and/or one or more of the corresponding IDASet*** functions, must also be made (in the proper order).

int IDABBDPrecReInit(void *ida_mem, sunindextype mudq, sunindextype mldq, sunrealtype dq_rel_yy)
The function IDABBDPrecReInit() reinitializes the IDABBDPRE preconditioner.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• mudq – upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

• Mldq – lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

• dq_rel_yy – the relative increment in components of y used in the difference quotient approximations.
The default is dq_rel_yy =

√
unit roundoff , which can be specified by passing dq_rel_yy = 0.0.
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Return value:

• IDALS_SUCCESS – The call was successful.

• IDALS_MEM_NULL – The ida_mem pointer was NULL.

• IDALS_LMEM_NULL – An IDALS linear solver memory was not attached.

• IDALS_PMEM_NULL – The function IDABBDPrecInit() was not previously called.

Notes:
If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal - 1, it is replaced by
0 or Nlocal - 1, accordingly.

The following two optional output functions are available for use with the IDABBDPRE module:

int IDABBDPrecGetWorkSpace(void *ida_mem, long int *lenrwBBDP, long int *leniwBBDP)
The function IDABBDPrecGetWorkSpace() returns the local sizes of the IDABBDPRE real and integer
workspaces.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• lenrwBBDP – local number of real values in the IDABBDPRE workspace.

• leniwBBDP – local number of integer values in the IDABBDPRE workspace.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer was NULL.

• IDALS_PMEM_NULL – The IDABBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the ID-
ABBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary vec-
tors). These values are local to each process. The workspaces referred to here exist in addition to those
given by the corresponding function IDAGetLinWorkSpace().

Deprecated since version 6.3.0: Work space functions will be removed in version 8.0.0.

int IDABBDPrecGetNumGfnEvals(void *ida_mem, long int *ngevalsBBDP)
The function IDABBDPrecGetNumGfnEvals() returns the cumulative number of calls to the user Gres function
due to the finite difference approximation of the Jacobian blocks used within IDABBDPRE’s preconditioner setup
function.

Arguments:

• ida_mem – pointer to the IDAS solver object.

• ngevalsBBDP – the cumulative number of calls to the user Gres function.

Return value:

• IDALS_SUCCESS – The optional output value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer was NULL.

• IDALS_PMEM_NULL – The IDABBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP evaluations of Gres, the costs associated with IDABBDPRE also includes nlin-
setups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and nrevalsLS residual
function evaluations, where nlinsetups is an optional IDAS output (see §5.1.3.12), and npsolves and nrevalsLS
are linear solver optional outputs (see §5.1.3.12).
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5.4 Using IDAS for Forward Sensitivity Analysis

This chapter describes the use of IDAS to compute solution sensitivities using forward sensitivity analysis. One of our
main guiding principles was to design the IDAS user interface for forward sensitivity analysis as an extension of that
for IVP integration. Assuming a user main program and user-defined support routines for IVP integration have already
been defined, in order to perform forward sensitivity analysis the user only has to insert a few more calls into the main
program and (optionally) define an additional routine which computes the residual of the sensitivity systems (2.11).
The only departure from this philosophy is due to the IDAResFn type definition. Without changing the definition of
this type, the only way to pass values of the problem parameters to the ODE residual function is to require the user data
structure f_data to contain a pointer to the array of real parameters p.

IDAS uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in §12.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of the
interface to the various user-callable routines and of the user-supplied routines that were not already described in §5.1
or §5.2.

5.4.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of IDAS. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of the details
to the later sections. As in §5.1.2, most steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, §9 for the specific
name of the function to be called or macro to be referenced.

First, note that no additional header files need be included for forward sensitivity analysis beyond those for IVP solution
§5.1.2.

Steps that are unchanged from the user main program skeleton in §5.1.2 are grayed out and new or modified steps are
in bold.

1. Initialize parallel or multi-threaded environment

2. Create the SUNDIALS context object

3. Set the vector of initial values

4. Create matrix object

5. Create linear solver object

6. Create nonlinear solver object

7. Create IDAS object

8. Initialize IDAS solver

9. Specify integration tolerances

10. Attach linear solver

11. Set linear solver optional inputs

12. Attach nonlinear solver

13. Set nonlinear solver optional inputs

14. Initialize quadrature integration

If the quadrature is not sensitivity-dependent, initialize the quadrature integration as described in §5.2. For
integrating a problem where the quadrature depends on the forward sensitivities see §5.4.4.
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15. Set the sensitivity initial values

Call N_VCloneVectorArray() to create N_Vector arrays yS0 and ypS0 to hold the initial values for the sen-
sitivity vectors of y and sensitivity derivative vectors of ẏ, respectively.

yS0 = N_VCloneVectorArray(Ns, y0);
ypS0 = N_VCloneVectorArray(Ns, y0);

where Ns is the number of parameters with respect to which sensitivities are to be computed and y0 serves only
to provide an N_Vector template for cloning.

Then, load initial values for each sensitivity vector yS0[i] and sensitivity derivative vector ypS0[i] for i =
0,...,N_s-1.

16. Activate sensitivity calculations

Call IDASensInit() to activate forward sensitivity computations and allocate internal memory for IDAS related
to sensitivity calculations.

If a sensitivity residual function is not provided to IDASensInit(), then IDASetSensParams()must be called
after IDASensInit() and before IDASolve() to provide the array of problem parameters with respect to which
the sensitivities are computed. This array must also be attached to the “user data” pointer set with IDASe-
tUserData(). Optionally, an array of scaling factors for difference-quotient residual computations and a mask
array to select which parameters with respect to which the sensitivities are computed may also be provided to
IDASetSensParams().

17. Set sensitivity integration tolerances (optional)

Call IDASensSStolerances() or IDASensSVtolerances() to set the sensitivity integration tolerances or
IDASensEEtolerances() to have IDAS estimate tolerances for sensitivity variables based on the tolerances
supplied for states variables.

If sensitivity tolerances are estimated by IDAS, the results will be more accurate if order of magnitude is provided
by setting the pbar input to IDASetSensParams().

18. Create sensitivity nonlinear solver

If using a non-default nonlinear solver (see §5.4.2.3), then create the desired nonlinear solver object by calling
the appropriate constructor function defined by the particular SUNNonlinearSolver implementation e.g.,

NLSSens = SUNNonlinSol_***Sens(...);

for the IDA_SIMULTANEOUS or IDA_STAGGERED options *** is the name of the nonlinear solver and ... are
constructor specific arguments (see §9 for details).

19. Attach the sensitivity nonlinear solver

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the nonlinear
solver object by calling IDASetNonlinearSolverSensSim() when using the IDA_SIMULTANEOUS corrector
method, IDASetNonlinearSolverSensStg()when using the IDA_STAGGERED corrector method (see §5.4.2.3
for details).

20. Set sensitivity nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific to
that nonlinear solver. These must be called after IDASensInit() if using the default nonlinear solver or after
attaching a new nonlinear solver to IDAS, otherwise the optional inputs will be overridden by IDAS defaults.
See §9 for more information on optional inputs.

21. Specify rootfinding problem
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22. Set optional inputs

Call IDASetSens* routines to change from their default values any optional inputs that control the behavior of
IDAS in computing forward sensitivities. See §5.4.2.7 for details.

23. Correct initial values

24. Advance solution in time

25. Extract sensitivity solution

After each successful return from IDASolve(), the solution of the original IVP is available in the y argument of
IDASolve(), while the sensitivity solution can be extracted into yS and ypS (which can be the same as yS0 and
ypS0) by calling one of the routines IDAGetSens(), IDAGetSens1(), IDAGetSensDky(), or IDAGetSens-
Dky1().

26. Get optional outputs

27. Deallocate memory

Upon completion of the integration, deallocate memory for the vectors yS0 and yps0 using N_VDestroyVec-
torArray().

28. Finalize MPI, if used

5.4.2 User-callable routines for forward sensitivity analysis

This section describes the IDAS functions, in addition to those presented in §5.1.3, that are called by the user to setup
and solve a forward sensitivity problem.

5.4.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling IDASensInit(). The form of the call is as follows:

int IDASensInit(void *ida_mem, int Ns, int ism, IDASensResFn fS, N_Vector *yS0, N_Vector *ypS0)
The routine IDASensInit() activates forward sensitivity computations and allocates internal memory related
to sensitivity calculations.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• Ns – the number of sensitivities to be computed.

• ism – forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be IDA_SIMULTANEOUS or IDA_STAGGERED :

– In the IDA_SIMULTANEOUS approach, the state and sensitivity variables are corrected at the same
time. If the default Newton nonlinear solver is used, this amounts to performing a modified Newton
iteration on the combined nonlinear system.

– In the IDA_STAGGERED approach, the correction step for the sensitivity variables takes place at
the same time for all sensitivity equations, but only after the correction of the state variables has
converged and the state variables have passed the local error test.

• resS – is the C function which computes all sensitivity ODE residuals at the same time. For full details
see IDASensResFn.

• yS0 – a pointer to an array of Ns vectors containing the initial values of the sensitivities of y.

• ypS0 – a pointer to an array of Ns vectors containing the initial values of the sensitivities of ẏ.
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Return value:

• IDA_SUCCESS – The call to IDASensInit() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_MEM_FAIL – A memory allocation request has failed.

• IDA_ILL_INPUT – An input argument to IDASensInit() has an illegal value.

Notes:

Passing fs == NULL indicates using the default internal difference quotient sensitivity residual routine and
IDASetSensParams() must be called before IDASolve().

If an error occurred, IDASensInit() also sends an error message to the error handler function.

In terms of the problem sizeN , number of sensitivity vectorsNs, and maximum method order maxord, the size of the
real workspace is increased as follows:

• Base value: lenrw = lenrw+ (maxord+ 5)NsN

• With IDASensSVtolerances(): textttlenrw = lenrw+NsN

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw+ (maxord+ 5)NsNi

• With IDASensSVtolerances(): leniw = leniw+NsNi

where Ni is the number of integers in one N_Vector.

The routine IDASensReInit(), useful during the solution of a sequence of problems of same size, reinitializes
the sensitivity-related internal memory. The call to it must follow a call to IDASensInit() (and maybe a call to
IDAReInit()). The number Ns of sensitivities is assumed to be unchanged since the call to the initialization function.
The call to the IDASensReInit() function has the form:

int IDASensReInit(void *ida_mem, int ism, N_Vector *yS0, N_Vector *ypS0)
The routine IDASensReInit() reinitializes forward sensitivity computations.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• ism – forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be IDA_SIMULTANEOUS , IDA_STAGGERED , or IDA_STAGGERED1.

• yS0 – a pointer to an array of Ns variables of type N_Vector containing the initial values of the
sensitivities.

• ypS0 – a pointer to an array of Ns variables of type N_Vector containing the initial values of the
sensitivities of ẏ.

Return value:

• IDA_SUCCESS – The call to IDASensReInit() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_NO_SENS – Memory space for sensitivity integration was not allocated through a previous call to
IDASensInit().

• IDA_ILL_INPUT – An input argument to IDASensReInit() has an illegal value.

• IDA_MEM_FAIL – A memory allocation request has failed.
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Notes:

All arguments of IDASensReInit() are the same as those of the functions IDASensInit(). If an error oc-
curred, IDASensReInit() also sends a message to the error handler function.

To deallocate all forward sensitivity-related memory (allocated in a prior call to IDASensInit()), the user must call

void IDASensFree(void *ida_mem)
The function IDASensFree() frees the memory allocated for forward sensitivity computations by a previous
call to IDASensInit().

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

Return value:

• The function has no return value.

Notes:
In general, IDASensFree() need not be called by the user, as it is invoked automatically by IDAFree().

After a call to IDASensFree(), forward sensitivity computations can be reactivated only by calling
IDASensInit().

To activate and deactivate forward sensitivity calculations for successive IDAS runs, without having to allocate and
deallocate memory, the following function is provided:

int IDASensToggleOff(void *ida_mem)
The function IDASensToggleOff() deactivates forward sensitivity calculations. It does not deallocate
sensitivity-related memory.

Arguments:

• ida_mem – pointer to the memory previously returned by IDACreate().

Return value:

• IDA_SUCCESS – IDASensToggleOff() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

Notes:
Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at a later time (using
IDASensReInit()).

5.4.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities. Note that this
call must be made after the call to IDASensInit().

int IDASensSStolerances(void *ida_mem, sunrealtype reltolS, sunrealtype *abstolS)
The function IDASensSStolerances() specifies scalar relative and absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• reltolS – is the scalar relative error tolerance.

• abstolS – is a pointer to an array of length Ns containing the scalar absolute error tolerances, one for
each parameter.

Return value:
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• IDA_SUCCESS – The call to IDASStolerances() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_NO_SENS – The sensitivity allocation function IDASensInit() has not been called.

• IDA_ILL_INPUT – One of the input tolerances was negative.

int IDASensSVtolerances(void *ida_mem, sunrealtype reltolS, N_Vector *abstolS)
The function IDASensSVtolerances() specifies scalar relative tolerance and vector absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• reltolS – is the scalar relative error tolerance.

• abstolS – is an array of Ns variables of type N_Vector. The N_Vector from abstolS[is] specifies
the vector tolerances for is -th sensitivity.

Return value:

• IDA_SUCCESS – The call to IDASVtolerances() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_NO_SENS – The allocation function for sensitivities has not been called.

• IDA_ILL_INPUT – The relative error tolerance was negative or an absolute tolerance vector had a
negative component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of any vector yS[i].

int IDASensEEtolerances(void *ida_mem)
When IDASensEEtolerances() is called, IDAS will estimate tolerances for sensitivity variables based on the
tolerances supplied for states variables and the scaling factors p̄.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

Return value:

• IDA_SUCCESS – The call to IDASensEEtolerances() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_NO_SENS – The sensitivity allocation function has not been called.
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5.4.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure DAE case, when computing solution sensitivities using forward sensitivitiy analysis IDAS uses the
SUNNonlinearSolver implementation of Newton’s method defined by the SUNNONLINSOL_NEWTONmodule (see §9.3)
by default. To specify a different nonlinear solver in IDAS, the user’s program must create a SUNNonlinearSolver
object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver object
to IDAS by calling IDASetNonlinearSolverSensSim() when using the IDA_SIMULTANEOUS corrector option, or
IDASetNonlinearSolver() and IDASetNonlinearSolverSensStg() when using the IDA_STAGGERED corrector
option as documented below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver() must be called after IDAInit();
similarly IDASetNonlinearSolverSensSim(), IDASetNonlinearSolverSensStg(), must be called after
IDASensInit(). If any calls to IDASolve() have been made, then IDAS will need to be reinitialized by calling
IDAReInit() to ensure that the nonlinear solver is initialized correctly before any subsequent calls to IDASolve().

The first argument passed to the routines IDASetNonlinearSolverSensSim(), and IDASetNonlinearSol-
verSensStg(), is the IDAS memory pointer returned by IDACreate() and the second argument is the SUNNon-
linearSolver object to use for solving the nonlinear systems (2.4). A call to this function attaches the nonlinear
solver to the main IDAS integrator.

int IDASetNonlinearSolverSensSim(void *ida_mem, SUNNonlinearSolver NLS)
The function IDASetNonlinearSolverSensSim() attaches a SUNNonlinearSolver object (NLS) to IDAS
when using the IDA_SIMULTANEOUS approach to correct the state and sensitivity variables at the same time.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• NLS – SUNNonlinearSolver object to use for solving nonlinear system (2.4).

Return value:

• IDA_SUCCESS – The nonlinear solver was successfully attached.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The SUNNONLINSOL object is NULL , does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

int IDASetNonlinearSolverSensStg(void *ida_mem, SUNNonlinearSolver NLS)
The function IDASetNonlinearSolverSensStg() attaches a SUNNonlinearSolver object (NLS) to IDAS
when using the IDA_STAGGERED approach to correct all the sensitivity variables after the correction of the state
variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• NLS – SUNNONLINSOL object to use for solving nonlinear systems.

Return value:

• IDA_SUCCESS – The nonlinear solver was successfully attached.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_ILL_INPUT – The SUNNONLINSOL object is NULL , does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.
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Notes:
This function only attaches the SUNNonlinearSolver object for correcting the sensitivity variables. To
attach a SUNNonlinearSolver object for the state variable correction use IDASetNonlinearSolver().

5.4.2.4 Forward sensitivity initial condition calculation function

IDACalcIC() also calculates corrected initial conditions for sensitivity variables of a DAE system. When used
for initial conditions calculation of the forward sensitivities, IDACalcIC() must be preceded by successful calls to
IDASensInit() (or IDASensReInit()) and should precede the call(s) to IDASolve(). For restrictions that apply
for initial conditions calculation of the state variables, see §5.1.3.7.

Calling IDACalcIC() is optional. It is only necessary when the initial conditions do not satisfy the sensitivity systems.
Even if forward sensitivity analysis was enabled, the call to the initial conditions calculation function IDACalcIC() is
exactly the same as for state variables.

flag = IDACalcIC(ida_mem, icopt, tout1);

See IDACalcIC() for a list of possible return values.

5.4.2.5 IDAS solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function IDASolve() is exactly the same
as in §5.1. However, in this case the return value flag can also be one of the following:

• IDA_SRES_FAIL – The sensitivity residual function failed in an unrecoverable manner.

• IDA_REP_SRES_ERR – The user’s residual function repeatedly returned a recoverable error flag, but the solver
was unable to recover.

5.4.2.6 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to IDASensInit(), or reinitialized by a call to
IDASensReInit(), then IDAS computes both a solution and sensitivities at time t. However, IDASolve() will still
return only the solution y in yout. Solution sensitivities can be obtained through one of the following functions:

int IDAGetSens(void *ida_mem, sunrealtype *tret, N_Vector *yS)
The function IDAGetSens() returns the sensitivity solution vectors after a successful return from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• tret – the time reached by the solver output.

• yS – array of computed forward sensitivity vectors. This vector array must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetSens() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_BAD_DKY – yS is NULL.

Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last IDASolve() call.
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The function IDAGetSensDky() computes the k-th derivatives of the interpolating polynomials for the sensitivity
variables at time t. This function is called by IDAGetSens() with k = 0, but may also be called directly by the user.

int IDAGetSensDky(void *ida_mem, sunrealtype t, int k, N_Vector *dkyS)
The function IDAGetSensDky() returns derivatives of the sensitivity solution vectors after a successful return
from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• t – specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by IDAS.

• k – order of derivatives. k must be in the range 0, 1, ..., klast where klast is the method order of the
last successful step.

• dkyS – array of Ns vectors containing the derivatives on output. The space for dkySmust be allocated
by the user.

Return value:

• IDA_SUCCESS – IDAGetSensDky() succeeded.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_BAD_DKY – One of the vectors dkyS[i] is NULL.

• IDA_BAD_K – k is not in the range 0, 1, ..., qlast.

• IDA_BAD_T – The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
IDAGetSens1() and IDAGetSensDky1(), defined as follows:

int IDAGetSens1(void *ida_mem, sunrealtype *tret, int is, N_Vector yS)
The function IDAGetSens1 returns the is-th sensitivity solution vector after a successful return from IDA-
Solve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• tret – the time reached by the solver output.

• is – specifies which sensitivity vector is to be returned 0 ≤ is < Ns.

• yS – the computed forward sensitivity vector. This vector array must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetSens1 was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_BAD_IS – The index is is not in the allowed range.

• IDA_BAD_DKY – yS is NULL.

• IDA_BAD_T – The time t is not in the allowed range.
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Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last IDASolve() call.

int IDAGetSensDky1(void *ida_mem, sunrealtype t, int k, int is, N_Vector dkyS)
The function IDAGetSensDky1 returns the k-th derivative of the is-th sensitivity solution vector after a suc-
cessful return from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• t – specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by IDAS.

• k – order of derivative.

• is – specifies the sensitivity derivative vector to be returned 0 ≤ is < Ns.

• dkyS – the vector containing the derivative. The space for dkyS must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetQuadDky1 succeeded.

• IDA_MEM_NULL – The pointer to ida_mem was NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_BAD_DKY – dkyS or one of the vectors dkyS[i] is NULL.

• IDA_BAD_IS – The index is is not in the allowed range.

• IDA_BAD_K – k is not in the range 0, 1, ..., qlast.

• IDA_BAD_T – The time t is not in the allowed range.

5.4.2.7 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default values through
calls to IDASetSens* functions. Table 5.8 lists all forward sensitivity optional input functions in IDAS which are
described in detail in the remainder of this section.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a IDASetSens***
function can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Table 5.8: Forward sensitivity optional inputs :align: center

Optional input Routine name Default
Sensitivity scaling factors IDASetSensParams() NULL
DQ approximation method IDASetSensDQMethod() centered/0.0
Error control strategy IDASetSensErrCon() SUNFALSE
Maximum no. of nonlinear iterations IDASetSensMaxNonlinIters() 4

int IDASetSensParams(void *ida_mem, sunrealtype *p, sunrealtype *pbar, int *plist)
The function IDASetSensParams() specifies problem parameter information for sensitivity calculations.

Arguments:

• ida_mem – pointer to the IDAS memory block.
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• p – a pointer to the array of real problem parameters used to evaluate F (t, y, ẏ, p). If non- NULL , p
must point to a field in the user’s data structure user_data passed to the residual function.

• pbar – an array of Ns positive scaling factors. If non- NULL , pbarmust have all its components> 0.0.

• plist – an array of Ns non-negative indices to specify which components p[i] to use in estimating
the sensitivity equations. If non- NULL , plist must have all components ≥ 0.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_ILL_INPUT – An argument has an illegal value.

Note

The array p only needs to include the parameters with respect to which sensitivities are (potentially) desired.

If the user provides a function to evaluate the sensitivity residuals, p need not be specified.

When computing the sensitivity residual via a difference-quotient or estimating sensitivity tolerances the
results will be more accurate if order of magnitude information is provided with pbar. Typically, if p[0]
!= 0, the value pbar[i] = abs(p[plist[i]]) can be used. By default IDAS uses p[i] = 1.0.

If the user provides a function to evaluate the sensitivity residual and specifies tolerances for the sensitivity
variables, pbar need not be specified.

By default IDA computes sensitivities with respect to the first Ns parameters in p i.e., plist[i] = i for i
= 0,...,Ns-1. If sensitivities with respect to the j-th parameter p[j] are desired, set plist[i] = j for
some 0 ≤ i < Ns and 0 ≤ j < Np where Np is the number of element in p.

If the user provides a function to evaluate the sensitivity residuals, plist need not be specified.

Warning

This function must be preceded by a call to IDASensInit().

The array p must also be attached to the user data structure. For example, user_data->p = p;.

int IDASetSensDQMethod(void *ida_mem, int DQtype, sunrealtype DQrhomax)
The function IDASetSensDQMethod() specifies the difference quotient strategy in the case in which the residual
of the sensitivity equations are to be computed by IDAS.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• DQtype – specifies the difference quotient type. Its value can be IDA_CENTERED or IDA_FORWARD.

• DQrhomax – positive value of the selection parameter used in deciding switching between a simulta-
neous or separate approximation of the two terms in the sensitivity residual.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.
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• IDA_ILL_INPUT – An argument has an illegal value.

Notes:

If DQrhomax = 0.0, then no switching is performed. The approximation is done simultaneously using either
centered or forward finite differences, depending on the value of DQtype. For values of DQrhomax ≥ 1.0,
the simultaneous approximation is used whenever the estimated finite difference perturbations for states and
parameters are within a factor of DQrhomax, and the separate approximation is used otherwise. Note that a value
DQrhomax < 1.0 will effectively disable switching. See §2.6 for more details.

The default value are DQtype == IDA_CENTERED and DQrhomax= 0.0.

int IDASetSensErrCon(void *ida_mem, sunbooleantype errconS)
The function IDASetSensErrCon() specifies the error control strategy for sensitivity variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• errconS – specifies whether sensitivity variables are to be included SUNTRUE or not SUNFALSE in the
error control mechanism.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
By default, errconS is set to SUNFALSE. If errconS = SUNTRUE then both state variables and sensitiv-
ity variables are included in the error tests. If errconS = SUNFALSE then the sensitivity variables are
excluded from the error tests. Note that, in any event, all variables are considered in the convergence tests.

int IDASetSensMaxNonlinIters(void *ida_mem, int maxcorS)
The function IDASetSensMaxNonlinIters() specifies the maximum number of nonlinear solver iterations for
sensitivity variables per step.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• maxcorS – maximum number of nonlinear solver iterations allowed per step > 0.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_MEM_FAIL – The SUNNONLINSOL module is NULL.

Notes:
The default value is 3.
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5.4.2.8 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward sensitivity com-
putations are listed in Table 5.9 and described in detail in the remainder of this section.

Table 5.9: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity residual function IDAGetSensNumResEvals()
No. of calls to residual function for sensitivity IDAGetNumResEvalsSens()
No. of sensitivity local error test failures IDAGetSensNumErrTestFails()
No. of failed steps due to sensitivity nonlinear solver failures IDAGetNumStepSensSolveFails()
No. of calls to lin. solv. setup routine for sens. IDAGetSensNumLinSolvSetups()
Error weight vector for sensitivity variables IDAGetSensErrWeights()
Sensitivity-related statistics as a group IDAGetSensStats()
No. of sens. nonlinear solver iterations IDAGetSensNumNonlinSolvIters()
No. of sens. convergence failures IDAGetSensNumNonlinSolvConvFails()
Sens. nonlinear solver statistics as a group IDAGetSensNonlinSolvStats()

int IDAGetSensNumResEvals(void *ida_mem, long int *nfSevals)
The function IDAGetSensNumResEvals() returns the number of calls to the sensitivity residual function.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nfSevals – number of calls to the sensitivity residual function.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

int IDAGetNumResEvalsSens(void *ida_mem, long int *nfevalsS)
The function IDAGetNumResEvalsSens() returns the number of calls to the user’s residual function due to the
internal finite difference approximation of the sensitivity residuals.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nfevalsS – number of calls to the user’s DAE residual function for the evaluation of sensitivity resid-
uals.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the internal finite difference approximation routines are used for the
evaluation of the sensitivity residuals.
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int IDAGetSensNumErrTestFails(void *ida_mem, long int *nSetfails)
The function IDAGetSensNumErrTestFails() returns the number of local error test failures for the sensitivity
variables that have occurred.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nSetfails – number of error test failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the sensitivity variables have been included in the error test (see
IDASetSensErrCon()). Even in that case, this counter is not incremented if the ism = IDA_SIMUL-
TANEOUS sensitivity solution method has been used.

int IDAGetNumStepSensSolveFails(void *ida_mem, long int *nSncfails)
Returns the number of failed steps due to a sensitivity nonlinear solver failure.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nSncfails – number of step failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

int IDAGetSensNumLinSolvSetups(void *ida_mem, long int *nlinsetupsS)
The function IDAGetSensNumLinSolvSetups() returns the number of calls to the linear solver setup function
due to forward sensitivity calculations.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nlinsetupsS – number of calls to the linear solver setup function.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if a nonlinear solver requiring a linear solve has been used and the ism =
IDA_STAGGERED sensitivity solution method has been specified (see §5.4.2.1).

int IDAGetSensStats(void *ida_mem, long int *nresSevals, long int *nresevalsS, long int *nSetfails, long int
*nlinsetupsS)

The function IDAGetSensStats() returns all of the above sensitivity-related solver statistics as a group.
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Arguments:

• ida_mem – pointer to the IDAS memory block.

• nresSevals – number of calls to the sensitivity residual function.

• nresevalsS – number of calls to the user-supplied DAE residual function for sensitivity evaluations.

• nSetfails – number of error test failures.

• nlinsetupsS – number of calls to the linear solver setup function.

Return value:

• IDA_SUCCESS – The optional output values have been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

int IDAGetSensErrWeights(void *ida_mem, N_Vector *eSweight)
The function IDAGetSensErrWeights() returns the sensitivity error weight vectors at the current time. These
are the reciprocals of the Wi of (2.5) for the sensitivity variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• eSweight – pointer to the array of error weight vectors.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

Notes:
The user must allocate memory for eweightS.

int IDAGetSensNumNonlinSolvIters(void *ida_mem, long int *nSniters)
The function IDAGetSensNumNonlinSolvIters() returns the number of nonlinear iterations performed for
sensitivity calculations.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nSniters – number of nonlinear iterations performed.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_MEM_FAIL – The SUNNONLINSOL module is NULL.

Notes:
This counter is incremented only if ism was IDA_STAGGERED or in the call to IDASensInit().

int IDAGetSensNumNonlinSolvConvFails(void *ida_mem, long int *nSncfails)
The function IDAGetSensNumNonlinSolvConvFails() returns the number of nonlinear convergence failures
that have occurred for sensitivity calculations.
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Arguments:

• ida_mem – pointer to the IDAS memory block.

• nSncfails – number of nonlinear convergence failures.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if ism was IDA_STAGGERED or in the call to IDASensInit().

int IDAGetSensNonlinSolvStats(void *ida_mem, long int *nSniters, long int *nSncfails)
The function IDAGetSensNonlinSolvStats() returns the sensitivity-related nonlinear solver statistics as a
group.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nSniters – number of nonlinear iterations performed.

• nSncfails – number of nonlinear convergence failures.

Return value:

• IDA_SUCCESS – The optional output values have been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_MEM_FAIL – The SUNNONLINSOL module is NULL.

5.4.2.9 Initial condition calculation optional output functions

The sensitivity consistent initial conditions found by IDAS (after a successful call to IDACalcIC()) can be obtained
by calling the following function:

int IDAGetSensConsistentIC(void *ida_mem, N_Vector *yyS0_mod, N_Vector *ypS0_mod)
The function IDAGetSensConsistentIC() returns the corrected initial conditions calculated by IDACalcIC()
for sensitivities variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• yyS0_mod – a pointer to an array of Ns vectors containing consistent sensitivity vectors.

• ypS0_mod – a pointer to an array of Ns vectors containing consistent sensitivity derivative vectors.

Return value:

• IDA_SUCCESS – IDAGetSensConsistentIC() succeeded.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – The function IDASensInit() has not been previously called.

• IDA_ILL_INPUT – IDASolve() has been already called.
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Notes:
If the consistent sensitivity vectors or consistent derivative vectors are not desired, pass NULL for the cor-
responding argument.

Warning

The user must allocate space for yyS0_mod and ypS0_mod (if not NULL).

5.4.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §5.1.4, when using IDAS for forward
sensitivity analysis, the user has the option of providing a routine that calculates the residual of the sensitivity equations
(2.11).

By default, IDAS uses difference quotient approximation routines for the residual of the sensitivity equations. However,
IDAS allows the option for user-defined sensitivity residual routines (which also provides a mechanism for interfacing
IDAS to routines generated by automatic differentiation).

The user may provide the residuals of the sensitivity equations (2.11) for all sensitivity parameters at once, through a
function of type IDASensResFn defined by:

typedef int (*IDASensResFn)(int Ns, sunrealtype t, N_Vector yy, N_Vector yp, N_Vector resval, N_Vector *yS,
N_Vector *ypS, N_Vector *resvalS, void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the sensitivity residual for all sensitivity equations. It must compute the vectors
(∂F/∂yi) si(t) + (∂F/∂ẏ) ṡi(t) + (∂F/∂pi) and store them in resvalS[i].

Arguments:

• Ns – is the number of sensitivities.

• t – is the current value of the independent variable.

• yy – is the current value of the state vector, y(t) .

• yp – is the current value of ẏ(t) .

• resval – contains the current value F of the original DAE residual.

• yS – contains the current values of the sensitivities si .

• ypS – contains the current values of the sensitivity derivatives ṡi .

• resvalS – contains the output sensitivity residual vectors. Memory allocation for resvalS is handled
within IDAS.

• user_data – is a pointer to user data.

• tmp1, tmp2, tmp3 – are N_Vector s of length N which can be used as temporary storage.

Return value:
An IDASensResFn() should return 0 if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDA_SRES_FAIL is returned).

Notes:
There is one situation in which recovery is not possible even if IDASensResFn() function returns a re-
coverable error flag. That is when this occurs at the very first call to the IDASensResFn(), in which case
IDAS returns IDA_FIRST_RES_FAIL.
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5.4.4 Integration of quadrature equations depending on forward sensitivities

IDAS provides support for integration of quadrature equations that depends not only on the state variables but also on
forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton program presented in §5.1.2 are grayed out and new or modified steps are in bold. See also §5.2.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Create the SUNDIALS context object

3. Set vector of initial values

4. Create matrix object

5. Create linear solver object

6. Set linear solver optional inputs

7. Create nonlinear solver object

8. Create IDAS object

9. Initialize IDAS solver

10. Specify integration tolerances

11. Attach linear solver

12. Set linear solver optional inputs

13. Attach nonlinear solver

14. Set nonlinear solver optional inputs

15. Set sensitivity initial values

16. Activate sensitivity calculations

17. Set sensitivity integration tolerances

18. Create sensitivity nonlinear solver

19. Attach the sensitivity nonlinear solver

20. Set sensitivity nonlinear solver optional inputs

21. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

22. Initialize sensitivity-dependent quadrature integration

Call IDAQuadSensInit() to specify the quadrature equation right-hand side function and to allocate internal
memory related to quadrature integration.

23. Specify rootfinding problem

24. Set optional inputs

Call IDASetQuadSensErrCon() to indicate whether or not quadrature variables should be used in the step
size control mechanism. If so, one of the IDAQuadSens*tolerances functions must be called to specify the
integration tolerances for quadrature variables. See §5.2.4 for details.

25. Correct initial values

26. Advance solution in time
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27. Extract sensitivity solution

28. Extract sensitivity-dependent quadrature variables

Call IDAGetQuadSens(), IDAGetQuadSens1(), IDAGetQuadSensDky() or IDAGetQuadSensDky1() to ob-
tain the values of the quadrature variables or their derivatives at the current time.

29. Get optional outputs

Call IDAGetQuadSens* functions to obtain optional output related to the integration of sensitivity-dependent
quadratures. See §5.4.4.5 for details.

30. Destroy objects

31. Finalize MPI, if used

5.4.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function IDAQuadSensInit() activates integration of quadrature equations depending on sensitivities and allo-
cates internal memory related to these calculations. If rhsQS is input as NULL, then IDAS uses an internal function that
computes difference quotient approximations to the functions q̄i = (∂q/∂y)si + (∂q/∂ẏ)ṡi + ∂q/∂pi, in the notation
of (2.10). The form of the call to this function is as follows:

int IDAQuadSensInit(void *ida_mem, IDAQuadSensRhsFn rhsQS, N_Vector *yQS0)
The function IDAQuadSensInit() provides required problem specifications, allocates internal memory, and
initializes quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• rhsQS – is the IDAQuadSensRhsFn function which computes fQS , the right-hand side of the
sensitivity-dependent quadrature equations.

• yQS0 – contains the initial values of sensitivity-dependent quadratures.

Return value:

• IDA_SUCCESS – The call to IDAQuadSensInit() was successful.

• IDA_MEM_NULL – The IDAS memory was not initialized by a prior call to IDACreate().

• IDA_MEM_FAIL – A memory allocation request failed.

• IDA_NO_SENS – The sensitivities were not initialized by a prior call to IDASensInit().

• IDA_ILL_INPUT – The parameter yQS0 is NULL.

Notes:

Warning

Before calling IDAQuadSensInit(), the user must enable the sensitivities by calling IDASensInit().
If an error occurred, IDAQuadSensInit() also sends an error message to the error handler function.

In terms of the number of quadrature variablesNq and maximum method order maxord, the size of the real workspace
is increased as follows:

• Base value: lenrw = lenrw+ (maxord+ 5)Nq

• If IDAQuadSensSVtolerances() is called: lenrw = lenrw+NqNs
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and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw+ (maxord+ 5)Nq

• If IDAQuadSensSVtolerances() is called: leniw = leniw+NqNs

The function IDAQuadSensReInit(), useful during the solution of a sequence of problems of same size, reinitializes
the quadrature related internal memory and must follow a call to IDAQuadSensInit(). The number Nq of quadratures
as well as the number Ns of sensitivities are assumed to be unchanged from the prior call to IDAQuadSensInit().
The call to the IDAQuadSensReInit() function has the form:

int IDAQuadSensReInit(void *ida_mem, N_Vector *yQS0)
The function IDAQuadSensReInit() provides required problem specifications and reinitializes the sensitivity-
dependent quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• yQS0 – contains the initial values of sensitivity-dependent quadratures.

Return value:

• IDA_SUCCESS – The call to IDAQuadSensReInit() was successful.

• IDA_MEM_NULL – The IDAS memory was not initialized by a prior call to IDACreate().

• IDA_NO_SENS – Memory space for the sensitivity calculation was not allocated by a prior call to
IDASensInit().

• IDA_NO_QUADSENS – Memory space for the sensitivity quadratures integration was not allocated by a
prior call to IDAQuadSensInit().

• IDA_ILL_INPUT – The parameter yQS0 is NULL.

Notes:
If an error occurred, IDAQuadSensReInit() also sends an error message to the error handler function.

void IDAQuadSensFree(void *ida_mem);
The function IDAQuadSensFree() frees the memory allocated for sensitivity quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

Return value:
There is no return value.

Notes:
In general, IDAQuadSensFree() need not be called by the user as it is called automatically by IDAFree().

5.4.4.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve() is exactly the same as in
§5.1. However, in this case the return value flag can also be one of the following:

• IDA_QSRHS_FAIL – the sensitivity quadrature right-hand side function failed in an unrecoverable manner.

• IDA_FIRST_QSRHS_ERR – the sensitivity quadrature right-hand side function failed at the first call.

• IDA_REP_QSRHS_ERR – convergence test failures occurred too many times due to repeated recoverable errors in
the quadrature right-hand side function. The IDA_REP_RES_ERR will also be returned if the quadrature right-
hand side function had repeated recoverable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).
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5.4.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to IDAQuadSensInit(), or reinitialized by a call
to IDAQuadSensReInit(), then IDAS computes a solution, sensitivities, and quadratures depending on sensitivities
at time t. However, IDASolve() will still return only the solutions y and ẏ. Sensitivity-dependent quadratures can be
obtained using one of the following functions:

int IDAGetQuadSens(void *ida_mem, sunrealtype *tret, N_Vector *yQS)
The function IDAGetQuadSens() returns the quadrature sensitivity solution vectors after a successful return
from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• tret – the time reached by the solver output.

• yQS – array of Ns computed sensitivity-dependent quadrature vectors. This array of vectors must be
allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetQuadSens() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Sensitivities were not activated.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

• IDA_BAD_DKY – yQS or one of the yQS[i] is NULL.

The function IDAGetQuadSensDky() computes the k-th derivatives of the interpolating polynomials for the sensitivity-
dependent quadrature variables at time t. This function is called by IDAGetQuadSens() with k = 0, but may also be
called directly by the user.

int IDAGetQuadSensDky(void *ida_mem, sunrealtype t, int k, N_Vector *dkyQS)
The function IDAGetQuadSensDky() returns derivatives of the quadrature sensitivities solution vectors after a
successful return from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• t – the time at which information is requested. The time t must fall within the interval defined by the
last successful step taken by IDAS.

• k – order of the requested derivative. k must be in the range 0, 1, ..., klast where klast is the method
order of the last successful step.

• dkyQS – array of Ns vectors containing the derivatives. This vector array must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetQuadSensDky() succeeded.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Sensitivities were not activated.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

• IDA_BAD_DKY – dkyQS or one of the vectors dkyQS[i] is NULL.

• IDA_BAD_K – k is not in the range 0, 1, ..., klast.
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• IDA_BAD_T – The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
IDAGetQuadSens1 and IDAGetQuadSensDky1, defined as follows:

int IDAGetQuadSens1(void *ida_mem, sunrealtype *tret, int is, N_Vector yQS)
The function IDAGetQuadSens1 returns the is-th sensitivity of quadratures after a successful return from IDA-
Solve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• tret – the time reached by the solver output.

• is – specifies which sensitivity vector is to be returned 0 ≤ is < Ns.

• yQS – the computed sensitivity-dependent quadrature vector. This vector must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetQuadSens1 was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

• IDA_BAD_IS – The index is is not in the allowed range.

• IDA_BAD_DKY – yQS is NULL.

int IDAGetQuadSensDky1(void *ida_mem, sunrealtype t, int k, int is, N_Vector dkyQS)
The function IDAGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity solution vector after a
successful return from IDASolve().

Arguments:

• ida_mem – pointer to the memory previously allocated by IDAInit().

• t – specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by IDAS.

• k – order of derivative. k must be in the range 0, 1, ..., klast where klast is the method order of the
last successful step.

• is – specifies the sensitivity derivative vector to be returned 0 ≤ is < Ns.

• dkyQS – the vector containing the derivative. The space for dkyQS must be allocated by the user.

Return value:

• IDA_SUCCESS – IDAGetQuadDky1 succeeded.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_SENS – Forward sensitivity analysis was not initialized.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

• IDA_BAD_DKY – dkyQS is NULL.

• IDA_BAD_IS – The index is is not in the allowed range.

• IDA_BAD_K – k is not in the range 0, 1, ..., klast.

• IDA_BAD_T – The time t is not in the allowed range.
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5.4.4.4 Optional inputs for sensitivity-dependent quadrature integration

IDAS provides the following optional input functions to control the integration of sensitivity-dependent quadrature
equations.

int IDASetQuadSensErrCon(void *ida_mem, sunbooleantype errconQS)
The function IDASetQuadSensErrCon() specifies whether or not the quadrature variables are to be used in
the local error control mechanism. If they are, the user must specify the error tolerances for the quadrature
variables by calling IDAQuadSensSStolerances(), IDAQuadSensSVtolerances(), or IDAQuadSensEE-
tolerances().

Arguments:

• ida_mem – pointer to the IDAS memory block.

• errconQS – specifies whether sensitivity quadrature variables are included SUNTRUE or not SUNFALSE
in the error control mechanism.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Sensitivities were not activated.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

Notes:
By default, errconQS is set to SUNFALSE.

Warning

It is illegal to call IDASetQuadSensErrCon() before a call to IDAQuadSensInit().

If the quadrature variables are part of the step size control mechanism, one of the following functions must be called
to specify the integration tolerances for quadrature variables.

int IDAQuadSensSStolerances(void *ida_mem, sunrealtype reltolQS, sunrealtype *abstolQS)
The function IDAQuadSensSStolerances() specifies scalar relative and absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• reltolQS – tolerances is the scalar relative error tolerance.

• abstolQS – is a pointer to an array containing the Ns scalar absolute error tolerances.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Sensitivities were not activated.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

• IDA_ILL_INPUT – One of the input tolerances was negative.
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int IDAQuadSensSVtolerances(void *ida_mem, sunrealtype reltolQS, N_Vector *abstolQS)
The function IDAQuadSensSVtolerances() specifies scalar relative and vector absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• reltolQS – tolerances is the scalar relative error tolerance.

• abstolQS – is an array of Ns variables of type N_Vector. The N_Vector from abstolS[is] spec-
ifies the vector tolerances for is -th quadrature sensitivity.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_NO_QUAD – Quadrature integration was not initialized.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Sensitivities were not activated.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

• IDA_ILL_INPUT – One of the input tolerances was negative.

int IDAQuadSensEEtolerances(void *ida_mem)
The function IDAQuadSensEEtolerances() specifies that the tolerances for the sensitivity-dependent quadra-
tures should be estimated from those provided for the pure quadrature variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

Return value:

• IDA_SUCCESS – The optional value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_SENS – Sensitivities were not activated.

• IDA_NO_QUADSENS – Quadratures depending on the sensitivities were not activated.

Notes:
When IDAQuadSensEEtolerances() is used, before calling IDASolve(), integration of pure quadra-
tures must be initialized (see §5.2) and tolerances for pure quadratures must be also specified (see §5.2.4).

5.4.4.5 Optional outputs for sensitivity-dependent quadrature integration

IDAS provides the following functions that can be used to obtain solver performance information related to quadrature
integration.

int IDAGetQuadSensNumRhsEvals(void *ida_mem, long int *nrhsQSevals)
The function IDAGetQuadSensNumRhsEvals() returns the number of calls made to the user’s quadrature right-
hand side function.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nrhsQSevals – number of calls made to the user’s rhsQS function.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.
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• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUADSENS – Sensitivity-dependent quadrature integration has not been initialized.

int IDAGetQuadSensNumErrTestFails(void *ida_mem, long int *nQSetfails)
The function IDAGetQuadSensNumErrTestFails() returns the number of local error test failures due to
quadrature variables.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nQSetfails – number of error test failures due to quadrature variables.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUADSENS – Sensitivity-dependent quadrature integration has not been initialized.

int IDAGetQuadSensErrWeights(void *ida_mem, N_Vector *eQSweight)
The function IDAGetQuadSensErrWeights() returns the quadrature error weights at the current time.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• eQSweight – array of quadrature error weight vectors at the current time.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_QUADSENS – Sensitivity-dependent quadrature integration has not been initialized.

Notes:

Warning

The user must allocate memory for eQSweight. If quadratures were not included in the error control
mechanism (through a call to IDASetQuadSensErrCon() with errconQS=SUNTRUE), IDAGetQuad-
SensErrWeights() does not set the eQSweight vector.

int IDAGetQuadSensStats(void *ida_mem, long int *nrhsQSevals, long int *nQSetfails)
The function IDAGetQuadSensStats() returns the IDAS integrator statistics as a group.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• nrhsQSevals – number of calls to the user’s rhsQS function.

• nQSetfails – number of error test failures due to quadrature variables.

Return value:

• IDA_SUCCESS – the optional output values have been successfully set.

• IDA_MEM_NULL – the ida_mem pointer is NULL.

• IDA_NO_QUADSENS – Sensitivity-dependent quadrature integration has not been initialized.
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5.4.4.6 User-supplied function for sensitivity-dependent quadrature integration

For the integration of sensitivity-dependent quadrature equations, the user must provide a function that defines the resid-
ual of those quadrature equations. For the sensitivities of quadratures (2.10) with integrand q, the appropriate residual
functions are given by q̄i = ∂q/∂ysi + ∂q/∂ẏṡi + ∂q∂pi. This user function must be of type IDAQuadSensRhsFn
defined as follows:

typedef int (*IDAQuadSensRhsFn)(int Ns, sunrealtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector rrQ, N_Vector *rhsvalQS, void *user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the sensitivity quadrature equation right-hand side for a given value of the independent
variable t and state vector y.

Arguments:

• Ns – is the number of sensitivity vectors.

• t – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t).

• yp – is the current value of the dependent variable vector, ẏ(t).

• yyS – is an array of Ns variables of type N_Vector containing the dependent sensitivity vectors si.

• ypS – is an array of Ns variables of type N_Vector containing the dependent sensitivity derivatives
ṡi.

• rrQ – is the current value of the quadrature right-hand side q.

• rhsvalQS – contains the Ns output vectors.

• user_data – is the user_data pointer passed to IDASetUserData().

• tmp1, tmp2, tmp3 – are N_Vector s which can be used as temporary storage.

Return value:
An IDAQuadSensRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDA_QRHS_FAIL is returned).

Notes:

Allocation of memory for rhsvalQS is automatically handled within IDAS.

Both yy and yp are of type N_Vector and both yyS and ypS are pointers to an array containing Ns vectors of
type N_Vector. It is the user’s responsibility to access the vector data consistently (including the use of the
correct accessor macros from each N_Vector implementation).

There is one situation in which recovery is not possible even if IDAQuadSensRhsFn function returns a recover-
able error flag. That is when this occurs at the very first call to the IDAQuadSensRhsFn, in which case IDAS
returns IDA_FIRST_QSRHS_ERR).
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5.4.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of IDAS may appear at
first glance to be erroneous. One would expect that, in such cases, the sensitivity variables would not influence in any
way the step size selection.

The short explanation of this behavior is that the step size selection implemented by the error control mechanism in
IDAS is based on the magnitude of the correction calculated by the nonlinear solver. As mentioned in §5.4.2.1, even with
partial error control selected in the call to IDASensInit(), the sensitivity variables are included in the convergence
tests of the nonlinear solver.

When using the simultaneous corrector method §2.6, the nonlinear system that is solved at each step involves both the
state and sensitivity equations. In this case, it is easy to see how the sensitivity variables may affect the convergence
rate of the nonlinear solver and therefore the step size selection. The case of the staggered corrector approach is more
subtle. The sensitivity variables at a given step are computed only once the solver for the nonlinear state equations
has converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence problems,
IDAS will attempt to improve the initial guess by reducing the step size in order to provide a better prediction of the
sensitivity variables. Moreover, even if there are no convergence failures in the solution of the sensitivity system, IDAS
may trigger a call to the linear solver’s setup routine which typically involves reevaluation of Jacobian information
(Jacobian approximation in the case of matrix-based linear solvers, or preconditioner data in the case of the Krylov
solvers). The new Jacobian information will be used by subsequent calls to the nonlinear solver for the state equations
and, in this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver convergence failures
or calls to the linear solver setup routine have been triggered by convergence problems due to the state or the sensitivity
equations. When using one of the staggered corrector methods, however, these situations can be identified by carefully
monitoring the diagnostic information provided through optional outputs. If there are no convergence failures in the
sensitivity nonlinear solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system of DAEs on the
step size selection (through the mechanisms described above) is problem-dependent and can therefore lead to either
an increase or decrease of the total number of steps that IDAS takes to complete the simulation. At first glance, one
would expect that the impact of the sensitivity variables, if any, would be in the direction of increasing the step size and
therefore reducing the total number of steps. The argument for this is that the presence of the sensitivity variables in the
convergence test of the nonlinear solver can only lead to additional iterations (and therefore a smaller iteration error),
or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian information), both of
which will lead to larger steps being taken by IDAS. However, this is true only locally. Overall, a larger integration step
taken at a given time may lead to step size reductions at later times, due to either nonlinear solver convergence failures
or error test failures.

5.5 Using IDAS for Adjoint Sensitivity Analysis

This chapter describes the use of IDAS to compute sensitivities of derived functions using adjoint sensitivity analysis.
As mentioned before, the adjoint sensitivity module of IDAS provides the infrastructure for integrating backward in
time any system of DAEs that depends on the solution of the original IVP, by providing various interfaces to the main
IDAS integrator, as well as several supporting user-callable functions. For this reason, in the following sections we
refer to the backward problem and not to the adjoint problem when discussing details relevant to the DAEs that are
integrated backward in time. The backward problem can be the adjoint problem (2.19) or (2.24), and can be augmented
with some quadrature differential equations.

IDAS uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in Appendix §12.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of
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the interface to the various user-callable functions and of the user-supplied functions that were not already described
in §5.1.

5.5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of IDAS. The user program is to have these
steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of the details to the later
sections. As in §5.1.2, most steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNon-
linearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the specific
name of the function to be called or macro to be referenced.

Steps that are unchanged from the skeleton programs presented in §5.1.2, §5.4.1, and §5.4.4 are grayed out and new or
modified steps are in bold.

1. Initialize parallel or multi-threaded environment

2. Create the SUNDIALS context object

Forward Problem

3. Set initial conditions for the forward problem

4. Create matrix object for the forward problem

5. Create linear solver object for the forward problem

6. Create nonlinear solver module for the forward problem

7. Create IDAS object for the forward problem

8. Initialize IDAS solver for the forward problem

9. Specify integration tolerances for forward problem

10. Attach linear solver module for the forward problem

11. Set linear solver optional inputs for the forward problem

12. Attach nonlinear solver module for the forward problem

13. Set nonlinear solver optional inputs for the forward problem

14. Initialize quadrature problem or problems for forward problems

15. Initialize forward sensitivity problem

16. Specify rootfinding

17. Set optional inputs for the forward problem

18. Allocate space for the adjoint computation

Call IDAAdjInit() to allocate memory for the combined forward-backward problem. This call requires Nd, the
number of steps between two consecutive checkpoints. IDAAdjInit() also specifies the type of interpolation
used (see §2.7.3).

19. Integrate forward problem

Call IDASolveF(), a wrapper for the IDAS main integration function IDASolve(), either in IDA_NORMALmode
to the time tout or in IDA_ONE_STEP mode inside a loop (if intermediate solutions of the forward problem are
desired (see §5.5.2.3). The final value of tret is then the maximum allowable value for the endpoint T of the
backward problem.

Backward Problem(s)
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20. Create vectors of endpoint values for the backward problem

Create the vectors yB0 and ypB0 at the endpoint time tB0 = T at which the backward problem starts.

21. Create the backward problem

Call IDACreateB(), a wrapper for IDACreate(), to create the IDAS memory block for the new backward
problem. Unlike IDACreate(), the function IDACreateB() does not return a pointer to the newly created
memory block (see §5.5.2.4). Instead, this pointer is attached to the internal adjoint memory block (created by
IDAAdjInit()) and returns an identifier called which that the user must later specify in any actions on the newly
created backward problem.

22. Allocate memory for the backward problem

Call IDAInitB() (or IDAInitBS(), when the backward problem depends on the forward sensitivities). The
two functions are actually wrappers for IDAInit() and allocate internal memory, specify problem data, and
initialize IDAS at tB0 for the backward problem (see §5.5.2.4).

23. Specify integration tolerances for backward problem

Call IDASStolerancesB() or IDASVtolerancesB() to specify a scalar relative tolerance and scalar abso-
lute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively. The functions are
wrappers for IDASStolerances() and IDASVtolerances() but they require an extra argument which, the
identifier of the backward problem returned by IDACreateB(). See §5.5.2.5 for more information.

24. Set optional inputs for the backward problem

Call IDASet*B functions to change from their default values any optional inputs that control the behavior of
IDAS. Unlike their counterparts for the forward problem, these functions take an extra argument which, the
identifier of the backward problem returned by IDACreateB() (see §5.5.2.10).

25. Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and the linear
solver will be a direct linear solver, then a template Jacobian matrix must be created by calling the appropriate
constructor function defined by the particular SUNMatrix implementation.

Note

The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.

It is not required to use the same matrix type for both the forward and the backward problems.

26. Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the desired linear
solver object for the backward problem must be created by calling the appropriate constructor function defined
by the particular SUNLinearSolver implementation.

Note

It is not required to use the same linear solver module for both the forward and the backward problems;
for example, the forward problem could be solved with the SUNLINSOL_BAND linear solver module and the
backward problem with SUNLINSOL_SPGMR linear solver module.

27. Set linear solver interface optional inputs for the backward problem

Call IDASet*B functions to change optional inputs specific to the linear solver interface. See §5.5.2.10 for details.
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28. Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default Newton
iteration), then initialize the IDALS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with IDASetLinearSolverB() (for additional details see §5.5.2.6).

29. Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNonlinearSolver implementation
e.g., NLSB = SUNNonlinSol_***(...); where *** is the name of the nonlinear solver (see Chapter §9 for
details).

30. Attach nonlinear solver module for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear solver interface by
attaching the nonlinear solver object by calling IDASetNonlinearSolverB().

31. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call IDAQuadInitB() or IDAQuadInitBS() (if quadra-
ture depends also on the forward sensitivities) as shown in §5.5.2.12. These functions are wrappers around
IDAQuadInit() and can be used to initialize and allocate memory for quadrature integration. Optionally,
call IDASetQuad*B functions to change from their default values optional inputs that control the integration
of quadratures during the backward phase.

32. Integrate backward problem

Call IDASolveB(), a second wrapper around the IDAS main integration function IDASolve(), to integrate
the backward problem from tB0. This function can be called either in IDA_NORMAL or IDA_ONE_STEP mode.
Typically, IDASolveB() will be called in IDA_NORMAL mode with an end time equal to the initial time t0 of the
forward problem.

33. Extract quadrature variables

If applicable, call IDAGetQuadB(), a wrapper around IDAGetQuad(), to extract the values of the quadrature
variables at the time returned by the last call to IDASolveB().

34. Destroy objects

Upon completion of the backward integration, call all necessary deallocation functions. These include appro-
priate destructors for the vectors y and yB, a call to IDAFree() to free the IDAS memory block for the forward
problem. If one or more additional adjoint sensitivity analyses are to be done for this problem, a call to IDAAd-
jFree() (see §5.5.2.1) may be made to free and deallocate the memory allocated for the backward problems,
followed by a call to IDAAdjInit().

35. Finalize MPI, if used

The above user interface to the adjoint sensitivity module in IDAS was motivated by the desire to keep it as close as
possible in look and feel to the one for DAE IVP integration. Note that if steps (18) - (31) are not present, a program
with the above structure will have the same functionality as one described in §5.1.2 for integration of DAEs, albeit with
some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps (18) - (31) above for
each successive backward problem. In the process, If there are multiple backward problems associated with the same
forward each call to IDACreateB() creates a new value of the identifier which.
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5.5.2 User-callable functions for adjoint sensitivity analysis

5.5.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to IDASolveF(), memory for the combined forward-
backward problem must be allocated by a call to the function IDAAdjInit(). The form of the call to this function is

int IDAAdjInit(void *ida_mem, long int Nd, int interpType)
The function IDAAdjInit() updates IDAS memory block by allocating the internal memory needed for back-
ward integration. Space is allocated for the Nd = Nd interpolation data points, and a linked list of checkpoints
is initialized.

Arguments:

• ida_mem – is the pointer to the IDAS memory block returned by a previous call to IDACreate().

• Nd – is the number of integration steps between two consecutive checkpoints.

• interpType – specifies the type of interpolation used and can be IDA_POLYNOMIAL or IDA_HERMITE
, indicating variable-degree polynomial and cubic Hermite interpolation, respectively see §2.7.3.

Return value:

• IDA_SUCCESS – IDAAdjInit() was successful.

• IDA_MEM_FAIL – A memory allocation request has failed.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_ILL_INPUT – One of the parameters was invalid: Nd was not positive or interpType is not one
of the IDA_POLYNOMIAL or IDA_HERMITE.

Notes:

The user must set Nd so that all data needed for interpolation of the forward problem solution between two
checkpoints fits in memory. IDAAdjInit() attempts to allocate space for (2Nd + 3) variables of type N_-
Vector.

If an error occurred, IDAAdjInit() also sends a message to the error handler function.

int IDAAdjReInit(void *ida_mem)
The function IDAAdjReInit() reinitializes the IDAS memory block for ASA, assuming that the number of
steps between check points and the type of interpolation remain unchanged.

Arguments:

• ida_mem – is the pointer to the IDAS memory block returned by a previous call to IDACreate().

Return value:

• IDA_SUCCESS – IDAAdjReInit() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() was not previously called.

Notes:

The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added to this list by calling
IDACreateB(). If a new list of backward problems is also needed, then free the adjoint memory (by calling
IDAAdjFree()) and reinitialize ASA with IDAAdjInit().
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The IDAS memory for the forward and backward problems can be reinitialized separately by calling
IDAReInit() and IDAReInitB(), respectively.

void IDAAdjFree(void *ida_mem)
The function IDAAdjFree() frees the memory related to backward integration allocated by a previous call to
IDAAdjInit().

Arguments:
The only argument is the IDAS memory block pointer returned by a previous call to IDACreate().

Return value:
The function IDAAdjFree() has no return value.

Notes:

This function frees all memory allocated by IDAAdjInit(). This includes workspace memory, the linked list of
checkpoints, memory for the interpolation data, as well as the IDAS memory for the backward integration phase.

Unless one or more further calls to IDAAdjInit() are to be made, IDAAdjFree() should not be called by the
user, as it is invoked automatically by IDAFree().

5.5.2.2 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of the forward
sensitivities by calling the following function:

int IDAAdjSetNoSensi(void *ida_mem)
The function IDAAdjSetNoSensi() instructs IDASolveF() not to save checkpointing data for forward sensi-
tivities any more.

Arguments:

• ida_mem – pointer to the IDAS memory block.

Return value:

• IDA_SUCCESS – The call to IDACreateB() was successful.

• IDA_MEM_NULL – The ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

5.5.2.3 Forward integration function

The function IDASolveF() is very similar to the IDAS function IDASolve() in that it integrates the solution of the
forward problem and returns the solution (y, ẏ). At the same time, however, IDASolveF() stores checkpoint data every
Nd integration steps. IDASolveF() can be called repeatedly by the user. Note that IDASolveF() is used only for the
forward integration pass within an Adjoint Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for
that, see §5.4. The call to this function has the form

int IDASolveF(void *ida_mem, sunrealtype tout, sunrealtype *tret, N_Vector yret, N_Vector ypret, int itask, int
*ncheck)

The function IDASolveF() integrates the forward problem over an interval in t and saves checkpointing data.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• tout – the next time at which a computed solution is desired.

• tret – the time reached by the solver output.
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• yret – the computed solution vector y.

• ypret – the computed solution vector ẏ.

• itask – a flag indicating the job of the solver for the next step. The IDA_NORMAL task is to have
the solver take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout) and ẏ(tout). The
IDA_ONE_STEP option tells the solver to take just one internal step and return the solution at the point
reached by that step.

• ncheck – the number of internal checkpoints stored so far.

Return value:

On return, IDASolveF() returns vectors yret, ypret and a corresponding independent variable value t =
tret, such that yret is the computed value of y(t) and ypret the value of ẏ(t). Additionally, it returns in ncheck
the number of internal checkpoints saved; the total number of checkpoint intervals is ncheck+1. The return value
flag (of type int) will be one of the following. For more details see the documentation for IDASolve().

• IDA_SUCCESS – IDASolveF() succeeded.

• IDA_TSTOP_RETURN – IDASolveF() succeeded by reaching the optional stopping point.

• IDA_ROOT_RETURN – IDASolveF() succeeded and found one or more roots. In this case, tret is the
location of the root. If nrtfn > 1 , call IDAGetRootInfo() to see which gi were found to have a root.

• IDA_NO_MALLOC – The function IDAInit() has not been previously called.

• IDA_ILL_INPUT – One of the inputs to IDASolveF() is illegal.

• IDA_TOO_MUCH_WORK – The solver took mxstep internal steps but could not reach tout.

• IDA_TOO_MUCH_ACC – The solver could not satisfy the accuracy demanded by the user for some internal
step.

• IDA_ERR_FAILURE – Error test failures occurred too many times during one internal time step or occurred
with |h| = hmin.

• IDA_CONV_FAILURE – Convergence test failures occurred too many times during one internal time step or
occurred with |h| = hmin.

• IDA_LSETUP_FAIL – The linear solver’s setup function failed in an unrecoverable manner.

• IDA_LSOLVE_FAIL – The linear solver’s solve function failed in an unrecoverable manner.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_MEM_FAIL – A memory allocation request has failed in an attempt to allocate space for a new check-
point.

Notes:

All failure return values are negative and therefore a test flag< 0 will trap all IDASolveF() failures.

At this time, IDASolveF() stores checkpoint information in memory only. Future versions will provide for a
safeguard option of dumping checkpoint data into a temporary file as needed. The data stored at each checkpoint
is basically a snapshot of the IDAS internal memory block and contains enough information to restart the inte-
gration from that time and to proceed with the same step size and method order sequence as during the forward
integration.

In addition, IDASolveF() also stores interpolation data between consecutive checkpoints so that, at the end
of this first forward integration phase, interpolation information is already available from the last checkpoint
forward. In particular, if no checkpoints were necessary, there is no need for the second forward integration
phase.
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Warning

It is illegal to change the integration tolerances between consecutive calls to IDASolveF(), as this informa-
tion is not captured in the checkpoint data.

5.5.2.4 Backward problem initialization functions

The functions IDACreateB() and IDAInitB() (or IDAInitBS()) must be called in the order listed. They instantiate
an IDAS solver object, provide problem and solution specifications, and allocate internal memory for the backward
problem.

int IDACreateB(void *ida_mem, int *which)
The function IDACreateB() instantiates an IDAS solver object for the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• which – contains the identifier assigned by IDAS for the newly created backward problem. Any call
to IDA*B functions requires such an identifier.

Return value:

• IDA_SUCCESS – The call to IDACreateB() was successful.

• IDA_MEM_NULL – The ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_MEM_FAIL – A memory allocation request has failed.

There are two initialization functions for the backward problem – one for the case when the backward problem does
not depend on the forward sensitivities, and one for the case when it does. These two functions are described next.

The function IDAInitB() initializes the backward problem when it does not depend on the forward sensitivities. It is
essentially wrapper for IDAInit with some particularization for backward integration, as described below.

int IDAInitB(void *ida_mem, int which, IDAResFnB resB, sunrealtype tB0, N_Vector yB0, N_Vector ypB0)
The function IDAInitB() provides problem specification, allocates internal memory, and initializes the back-
ward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• which – represents the identifier of the backward problem.

• resB – is the C function which computes fB , the residual of the backward DAE problem. This
function has the form resB(t, y, yp, yB, ypB, resvalB, user_dataB) for full details see
§5.5.3.1.

• tB0 – specifies the endpoint T where final conditions are provided for the backward problem, normally
equal to the endpoint of the forward integration.

• yB0 – is the initial value at t = tB0 of the backward solution.

• ypB0 – is the initial derivative value at t = tB0 of the backward solution.

Return value:

• IDA_SUCCESS – The call to IDAInitB() was successful.

• IDA_NO_MALLOC – The function IDAInit() has not been previously called.
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• IDA_MEM_NULL – The ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_BAD_TB0 – The final time tB0 was outside the interval over which the forward problem was
solved.

• IDA_ILL_INPUT – The parameter which represented an invalid identifier, or one of yB0 , ypB0 , resB
was NULL.

Notes:
The memory allocated by IDAInitB() is deallocated by the function IDAAdjFree().

For the case when backward problem also depends on the forward sensitivities, user must call IDAInitBS() instead
of IDAInitB(). Only the third argument of each function differs between these functions.

int IDAInitBS(void *ida_mem, int which, IDAResFnBS resBS, sunrealtype tB0, N_Vector yB0, N_Vector ypB0)
The function IDAInitBS() provides problem specification, allocates internal memory, and initializes the back-
ward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• which – represents the identifier of the backward problem.

• resBS – is the C function which computes fB , the residual or the backward DAE problem. This
function has the form resBS(t, y, yp, yS, ypS, yB, ypB, resvalB, user_dataB) for full
details see §5.5.3.2.

• tB0 – specifies the endpoint T where final conditions are provided for the backward problem.

• yB0 – is the initial value at t = tB0 of the backward solution.

• ypB0 – is the initial derivative value at t = tB0 of the backward solution.

Return value:

• IDA_SUCCESS – The call to IDAInitB() was successful.

• IDA_NO_MALLOC – The function IDAInit() has not been previously called.

• IDA_MEM_NULL – The ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_BAD_TB0 – The final time tB0 was outside the interval over which the forward problem was
solved.

• IDA_ILL_INPUT – The parameter which represented an invalid identifier, or one of yB0 , ypB0 , resB
was NULL , or sensitivities were not active during the forward integration.

Notes:
The memory allocated by IDAInitBS() is deallocated by the function IDAAdjFree().

The function IDAReInitB() reinitializes idas for the solution of a series of backward problems, each identified by a
value of the parameter which. IDAReInitB() is essentially a wrapper for IDAReInit(), and so all details given for
IDAReInit() apply here. Also, IDAReInitB() can be called to reinitialize a backward problem even if it has been
initialized with the sensitivity-dependent version IDAInitBS(). Before calling IDAReInitB() for a new backward
problem, call any desired solution extraction functions IDAGet** associated with the previous backward problem. The
call to the IDAReInitB() function has the form

int IDAReInitB(void *ida_mem, int which, sunrealtype tB0, N_Vector yB0, N_Vector ypB0)
The function IDAReInitB() reinitializes an IDAS backward problem.
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Arguments:

• ida_mem – pointer to IDAS memory block returned by IDACreate().

• which – represents the identifier of the backward problem.

• tB0 – specifies the endpoint T where final conditions are provided for the backward problem.

• yB0 – is the initial value at t = tB0 of the backward solution.

• ypB0 – is the initial derivative value at t = tB0 of the backward solution.

Return value:

• IDA_SUCCESS – The call to IDAReInitB() was successful.

• IDA_NO_MALLOC – The function IDAInit() has not been previously called.

• IDA_MEM_NULL – The ida_mem memory block pointer was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_BAD_TB0 – The final time tB0 is outside the interval over which the forward problem was solved.

• IDA_ILL_INPUT – The parameter which represented an invalid identifier, or one of yB0 , ypB0 was
NULL.

5.5.2.5 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward problem. Note
that this call must be made after the call to IDAInitB() or IDAInitBS().

int IDASStolerancesB(void *ida_mem, int which, sunrealtype reltolB, sunrealtype abstolB)
The function IDASStolerancesB() specifies scalar relative and absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• which – represents the identifier of the backward problem.

• reltolB – is the scalar relative error tolerance.

• abstolB – is the scalar absolute error tolerance.

Return value:

• IDA_SUCCESS – The call to IDASStolerancesB() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_NO_MALLOC – The allocation function IDAInit() has not been called.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_ILL_INPUT – One of the input tolerances was negative.

int IDASVtolerancesB(void *ida_mem, int which, sunrealtype reltolB, N_Vector abstolB)
The function IDASVtolerancesB() specifies scalar relative tolerance and vector absolute tolerances.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• which – represents the identifier of the backward problem.
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• reltolB – is the scalar relative error tolerance.

• abstolB – is the vector of absolute error tolerances.

Return value:

• IDA_SUCCESS – The call to IDASVtolerancesB() was successful.

• IDA_MEM_NULL – The IDAS memory block was not initialized through a previous call to IDACre-
ate().

• IDA_NO_MALLOC – The allocation function IDAInit() has not been called.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_ILL_INPUT – The relative error tolerance was negative or the absolute tolerance had a negative
component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the DAE state vector y.

5.5.2.6 Linear solver initialization functions for backward problem

All IDAS linear solver modules available for forward problems are available for the backward problem. They should be
created as for the forward problem then attached to the memory structure for the backward problem using the following
function.

int IDASetLinearSolverB(void *ida_mem, int which, SUNLinearSolver LS, SUNMatrix A)
The function IDASetLinearSolverB() attaches a generic SUNLinearSolver object LS and corresponding
template Jacobian SUNMatrix object A (if applicable) to IDAS, initializing the IDALS linear solver interface for
solution of the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – represents the identifier of the backward problem returned by IDACreateB().

• LS – SUNLinearSolver object to use for solving linear systems for the backward problem.

• A – SUNMatrix object for used as a template for the Jacobian for the backward problem or NULL if not
applicable.

Return value:

• IDALS_SUCCESS – The IDALS initialization was successful.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

• IDALS_MEM_FAIL – A memory allocation request failed.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

Notes:

If LS is a matrix-based linear solver, then the template Jacobian matrix A will be used in the solve process, so
if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMatrix type in
Chapter §7 for further information).

Added in version 3.0.0: Replaces the deprecated functions IDADlsSetLinearSolverB and IDASpilsSetLin-
earSolverB.
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5.5.2.7 Nonlinear solver initialization functions for backward problem

As with the forward problem IDAS uses the SUNNonlinearSolver implementation of Newton’s method defined by
the SUNNONLINSOL_NEWTON module (see §9.3) by default.

To specify a different nonlinear solver in IDAS for the backward problem, the user’s program must create a SUNNonlin-
earSolver object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver
object to IDAS by calling IDASetNonlinearSolverB(), as documented below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolverB()must be called after IDAInitB(). If any
calls to IDASolveB() have been made, then IDAS will need to be reinitialized by calling IDAReInitB() to ensure
that the nonlinear solver is initialized correctly before any subsequent calls to IDASolveB().

int IDASetNonlinearSolverB(void *ida_mem, int which, SUNNonlinearSolver NLS)
The function IDASetNonlinearSolverB() attaches a SUNNonlinearSolver object (NLS) to IDAS for the
solution of the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – represents the identifier of the backward problem returned by IDACreateB().

• NLS – SUNNonlinearSolver object to use for solving nonlinear systems for the backward problem.

Return value:

• IDA_SUCCESS – The nonlinear solver was successfully attached.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_NO_ADJ – The function IDAAdjInit has not been previously called.

• IDA_ILL_INPUT – The parameter which represented an invalid identifier or the SUNNonlinearSolver
object is NULL , does not implement the required nonlinear solver operations, is not of the correct type,
or the residual function, convergence test function, or maximum number of nonlinear iterations could
not be set.

5.5.2.8 Initial condition calculation functions for backward problem

IDAS provides support for calculation of consistent initial conditions for certain backward index-one problems of semi-
implicit form through the functions IDACalcICB() and IDACalcICBS(). Calling them is optional. It is only necessary
when the initial conditions do not satisfy the adjoint system.

The above functions provide the same functionality for backward problems as IDACalcIC() with parameter icopt
= IDA_YA_YDP_INIT provides for forward problems: compute the algebraic components of yB and differential com-
ponents of ẏB, given the differential components of yB. They require that the IDASetIdB was previously called to
specify the differential and algebraic components.

Both functions require forward solutions at the final time tB0. IDACalcICBS() also needs forward sensitivities at the
final time tB0.

int IDACalcICB(void *ida_mem, int which, sunrealtype tBout1, N_Vector yfin, N_Vector ypfin)
The function IDACalcICB() corrects the initial values yB0 and ypB0 at time tB0 for the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – is the identifier of the backward problem.
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• tBout1 – is the first value of t at which a solution will be requested from IDASolveB(). This value is
needed here only to determine the direction of integration and rough scale in the independent variable
t.

• yfin – the forward solution at the final time tB0.

• ypfin – the forward solution derivative at the final time tB0.

Return value:

• IDA_NO_ADJ – IDAAdjInit() has not been previously called.

• IDA_ILL_INPUT – Parameter which represented an invalid identifier.

Notes:

All failure return values are negative and therefore a test flag < 0 will trap all IDACalcICB() failures. Note
that IDACalcICB()will correct the values of yB(tB0) and ẏB(tB0) which were specified in the previous call to
IDAInitB() or IDAReInitB(). To obtain the corrected values, call IDAGetConsistentICB() (see §5.5.2.11).

IDACalcICB() will correct the values of yB(tB0) and ẏB(tB0) which were specified in the previous call
to IDAInitB() or IDAReInitB(). To obtain the corrected values, :call c:func:IDAGetConsistentICB (see
:§5.5.2.11).

In the case where the backward problem also depends on the forward sensitivities, user must call the following function
to correct the initial conditions:

int IDACalcICBS(void *ida_mem, int which, sunrealtype tBout1, N_Vector yfin, N_Vector ypfin, N_Vector ySfin,
N_Vector ypSfin)

The function IDACalcICBS() corrects the initial values yB0 and ypB0 at time tB0 for the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – is the identifier of the backward problem.

• tBout1 – is the first value of t at which a solution will be requested from IDASolveB() .This value is
needed here only to determine the direction of integration and rough scale in the independent variable
t.

• yfin – the forward solution at the final time tB0.

• ypfin – the forward solution derivative at the final time tB0.

• ySfin – a pointer to an array of Ns vectors containing the sensitivities of the forward solution at the
final time tB0.

• ypSfin – a pointer to an array of Ns vectors containing the derivatives of the forward solution sensi-
tivities at the final time tB0.

Return value:

• IDA_NO_ADJ – IDAAdjInit() has not been previously called.

• IDA_ILL_INPUT – Parameter which represented an invalid identifier, sensitivities were not active
during forward integration, or IDAInitBS() or IDAReInitB() has not been previously called.

Notes:

All failure return values are negative and therefore a test flag < 0 will trap all IDACalcICBS() failures. Note
that IDACalcICBS() will correct the values of yB(tB0) and ẏB(tB0) which were specified in the previous
call to IDAInitBS() or IDAReInitB(). To obtain the corrected values, call IDAGetConsistentICB() (see
§5.5.2.11).
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IDACalcICBS() will correct the values of yB(tB0) and ẏB(tB0) which were specified in the previous call to
IDAInitBS() or IDAReInitB(). To obtain the corrected values, :call IDAGetConsistentICB().

5.5.2.9 Backward integration function

The function IDASolveB() performs the integration of the backward problem. It is essentially a wrapper for the IDAS
main integration function IDASolve() and, in the case in which checkpoints were needed, it evolves the solution of
the backward problem through a sequence of forward-backward integration pairs between consecutive checkpoints. In
each pair, the first run integrates the original IVP forward in time and stores interpolation data; the second run integrates
the backward problem backward in time and performs the required interpolation to provide the solution of the IVP to
the backward problem.

The function IDASolveB() does not return the solution yB itself. To obtain that, call the function IDAGetB(), which
is also described below.

The IDASolveB() function does not support rootfinding, unlike IDASolveF(), which supports the finding of roots
of functions of (t, y, ẏ). If rootfinding was performed by IDASolveF(), then for the sake of efficiency, it should be
disabled for IDASolveB() by first calling IDARootInit() with nrtfn = 0.

The call to IDASolveB() has the form

int IDASolveB(void *ida_mem, sunrealtype tBout, int itaskB)
The function IDASolveB() integrates the backward DAE problem.

Arguments:

• ida_mem – pointer to the IDAS memory returned by IDACreate().

• tBout – the next time at which a computed solution is desired.

• itaskB – output mode a flag indicating the job of the solver for the next step. The IDA_NORMAL task is
to have the solver take internal steps until it has reached or just passed the user-specified value tBout.
The solver then interpolates in order to return an approximate value of yB(tBout). The IDA_ONE_-
STEP option tells the solver to take just one internal step in the direction of tBout and return.

Return value:

• IDA_SUCCESS – IDASolveB() succeeded.

• IDA_MEM_NULL – The ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_NO_BCK – No backward problem has been added to the list of backward problems by a call to
IDACreateB().

• IDA_NO_FWD – The function IDASolveF() has not been previously called.

• IDA_ILL_INPUT – One of the inputs to IDASolveB() is illegal.

• IDA_BAD_ITASK – The itaskB argument has an illegal value.

• IDA_TOO_MUCH_WORK – The solver took mxstep internal steps but could not reach tBout.

• IDA_TOO_MUCH_ACC – The solver could not satisfy the accuracy demanded by the user for some inter-
nal step.

• IDA_ERR_FAILURE – Error test failures occurred too many times during one internal time step.

• IDA_CONV_FAILURE – Convergence test failures occurred too many times during one internal time
step.

• IDA_LSETUP_FAIL – The linear solver’s setup function failed in an unrecoverable manner.
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• IDA_SOLVE_FAIL – The linear solver’s solve function failed in an unrecoverable manner.

• IDA_BCKMEM_NULL – The IDAS memory for the backward problem was not created with a call to
IDACreateB().

• IDA_BAD_TBOUT – The desired output time tBout is outside the interval over which the forward prob-
lem was solved.

• IDA_REIFWD_FAIL – Reinitialization of the forward problem failed at the first checkpoint correspond-
ing to the initial time of the forward problem.

• IDA_FWD_FAIL – An error occurred during the integration of the forward problem.

Notes:
All failure return values are negative and therefore a test flag< 0 will trap all IDASolveB() failures. In
the case of multiple checkpoints and multiple backward problems, a given call to IDASolveB() in IDA_-
ONE_STEPmode may not advance every problem one step, depending on the relative locations of the current
times reached. But repeated calls will eventually advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function IDAGetB() as follows:

int IDAGetB(void *ida_mem, int which, sunrealtype *tret, N_Vector yB, N_Vector ypB)
The function IDAGetB() provides the solution yB of the backward DAE problem.

Arguments:

• ida_mem – pointer to the IDAS memory returned by IDACreate().

• which – the identifier of the backward problem.

• tret – the time reached by the solver output.

• yB – the backward solution at time tret.

• ypB – the backward solution derivative at time tret.

Return value:

• IDA_SUCCESS – IDAGetB() was successful.

• IDA_MEM_NULL – ida_mem is NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_ILL_INPUT – The parameter which is an invalid identifier.

Notes:
To obtain the solution associated with a given backward problem at some other time within the last inte-
gration step, first obtain a pointer to the proper IDAS memory structure by calling IDAGetAdjIDABmem()
and then use it to call IDAGetDky().

Warning

The user must allocate space for yB and ypB.
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5.5.2.10 Optional input functions for the backward problem

As for the forward problem there are numerous optional input parameters that control the behavior of the IDAS solver
for the backward problem. IDAS provides functions that can be used to change these optional input parameters from
their default values which are then described in detail in the remainder of this section, beginning with those for the main
IDAS solver and continuing with those for the linear solver interfaces. For the most casual use of IDAS, the reader can
skip to §5.5.3.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0will catch all errors. Finally, a call to a IDASet***B function
can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Main solver optional input functions

The adjoint module in IDAS provides wrappers for most of the optional input functions defined in §5.1.3.10. The only
difference is that the user must specify the identifier which of the backward problem within the list managed by IDAS.

The optional input functions defined for the backward problem are:

flag = IDASetUserDataB(ida_mem, which, user_dataB);
flag = IDASetMaxOrdB(ida_mem, which, maxordB);
flag = IDASetMaxNumStepsB(ida_mem, which, mxstepsB);
flag = IDASetInitStepB(ida_mem, which, hinB)
flag = IDASetMaxStepB(ida_mem, which, hmaxB);
flag = IDASetSuppressAlgB(ida_mem, which, suppressalgB);
flag = IDASetIdB(ida_mem, which, idB);
flag = IDASetConstraintsB(ida_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it can also be IDA_-
NO_ADJ if IDAAdjInit() has not been called, or IDA_ILL_INPUT if which was an invalid identifier.

Linear solver interface optional input functions

When using matrix-based linear solver modules for the backward problem, i.e., a non-NULL SUNMatrix object A was
passed to IDASetLinearSolverB(), the IDALS linear solver interface needs a function to compute an approximation
to the Jacobian matrix. This can be attached through a call to either IDASetJacFnB() or IDASetJacFnBS(), with the
second used when the backward problem depends on the forward sensitivities.

int IDASetJacFnB(void *ida_mem, int which, IDALsJacFnB jacB)
The function IDASetJacFnB() specifies the Jacobian approximation function to be used for the backward prob-
lem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – represents the identifier of the backward problem.

• jacB – user-defined Jacobian approximation function.

Return value:

• IDALS_SUCCESS – IDASetJacFnB() succeeded.

• IDALS_MEM_NULL – The ida_mem was NULL.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.
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• IDALS_LMEM_NULL – The linear solver has not been initialized with a call to IDASetLinear-
SolverB().

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Added in version 3.0.0: Replaces the deprecated function IDADlsSetJacFnB.

int IDASetJacFnBS(void *ida_mem, int which, IDALsJacFnBS jacBS)
The function IDASetJacFnBS() specifies the Jacobian approximation function to be used for the backward
problem in the case where the backward problem depends on the forward sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – represents the identifier of the backward problem.

• jacBS – user-defined Jacobian approximation function.

Return value:

• IDALS_SUCCESS – IDASetJacFnBS() succeeded.

• IDALS_MEM_NULL – The ida_mem was NULL.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_LMEM_NULL – The linear solver has not been initialized with a call to IDASetLinear-
SolverB().

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Added in version 3.0.0: Replaces the deprecated function IDADlsSetJacFnBS.

The function IDASetLinearSolutionScalingB() can be used to enable or disable solution scaling when using a
matrix-based linear solver.

int IDASetLinearSolutionScalingB(void *ida_mem, int which, sunbooleantype onoffB)
The function IDASetLinearSolutionScalingB() enables or disables scaling the linear system solution to
account for a change in α in the linear system in the backward problem. For more details see §8.2.1.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – represents the identifier of the backward problem.

• onoffB – flag to enable SUNTRUE or disable SUNFALSE scaling.

Return value:

• IDALS_SUCCESS – The flag value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver interface has not been initialized.

• IDALS_ILL_INPUT – The attached linear solver is not matrix-based.

Notes:

By default scaling is enabled with matrix-based linear solvers when using BDF methods.

By default scaling is enabled with matrix-based linear solvers when using BDF methods.
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When using a matrix-free linear solver module for the backward problem, the IDALS linear solver interface requires a
function to compute an approximation to the product between the Jacobian matrix J(t, y) and a vector v. This may be
performed internally using a difference-quotient approximation, or it may be supplied by the user by calling one of the
following two functions:

int IDASetJacTimesB(void *ida_mem, int which, IDALsJacTimesSetupFnB jsetupB, IDALsJacTimesVecFnB
jtimesB)

The function IDASetJacTimesB() specifies the Jacobian-vector setup and product functions to be used.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• jtsetupB – user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

• jtimesB – user-defined Jacobian-vector product function.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem memory block pointer was NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetJacTimesB.

int IDASetJacTimesBS(void *ida_mem, int which, IDALsJacTimesSetupFnBS jsetupBS, IDALsJacTimesVecFnBS
jtimesBS)

The function IDASetJacTimesBS() specifies the Jacobian-vector product setup and evaluation functions to be
used, in the case where the backward problem depends on the forward sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• jtsetupBS – user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

• jtimesBS – user-defined Jacobian-vector product function.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem memory block pointer was NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetJacTimesBS.

When using the default difference-quotient approximation to the Jacobian-vector product for the backward problem, the
user may specify the factor to use in setting increments for the finite-difference approximation, via a call to IDASet-
IncrementFactorB().
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int IDASetIncrementFactorB(void *ida_mem, int which, sunrealtype dqincfacB)
The function IDASetIncrementFactorB() specifies the factor in the increments used in the difference quotient
approximations to matrix-vector products for the backward problem. This routine can be used in both the cases
where the backward problem does and does not depend on the forward sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• dqincfacB – difference quotient approximation factor.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Notes:
The default value is 1.0.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetIncrementFactorB.

Additionally, When using the internal difference quotient for the backward problem, the user may also optionally sup-
ply an alternative residual function for use in the Jacobian-vector product approximation by calling IDASetJacTimes-
ResFnB(). The alternative residual side function should compute a suitable (and differentiable) approximation to the
residual function provided to IDAInitB() or IDAInitBS(). For example, as done in [31] for the forward integration
of an ODE in explicit form without sensitivity analysis, the alternative function may use lagged values when evaluating
a nonlinearity in the right-hand side to avoid differencing a potentially non-differentiable factor.

int IDASetJacTimesResFnB(void *ida_mem, int which, IDAResFn jtimesResFn)
The function IDASetJacTimesResFnB() specifies an alternative DAE residual function for use in the internal
Jacobian-vector product difference quotient approximation for the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• jtimesResFn – is the C function which computes the alternative DAE residual function to use in
Jacobian-vector product difference quotient approximations. This function has the form res(t, yy,
yp, resval, user_data). For full details see §5.1.4.1.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier or the internal difference
quotient approximation is disabled.
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Notes:
The default is to use the residual function provided to IDAInit() in the internal difference quotient. If the
input resudual function is NULL, the default is used.

This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolverB().

When using an iterative linear solver for the backward problem, the user may supply a preconditioning operator to aid
in solution of the system, or she/he may adjust the convergence tolerance factor for the iterative linear solver. These
may be accomplished through calling the following functions:

int IDASetPreconditionerB(void *ida_mem, int which, IDALsPrecSetupFnB psetupB, IDALsPrecSolveFnB
psolveB)

The function IDASetPreconditionerB() specifies the preconditioner setup and solve functions for the back-
ward integration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• psetupB – user-defined preconditioner setup function.

• psolveB – user-defined preconditioner solve function.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem memory block pointer was NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Notes:
The psetupB argument may be NULL if no setup operation is involved in the preconditioner.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetPreconditionerB.

int IDASetPreconditionerBS(void *ida_mem, int which, IDALsPrecSetupFnBS psetupBS, IDALsPrecSolveFnBS
psolveBS)

The function IDASetPreconditionerBS() specifies the preconditioner setup and solve functions for the back-
ward integration, in the case where the backward problem depends on the forward sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• psetupBS – user-defined preconditioner setup function.

• psolveBS – user-defined preconditioner solve function.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem memory block pointer was NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.
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• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Notes:
The psetupBS argument may be NULL if no setup operation is involved in the preconditioner.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetPreconditionerBS.

int IDASetEpsLinB(void *ida_mem, int which, sunrealtype eplifacB)
The function IDASetEpsLinB() specifies the factor by which the Krylov linear solver’s convergence test constant
is reduced from the nonlinear iteration test constant. (See §2.2). This routine can be used in both the cases
wherethe backward problem does and does not depend on the forward sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• eplifacB – linear convergence safety factor >= 0.0.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.

• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Notes:
The default value is 0.05.

Passing a value eplifacB = 0.0 also indicates using the default value.

Added in version 3.0.0: Replaces the deprecated function IDASpilsSetEpsLinB.

int IDASetLSNormFactorB(void *ida_mem, int which, sunrealtype nrmfac)
The function IDASetLSNormFactorB() specifies the factor to use when converting from the integrator tolerance
(WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac *
tol_WRMS. This routine can be used in both the cases wherethe backward problem does and does not depend on
the forward sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• nrmfac – the norm conversion factor. If nrmfac is:

– > 0 then the provided value is used.

– = 0 then the conversion factor is computed using the vector length i.e., nrmfac = N_-
VGetLength(y) default.

– < 0 then the conversion factor is computed using the vector dot product nrmfac = N_-
VDotProd(v,v) where all the entries of v are one.

Return value:

• IDALS_SUCCESS – The optional value has been successfully set.

• IDALS_MEM_NULL – The ida_mem pointer is NULL.
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• IDALS_LMEM_NULL – The IDALS linear solver has not been initialized.

• IDALS_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDALS_ILL_INPUT – The parameter which represented an invalid identifier.

Notes:
This function must be called after the IDALS linear solver interface has been initialized through a call to
IDASetLinearSolverB().

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (IDAS v4.0.0) the value of nrmfac was
computed using the vector dot product i.e., the nrmfac < 0 case.

5.5.2.11 Optional output functions for the backward problem

Main solver optional output functions

The user of the adjoint module in IDAS has access to any of the optional output functions described in §5.1.3.12, both
for the main solver and for the linear solver modules. The first argument of these IDAGet* and IDA*Get* functions is
the pointer to the IDAS memory block for the backward problem. In order to call any of these functions, the user must
first call the following function to obtain this pointer:

void *IDAGetAdjIDABmem(void *ida_mem, int which)
The function IDAGetAdjIDABmem() returns a pointer to the IDAS memory block for the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block created by IDACreate().

• which – the identifier of the backward problem.

Return value:

• The return value, ida_memB (of type void *), is a pointer to the idas memory for the backward prob-
lem.

Warning

The user should not modify ida_memB in any way.

Optional output calls should pass ida_memB as the first argument; thus, for example, to get the number of
integration steps: flag = IDAGetNumSteps(idas_memB,&nsteps).

To get values of the forward solution during a backward integration, use the following function. The input value of t
would typically be equal to that at which the backward solution has just been obtained with IDAGetB(). In any case,
it must be within the last checkpoint interval used by IDASolveB().

int IDAGetAdjY(void *ida_mem, sunrealtype t, N_Vector y, N_Vector yp)
The function IDAGetAdjY() returns the interpolated value of the forward solution y and its derivative during a
backward integration.

Arguments:

• ida_mem – pointer to the IDAS memory block created by IDACreate().

• t – value of the independent variable at which y is desired input.

• y – forward solution y(t).

• yp – forward solution derivative ẏ(t).
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Return value:

• IDA_SUCCESS – IDAGetAdjY() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_GETY_BADT – The value of t was outside the current checkpoint interval.

Warning

The user must allocate space for y and yp.

int IDAGetAdjCheckPointsInfo(void *ida_mem, IDAadjCheckPointRec *ckpnt)
The function IDAGetAdjCheckPointsInfo() loads an array of ncheck + 1 records of type IDAadjCheck-
PointRec. The user must allocate space for the array ckpnt.

Arguments:

• ida_mem – pointer to the IDAS memory block created by IDACreate().

• ckpnt – array of ncheck+1 checkpoint records, each of type IDAadjCheckPointRec().

Return value:

• void

The checkpoint structure is defined as

struct IDAadjCheckPointRec

void *my_addr
The address of current checkpoint in ida_mem->ida_adj_mem

void *next_addr
The address of next checkpoint.

sunrealtype t0
The start time of the checkpoint interval

sunrealtype t1
The end time of the checkpoint interval

long int nstep
The step counter at t0

int order
The method order at t0

sunrealtype step
The step size at t0

5.5. Using IDAS for Adjoint Sensitivity Analysis 171



User Documentation for IDAS, v6.3.0

Initial condition calculation optional output function

int IDAGetConsistentICB(void *ida_mem, int which, N_Vector yB0_mod, N_Vector ypB0_mod)
The function IDAGetConsistentICB() returns the corrected initial conditions for backward problem calculated
by IDACalcICB().

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – is the identifier of the backward problem.

• yB0_mod – consistent initial vector.

• ypB0_mod – consistent initial derivative vector.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

• IDA_NO_ADJ – IDAAdjInit() has not been previously called.

• IDA_ILL_INPUT – Parameter which did not refer a valid backward problem identifier.

Notes:
If the consistent solution vector or consistent derivative vector is not desired, pass NULL for the correspond-
ing argument.

Warning

The user must allocate space for yB0_mod and ypB0_mod (if not NULL).

5.5.2.12 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on the forward
sensitivities. Accordingly, one of the IDAQuadInitB() or IDAQuadInitBS() should be used to allocate internal mem-
ory and to initialize backward quadratures. For any other operation (extraction, optional input/output, reinitialization,
deallocation), the same function is called regardless of whether or not the quadratures are sensitivity-dependent.

Backward quadrature initialization functions

The function IDAQuadInitB() initializes and allocates memory for the backward integration of quadrature equations
that do not depende on forward sensititvities. It has the following form:

int IDAQuadInitB(void *ida_mem, int which, IDAQuadRhsFnB rhsQB, N_Vector yQB0)
The function IDAQuadInitB() provides required problem specifications, allocates internal memory, and ini-
tializes backward quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• rhsQB – is the C function which computes fQB , the residual of the backward quadrature equations.
This function has the form rhsQB(t, y, yp, yB, ypB, rhsvalBQ, user_dataB) see §5.5.3.3.
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• yQB0 – is the value of the quadrature variables at tB0.

Return value:

• IDA_SUCCESS – The call to IDAQuadInitB() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_MEM_FAIL – A memory allocation request has failed.

• IDA_ILL_INPUT – The parameter which is an invalid identifier.

int IDAQuadInitBS(void *ida_mem, int which, IDAQuadRhsFnBS rhsQBS, N_Vector yQBS0)
The function IDAQuadInitBS() provides required problem specifications, allocates internal memory, and ini-
tializes backward quadrature integration with sensitivities.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• rhsQBS – is the C function which computes fQBS, the residual of the backward quadrature equations.
This function has the form rhsQBS(t, y, yp, yS, ypS, yB, ypB, rhsvalBQS, user_dataB)
see §5.5.3.4.

• yQBS0 – is the value of the sensitivity-dependent quadrature variables at tB0.

Return value:

• IDA_SUCCESS – The call to IDAQuadInitBS() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_MEM_FAIL – A memory allocation request has failed.

• IDA_ILL_INPUT – The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling the following func-
tion. Before calling IDAQuadReInitB() for a new backward problem, call any desired solution extraction functions
IDAGet** associated with the previous backward problem.

int IDAQuadReInitB(void *ida_mem, int which, N_Vector yQB0)
The function IDAQuadReInitB() re-initializes the backward quadrature integration.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• yQB0 – is the value of the quadrature variables at tB0.

Return value:

• IDA_SUCCESS – The call to IDAQuadReInitB() was successful.

• IDA_MEM_NULL – ida_mem was NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_MEM_FAIL – A memory allocation request has failed.

• IDA_NO_QUAD – Quadrature integration was not activated through a previous call to IDAQuadInitB().
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• IDA_ILL_INPUT – The parameter which is an invalid identifier.

Notes:
IDAQuadReInitB() can be used after a call to either IDAQuadInitB() or IDAQuadInitBS().

Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of IDASolveB(), IDAS provides a wrapper for
the function IDAGetQuad(). The call to this function has the form

int IDAGetQuadB(void *ida_mem, int which, sunrealtype *tret, N_Vector yQB)
The function IDAGetQuadB() returns the quadrature solution vector after a successful return from IDA-
SolveB().

Arguments:

• ida_mem – pointer to the IDAS memory.

• tret – the time reached by the solver output.

• which – the identifier of the backward problem.

• yQB – the computed quadrature vector.

Return value:

• IDA_SUCCESS – IDAGetQuadB() was successful.

• IDA_MEM_NULL – ida_mem is NULL.

• IDA_NO_ADJ – The function IDAAdjInit() has not been previously called.

• IDA_NO_QUAD – Quadrature integration was not initialized.

• IDA_BAD_DKY – yQB was NULL.

• IDA_ILL_INPUT – The parameter which is an invalid identifier.

Notes:
To obtain the quadratures associated with a given backward problem at some other time within the last inte-
gration step, first obtain a pointer to the proper IDAS memory structure by calling IDAGetAdjIDABmem()
and then use it to call IDAGetQuadDky().

Warning

The user must allocate space for yQB.

Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from their default values
through calls to one of the following functions which are wrappers for the corresponding optional input functions
defined in §5.2.4. The user must specify the identifier which of the backward problem for which the optional values
are specified.

flag = IDASetQuadErrConB(ida_mem, which, errconQ);
flag = IDAQuadSStolerancesB(ida_mem, which, reltolQ, abstolQ);
flag = IDAQuadSVtolerancesB(ida_mem, which, reltolQ, abstolQ);
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Their return value flag (of type int) can have any of the return values of its counterparts, but it can also be IDA_-
NO_ADJ if the function IDAAdjInit() has not been previously called or IDA_ILL_INPUT if the parameter which was
an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by calling the corresponding
IDAGetQuad* functions (see §5.2.5). A pointer ida_memB to the IDAS memory block for the backward problem,
required as the first argument of these functions, can be obtained through a call to the functions IDAGetAdjIDABmem().

5.5.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required DAE residual function and any optional functions for the forward problem, when using
the adjoint sensitivity module in IDAS, the user must supply one function defining the backward problem DAE and,
optionally, functions to supply Jacobian-related information and one or two functions that define the preconditioner
(if applicable for the choice of SUNLinearSolver object) for the backward problem. Type definitions for all these
user-supplied functions are given below.

5.5.3.1 DAE residual for the backward problem

The user must provide a resB function of type IDAResFnB defined as follows:

typedef int (*IDAResFnB)(sunrealtype t, N_Vector y, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector resvalB,
void *user_dataB)

This function evaluates the residual of the backward problem DAE system. This could be (2.19) or (2.24).

Arguments:

• t – is the current value of the independent variable.

• y – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the output vector containing the residual for the backward DAE problem.

• user_dataB – is a pointer to user data, same as passed to IDASetUserDataB.

Return value:
An IDAResFnB should return 0 if successful, a positive value if a recoverable error occurred (in which case
IDAS will attempt to correct), or a negative value if an unrecoverabl failure occurred (in which case the
integration stops and IDASolveB() returns IDA_RESFUNC_FAIL).

Notes:
Allocation of memory for resvalB is handled within IDAS. The y, yp, yB, ypB, and resvalB arguments
are all of type N_Vector, but yB, ypB, and resvalB typically have different internal representations from y
and yp. It is the user’s responsibility to access the vector data consistently (including the use of the correct
accessor macros from each N_Vector implementation). The user_dataB pointer is passed to the user’s
resB function every time it is called and can be the same as the user_data pointer used for the forward
problem.

Warning

Before calling the user’s resB function, IDAS needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers an
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unrecoverable failure in the residual function which will halt the integration and IDASolveB() will
return IDA_RESFUNC_FAIL.

5.5.3.2 DAE residual for the backward problem depending on the forward sensitivities

The user must provide a resBS function of type IDAResFnBS defined as follows:

typedef int (*IDAResFnBS)(sunrealtype t, N_Vector y, N_Vector yp, N_Vector *yS, N_Vector *ypS, N_Vector yB,
N_Vector ypB, N_Vector resvalB, void *user_dataB)

This function evaluates the residual of the backward problem DAE system. This could be (2.19) or (2.24).

Arguments:

• t – is the current value of the independent variable.

• y – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the output vector containing the residual for the backward DAE problem.

• user_dataB – is a pointer to user data, same as passed to IDASetUserDataB.

Return value:
An IDAResFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct), or a negative value if an unrecoverable error occurred (in which case
the integration stops and IDASolveB() returns IDA_RESFUNC_FAIL).

Notes:
Allocation of memory for resvalB is handled within IDAS. The y, yp, yB, ypB, and resvalB arguments
are all of type N_Vector, but yB, ypB, and resvalB typically have different internal representations from
y and yp. Likewise for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data
consistently (including the use of the correct accessor macros from each N_Vector implementation). The
user_dataB pointer is passed to the user’s resBS function every time it is called and can be the same as
the user_data pointer used for the forward problem.

Warning

Before calling the user’s resBS function, IDAS needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers an
unrecoverable failure in the residual function which will halt the integration and IDASolveB() will
return IDA_RESFUNC_FAIL.
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5.5.3.3 Quadrature right-hand side for the backward problem

The user must provide an fQB function of type IDAQuadRhsFnB defined by

typedef int (*IDAQuadRhsFnB)(sunrealtype t, N_Vector y, N_Vector yp, N_Vector yB, N_Vector ypB, N_Vector
rhsvalBQ, void *user_dataB)

This function computes the quadrature equation right-hand side for the backward problem.

Arguments:

• t – is the current value of the independent variable.

• y – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• rhsvalBQ – is the output vector containing the residual for the backward quadrature equations.

• user_dataB – is a pointer to user data, same as passed to IDASetUserDataB.

Return value:
An IDAQuadRhsFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the integra-
tion is halted and IDASolveB() returns IDA_QRHSFUNC_FAIL).

Notes:
Allocation of memory for rhsvalBQ is handled within IDAS. The y, yp, yB, ypB, and rhsvalBQ arguments
are all of type N_Vector, but they typically all have different internal representations. It is the user’s
responsibility to access the vector data consistently (including the use of the correct accessor macros from
each N_Vector implementation). For the sake of computational efficiency, the vector functions in the two
N_Vector implementations provided with IDAS do not perform any consistency checks with respect to
their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s fQB function every
time it is called and can be the same as the user_data pointer used for the forward problem.

Warning

Before calling the user’s fQB function, IDAS needs to evaluate (through interpolation) the values of the
states from the forward integration. If an error occurs in the interpolation, IDAS triggers an unrecover-
able failure in the quadrature right-hand side function which will halt the integration and IDASolveB()
will return IDA_QRHSFUNC_FAIL.

5.5.3.4 Sensitivity-dependent quadrature right-hand side for the backward problem

The user must provide an fQBS function of type IDAQuadRhsFnBS defined by

typedef int (*IDAQuadRhsFnBS)(sunrealtype t, N_Vector y, N_Vector yp, N_Vector *yS, N_Vector *ypS, N_Vector
yB, N_Vector ypB, N_Vector rhsvalBQS, void *user_dataB)

This function computes the quadrature equation residual for the backward problem.

Arguments:

• t – is the current value of the independent variable.

• y – is the current value of the forward solution vector.
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• yp – is the current value of the forward solution derivative vector.

• yS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• rhsvalBQS – is the output vector containing the residual for the backward quadrature equations.

• user_dataB – is a pointer to user data, same as passed to IDASetUserDataB.

Return value:
An IDAQuadRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDASolveB() returns IDA_QRHSFUNC_FAIL).

Notes:
Allocation of memory for rhsvalBQS is handled within IDAS. The y, yp, yB, ypB, and rhsvalBQS ar-
guments are all of type N_Vector, but they typically do not all have the same internal representations.
Likewise for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each N_Vector implementation). The user_dataB
pointer is passed to the user’s fQBS function every time it is called and can be the same as the user_data
pointer used for the forward problem.

Warning

Before calling the user’s fQBS function, IDAS needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers an
unrecoverable failure in the quadrature right-hand side function which will halt the integration and
IDASolveB() will return IDA_QRHSFUNC_FAIL.

5.5.3.5 Jacobian construction for the backward problem (matrix-based linear solvers)

If a matrix-based linear solver module is is used for the backward problem (i.e., IDASetLinearSolverB() is called
with non-NULL SUNMatrix argument in the step described in §5.5.1), the user may provide a function of type IDALs-
JacFnB or IDALsJacFnBS, defined as follows:

typedef int (*IDALsJacFnB)(sunrealtype tt, sunrealtype c_jB, N_Vector yy, N_Vector yp, N_Vector yyB, N_Vector
ypB, N_Vector rrB, SUNMatrix JacB, void *user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)

This function computes the Jacobian of the backward problem (or an approximation to it).

Arguments:

• tt – is the current value of the independent variable.

• c_jB – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• rrB – is the current value of the residual for the backward problem.

• JacB – is the output approximate Jacobian matrix.
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• user_dataB – is a pointer to user data — the parameter passed to IDASetUserDataB.

• tmp1B, tmp2B, tmp3B – are pointers to memory allocated for variables of type N_Vector which can
be used by the IDALsJacFnB function as temporary storage or work space.

Return value:
An IDALsJacFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct, while IDALS sets last_flag to IDALS_JACFUNC_RECVR), or a nega-
tive value if it failed unrecoverably (in which case the integration is halted, IDASolveB() returns IDA_-
LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

Notes:
A user-supplied Jacobian function must load the matrix JacBwith an approximation to the Jacobian matrix
at the point (tt, yy, yB), where yy is the solution of the original IVP at time tt, and yB is the solution
of the backward problem at the same time. Information regarding the structure of the specific SUNMatrix
structure (e.g. number of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMatrix interface functions (see Chapter §7 for details). With direct linear
solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix J(t, y) is zeroed
out prior to calling the user-supplied Jacobian function so only nonzero elements need to be loaded into
JacB.

Warning

Before calling the user’s IDALsJacFnB, IDAS needs to evaluate (through interpolation) the values of
the states from the forward integration. If an error occurs in the interpolation, IDAS triggers an unre-
coverable failure in the Jacobian function which will halt the integration (IDASolveB() returns IDA_-
LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

Added in version 3.0.0: Replaces the deprecated type IDADlsJacFnB.

typedef int (*IDALsJacFnBS)(sunrealtype tt, sunrealtype c_jB, N_Vector yy, N_Vector yp, N_Vector *yS, N_Vector
*ypS, N_Vector yyB, N_Vector ypB, N_Vector rrB, SUNMatrix JacB, void *user_dataB, N_Vector tmp1B, N_Vector
tmp2B, N_Vector tmp3B);

This function computes the Jacobian of the backward problem (or an approximation to it), in the case where the
backward problem depends on the forward sensitivities.

Arguments:

• tt – is the current value of the independent variable.

• c_jB – is the scalar in the system Jacobian, proportional to the inverse of the step size (α in (2.7)).

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward solution sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• rrb – is the current value of the residual for the backward problem.

• JacB – is the output approximate Jacobian matrix.

• user_dataB – is a pointer to user data — the parameter passed to IDASetUserDataB.
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• tmp1B, tmp2B, tmp3B – are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacFnBS as temporary storage or work space.

Return value:
An IDALsJacFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct, while IDALS sets last_flag to IDALS_JACFUNC_RECVR), or a nega-
tive value if it failed unrecoverably (in which case the integration is halted, IDASolveB() returns IDA_-
LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

Notes:
A user-supplied dense Jacobian function must load the matrix JacB with an approximation to the Jaco-
bian matrix at the point (tt, yy, yS, yB), where yy is the solution of the original IVP at time tt,
yS is the array of forward sensitivities at time tt, and yB is the solution of the backward problem at the
same time. Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows,
upper/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMa-
trix interface functions (see Chapter §7 for details). With direct linear solvers (i.e., linear solvers with type
SUNLINEARSOLVER_DIRECT, the Jacobian matrix J(t, y) is zeroed out prior to calling the user-supplied
Jacobian function so only nonzero elements need to be loaded into JacB.

Warning

Before calling the user’s IDALsJacFnBS, IDAS needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers an
unrecoverable failure in the Jacobian function which will halt the integration (IDASolveB() returns
IDA_LSETUP_FAIL and IDALS sets last_flag to IDALS_JACFUNC_UNRECVR).

Added in version 3.0.0: Replaces the deprecated type IDADlsJacFnBS.

5.5.3.6 Jacobian-vector product for the backward problem (matrix-free linear solvers)

If a matrix-free linear solver is selected for the backward problem (i.e., IDASetLinearSolverB() is called with
NULL-valued SUNMatrix argument in the steps described in §5.5.1), the user may provide a function of type IDALs-
JacTimesVecFnB or IDALsJacTimesVecFnBS in the following form, to compute matrix-vector products Jv. If such
a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*IDALsJacTimesVecFnB)(sunrealtype t, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB,
N_Vector resvalB, N_Vector vB, N_Vector JvB, sunrealtype cjB, void *user_dataB, N_Vector tmp1B, N_Vector
tmp2B)

This function computes the action of the backward problem Jacobian JB on a given vector vB.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• vB – is the vector by which the Jacobian must be multiplied.

• JvB – is the computed output vector, JB*vB.
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• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB.

• tmp1B, tmp2B – are pointers to memory allocated for variables of type N_Vector which can be used
by IDALsJacTimesVecFnB as temporary storage or work space.

Return value:
The return value of a function of type IDALsJtimesVecFnB should be if successful or nonzero if an error
was encountered, in which case the integration is halted.

Notes:
A user-supplied Jacobian-vector product function must load the vector JvBwith the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type IDALsJacTimesVecFn (see §5.1.4.5). If the backward
problem is the adjoint of ẏ = f(t, y), then this function is to compute − (∂f/∂yi)

T
vB .

Added in version 3.0.0: Replaces the deprecated type IDASpilsJacTimesVecFnB.

typedef int (*IDALsJacTimesVecFnBS)(sunrealtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, N_Vector vB, N_Vector JvB, sunrealtype cjB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B)

This function computes the action of the backward problem Jacobian JB on a given vector vB, in the case where
the backward problem depends on the forward sensitivities.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yyS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• vB – is the vector by which the Jacobian must be multiplied.

• JvB – is the computed output vector, JB*vB.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB.

• tmp1B, tmp2B – are pointers to memory allocated for variables of type N_Vector which can be used
by IDALsJacTimesVecFnBS as temporary storage or work space.

Return value:
The return value of a function of type IDALsJtimesVecFnBS should be if successful or nonzero if an error
was encountered, in which case the integration is halted.

Notes:
A user-supplied Jacobian-vector product function must load the vector JvBwith the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
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IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type IDALsJacTimesVecFn (see §5.1.4.5).

Added in version 3.0.0: Replaces the deprecated type IDASpilsJacTimesVecFnBS.

5.5.3.7 Jacobian-vector product setup for the backward problem (matrix-free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evaluated, then this needs
to be done in a user-supplied function of type IDALsJacTimesSetupFnB or IDALsJacTimesSetupFnBS, defined as
follows:

typedef int (*IDALsJacTimesSetupFnB)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB,
N_Vector resvalB, sunrealtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem.

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t) .

• yp – is the current value of ẏ(t) .

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB.

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual user
function with the same (t,y, yp, yB, ypB) arguments. Thus, the setup function can use any auxil-
iary data that is computed and saved during the evaluation of the DAE residual. If the user’s IDALsJac-
TimesVecFnB function uses difference quotient approximations, it may need to access quantities not in the
call list. These include the current stepsize, the error weights, etc. To obtain these, the user will need to
add a pointer to ida_mem to user_dataB and then use the IDAGet* functions described in §5.1.3.12. The
unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 3.0.0: Replaces the deprecated type IDASpilsJacTimesSetupFnB.

typedef int (*IDALsJacTimesSetupFnBS)(sunrealtype tt, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector
*ypS, N_Vector yB, N_Vector ypB, N_Vector resvalB, sunrealtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem, in the case that the backward problem depends on the forward sensitivities.

Arguments:

• tt – is the current value of the independent variable.

• yy – is the current value of the dependent variable vector, y(t) .
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• yp – is the current value of ẏ(t) .

• yyS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB.

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual
user function with the same (t,y, yp, yyS, ypS, yB, ypB) arguments. Thus, the setup function can
use any auxiliary data that is computed and saved during the evaluation of the DAE residual. If the user’s
IDALsJacTimesVecFnB function uses difference quotient approximations, it may need to access quantities
not in the call list. These include the current stepsize, the error weights, etc. To obtain these, the user
will need to add a pointer to ida_mem to user_dataB and then use the IDAGet* functions described in
§5.5.2.11. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.
The previous function type IDASpilsJacTimesSetupFnBS is deprecated.

Added in version 3.0.0: Replaces the deprecated type IDASpilsJacTimesSetupFnBS.

5.5.3.8 Preconditioner solve for the backward problem (iterative linear solvers)

If preconditioning is used during integration of the backward problem, then the user must provide a function to solve
the linear system Pz = r, where P is a left preconditioner matrix. This function must have one of the following two
forms:

typedef int (*IDALsPrecSolveFnB)(sunrealtype t, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB,
N_Vector resvalB, N_Vector rvecB, N_Vector zvecB, sunrealtype cjB, sunrealtype deltaB, void *user_dataB)

This function solves the preconditioning system Pz = r for the backward problem.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• rvecB – is the right-hand side vector r of the linear system to be solved.

• zvecB – is the computed output vector.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).
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• deltaB – is an input tolerance to be used if an iterative method is employed in the solution.

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB.

Return value:
The return value of a preconditioner solve function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 3.0.0: Replaces the deprecated type IDASpilsPrecSolveFnB.

typedef int (*IDALsPrecSolveFnBS)(sunrealtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, N_Vector rvecB, N_Vector zvecB, sunrealtype cjB, sunrealtype
deltaB, void *user_dataB)

This function solves the preconditioning system Pz = r for the backward problem, for the case in which the
backward problem depends on the forward sensitivities.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yyS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• rvecB – is the right-hand side vector r of the linear system to be solved.

• zvecB – is the computed output vector.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• deltaB – is an input tolerance to be used if an iterative method is employed in the solution.

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB.

Return value:
The return value of a preconditioner solve function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 3.0.0: Replaces the deprecated type IDASpilsPrecSolveFnBS.
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5.5.3.9 Preconditioner setup for the backward problem (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then this needs to be
done in a user-supplied function of one of the following two types:

typedef int (*IDALsPrecSetupFnB)(sunrealtype t, N_Vector yy, N_Vector yp, N_Vector yB, N_Vector ypB,
N_Vector resvalB, sunrealtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner for the backward
problem.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB.

Return value:
The return value of a preconditioner setup function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 3.0.0: Replaces the deprecated type IDASpilsPrecSetupFnB.

typedef int (*IDALsPrecSetupFnBS)(sunrealtype t, N_Vector yy, N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB, N_Vector resvalB, sunrealtype cjB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner for the backward
problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:

• t – is the current value of the independent variable.

• yy – is the current value of the forward solution vector.

• yp – is the current value of the forward solution vector.

• yyS – a pointer to an array of Ns vectors containing the sensitivities of the forward solution.

• ypS – a pointer to an array of Ns vectors containing the derivatives of the forward sensitivities.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• resvalB – is the current value of the residual for the backward problem.

• cjB – is the scalar in the system Jacobian, proportional to the inverse of the step size ( α in (2.7) ).

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to the
function IDASetUserDataB.
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Return value:
The return value of a preconditioner setup function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 3.0.0: Replaces the deprecated type IDASpilsPrecSetupFnBS.

5.5.4 Using the band-block-diagonal preconditioner for backward problems

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear systems can be
greatly enhanced through preconditioning. The band-block-diagonal preconditioner module IDABBDPRE, provides
interface functions through which it can be used on the backward integration phase.

The adjoint module in IDAS offers an interface to the band-block-diagonal preconditioner module IDABBDPRE de-
scribed in section §5.3.1. This generates a preconditioner that is a block-diagonal matrix with each block being a band
matrix and can be used with one of the Krylov linear solvers and with the MPI-parallel vector module NVECTOR_PAR-
ALLEL.

In order to use the IDABBDPRE module in the solution of the backward problem, the user must define one or two
additional functions, described at the end of this section.

5.5.4.1 Usage of IDABBDPRE for the backward problem

The IDABBDPRE module is initialized by calling the following function, after an iterative linear solver for the backward
problem has been attached to IDAS by calling IDASetLinearSolverB() (see §5.5.2.6).

int IDABBDPrecInitB(void *ida_mem, int which, sunindextype NlocalB, sunindextype mudqB, sunindextype
mldqB, sunindextype mukeepB, sunindextype mlkeepB, sunrealtype dqrelyB,
IDABBDLocalFnB GresB, IDABBDCommFnB GcommB)

The function IDABBDPrecInitB() initializes and allocates memory for the IDABBDPRE preconditioner for
the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• which – the identifier of the backward problem.

• NlocalB – local vector dimension for the backward problem.

• mudqB – upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mldqB – lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mukeepB – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeepB – lower half-bandwidth of the retained banded approximate Jacobian block.

• dqrelyB – the relative increment in components of yB used in the difference quotient approximations.
The default is dqrelyB =

√
unit roundoff , which can be specified by passing dqrely = 0.0.

• GresB – the C function which computes GB(t, y, ẏ, yB , ẏB), the function approximating the residual
of the backward problem.

• GcommB – the optional C function which performs all interprocess communication required for the
computation of GB .

Return value:

• IDALS_SUCCESS – The call to IDABBDPrecInitB() was successful.
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• IDALS_MEM_FAIL – A memory allocation request has failed.

• IDALS_MEM_NULL – The ida_mem argument was NULL.

• IDALS_LMEM_NULL – No linear solver has been attached.

• IDALS_ILL_INPUT – An invalid parameter has been passed.

To reinitialize the IDABBDPRE preconditioner module for the backward problem, possibly with a change in mudqB,
mldqB, or dqrelyB, call the following function:

int IDABBDPrecReInitB(void *ida_mem, int which, sunindextype mudqB, sunindextype mldqB, sunrealtype
dqrelyB)

The function IDABBDPrecReInitB() reinitializes the IDABBDPRE preconditioner for the backward problem.

Arguments:

• ida_mem – pointer to the IDAS memory block returned by IDACreate().

• which – the identifier of the backward problem.

• mudqB – upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

• mldqB – lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

• dqrelyB – the relative increment in components of yB used in the difference quotient approximations.

Return value:

• IDALS_SUCCESS – The call to IDABBDPrecReInitB() was successful.

• IDALS_MEM_FAIL – A memory allocation request has failed.

• IDALS_MEM_NULL – The ida_mem argument was NULL.

• IDALS_PMEM_NULL – The IDABBDPrecInitB() has not been previously called.

• IDALS_LMEM_NULL – No linear solver has been attached.

• IDALS_ILL_INPUT – An invalid parameter has been passed.

5.5.4.2 User-supplied functions for IDABBDPRE

To use the IDABBDPRE module, the user must supply one or two functions which the module calls to construct
the preconditioner: a required function GresB (of type IDABBDLocalFnB) which approximates the residual of the
backward problem and which is computed locally, and an optional function GcommB (of type IDABBDCommFnB) which
performs all interprocess communication necessary to evaluate this approximate residual (see §5.3.1). The prototypes
for these two functions are described below.

typedef int (*IDABBDLocalFnB)(sunindextype NlocalB, sunrealtype t, N_Vector y, N_Vector yp, N_Vector yB,
N_Vector ypB, N_Vector gB, void *user_dataB)

This GresB function loads the vector gB, an approximation to the residual of the backward problem, as a function
of t, y, yp, and yB and ypB.

Arguments:

• NlocalB – is the local vector length for the backward problem.

• t – is the value of the independent variable.

• y – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.
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• ypB – is the current value of the backward dependent derivative vector.

• gB – is the output vector, GB(t, y, ẏ, yB , ẏB) .

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB.

Return value:
An IDABBDLocalFnB should return 0 if successful, a positive value if a recoverable error occurred (in
which case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and IDASolveB() returns IDA_LSETUP_FAIL).

Notes:
This routine must assume that all interprocess communication of data needed to calculate gB has already
been done, and this data is accessible within user_dataB.

Warning

Before calling the user’s IDABBDLocalFnB, IDAS needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, IDAS triggers an
unrecoverable failure in the preconditioner setup function which will halt the integration (IDASolveB()
returns IDA_LSETUP_FAIL).

typedef int (*IDABBDCommFnB)(sunindextype NlocalB, sunrealtype t, N_Vector y, N_Vector yp, N_Vector yB,
N_Vector ypB, void *user_dataB)

This GcommB function performs all interprocess communications necessary for the execution of the GresB func-
tion above, using the input vectors y, yp, yB and ypB.

Arguments:

• NlocalB – is the local vector length.

• t – is the value of the independent variable.

• y – is the current value of the forward solution vector.

• yp – is the current value of the forward solution derivative vector.

• yB – is the current value of the backward dependent variable vector.

• ypB – is the current value of the backward dependent derivative vector.

• user_dataB – is a pointer to user data — the same as the user_dataB parameter passed to IDASe-
tUserDataB.

Return value:
An IDABBDCommFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case IDAS will attempt to correct), or a negative value if it failed unrecoverably (in which case the integra-
tion is halted and IDASolveB() returns IDA_LSETUP_FAIL).

Notes:
The GcommB function is expected to save communicated data in space defined within the structure user_-
dataB.

Each call to the GcommB function is preceded by a call to the function that evaluates the residual of the
backward problem with the same t, y, yp, yB and ypB arguments. If there is no additional communication
needed, then pass GcommB = NULL to IDABBDPrecInitB().
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Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_Vector)
through a set of operations defined by, and specific to, the particular vector implementation. Users can provide a
custom vector implementation or use one provided with SUNDIALS. The generic operations are described below. In
the sections following, the implementations provided with SUNDIALS are described.

An N_Vector is a pointer to the _generic_N_Vector structure:

typedef struct _generic_N_Vector *N_Vector

struct _generic_N_Vector
The structure defining the SUNDIALS vector class.

void *content
Pointer to vector-specific member data.

N_Vector_Ops ops
A virtual table of vector operations provided by a specific implementation.

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef _generic_N_Vector_Ops *N_Vector_Ops
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struct _generic_N_Vector_Ops
The structure defining N_Vector operations.

N_Vector_ID (*nvgetvectorid)(N_Vector)
The function implementing N_VGetVectorID()

N_Vector (*nvclone)(N_Vector)
The function implementing N_VClone()

N_Vector (*nvcloneempty)(N_Vector)
The function implementing N_VCloneEmpty()

void (*nvdestroy)(N_Vector)
The function implementing N_VDestroy()

void (*nvspace)(N_Vector, sunindextype*, sunindextype*)
The function implementing N_VSpace()

sunrealtype *(*nvgetarraypointer)(N_Vector)
The function implementing N_VGetArrayPointer()

sunrealtype *(*nvgetdevicearraypointer)(N_Vector)
The function implementing N_VGetDeviceArrayPointer()

void (*nvsetarraypointer)(sunrealtype*, N_Vector)
The function implementing N_VSetArrayPointer()

SUNComm (*nvgetcommunicator)(N_Vector)
The function implementing N_VGetCommunicator()

sunindextype (*nvgetlength)(N_Vector)
The function implementing N_VGetLength()

sunindextype (*nvgetlocallength)(N_Vector)
The function implementing N_VGetLocalLength()

void (*nvlinearsum)(sunrealtype, N_Vector, sunrealtype, N_Vector, N_Vector)
The function implementing N_VLinearSum()

void (*nvconst)(sunrealtype, N_Vector)
The function implementing N_VConst()

void (*nvprod)(N_Vector, N_Vector, N_Vector)
The function implementing N_VProd()

void (*nvdiv)(N_Vector, N_Vector, N_Vector)
The function implementing N_VDiv()

void (*nvscale)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VScale()

void (*nvabs)(N_Vector, N_Vector)
The function implementing N_VAbs()

void (*nvinv)(N_Vector, N_Vector)
The function implementing N_VInv()
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void (*nvaddconst)(N_Vector, sunrealtype, N_Vector)
The function implementing N_VAddConst()

sunrealtype (*nvdotprod)(N_Vector, N_Vector)
The function implementing N_VDotProd()

sunrealtype (*nvmaxnorm)(N_Vector)
The function implementing N_VMaxNorm()

sunrealtype (*nvwrmsnorm)(N_Vector, N_Vector)
The function implementing N_VWrmsNorm()

sunrealtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VWrmsNormMask()

sunrealtype (*nvmin)(N_Vector)
The function implementing N_VMin()

sunrealtype (*nvwl2norm)(N_Vector, N_Vector)
The function implementing N_VWL2Norm()

sunrealtype (*nvl1norm)(N_Vector)
The function implementing N_VL1Norm()

void (*nvcompare)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VCompare()

sunbooleantype (*nvinvtest)(N_Vector, N_Vector)
The function implementing N_VInvTest()

sunbooleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMask()

sunrealtype (*nvminquotient)(N_Vector, N_Vector)
The function implementing N_VMinQuotient()

SUNErrCode (*nvlinearcombination)(int, sunrealtype*, N_Vector*, N_Vector)
The function implementing N_VLinearCombination()

SUNErrCode (*nvscaleaddmulti)(int, sunrealtype*, N_Vector, N_Vector*, N_Vector*)
The function implementing N_VScaleAddMulti()

SUNErrCode (*nvdotprodmulti)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMulti()

SUNErrCode (*nvlinearsumvectorarray)(int, sunrealtype, N_Vector*, sunrealtype, N_Vector*,
N_Vector*)

The function implementing N_VLinearSumVectorArray()

SUNErrCode (*nvscalevectorarray)(int, sunrealtype*, N_Vector*, N_Vector*)
The function implementing N_VScaleVectorArray()

SUNErrCode (*nvconstvectorarray)(int, sunrealtype, N_Vector*)
The function implementing N_VConstVectorArray()

SUNErrCode (*nvwrmsnormvectorarray)(int, N_Vector*, N_Vector*, sunrealtype*)
The function implementing N_VWrmsNormVectorArray()
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SUNErrCode (*nvwrmsnormmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector, sunrealtype*)
The function implementing N_VWrmsNormMaskVectorArray()

SUNErrCode (*nvscaleaddmultivectorarray)(int, int, sunrealtype*, N_Vector*, N_Vector**,
N_Vector**)

The function implementing N_VScaleAddMultiVectorArray()

SUNErrCode (*nvlinearcombinationvectorarray)(int, int, sunrealtype*, N_Vector**, N_Vector*)
The function implementing N_VLinearCombinationVectorArray()

sunrealtype (*nvdotprodlocal)(N_Vector, N_Vector)
The function implementing N_VDotProdLocal()

sunrealtype (*nvmaxnormlocal)(N_Vector)
The function implementing N_VMaxNormLocal()

sunrealtype (*nvminlocal)(N_Vector)
The function implementing N_VMinLocal()

sunrealtype (*nvl1normlocal)(N_Vector)
The function implementing N_VL1NormLocal()

sunbooleantype (*nvinvtestlocal)(N_Vector, N_Vector)
The function implementing N_VInvTestLocal()

sunbooleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMaskLocal()

sunrealtype (*nvminquotientlocal)(N_Vector, N_Vector)
The function implementing N_VMinQuotientLocal()

sunrealtype (*nvwsqrsumlocal)(N_Vector, N_Vector)
The function implementing N_VWSqrSumLocal()

sunrealtype (*nvwsqrsummasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VWSqrSumMaskLocal()

SUNErrCode (*nvdotprodmultilocal)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMultiLocal()

SUNErrCode (*nvdotprodmultiallreduce)(int, N_Vector, sunrealtype*)
The function implementing N_VDotProdMultiAllReduce()

SUNErrCode (*nvbufsize)(N_Vector, sunindextype*)
The function implementing N_VBufSize()

SUNErrCode (*nvbufpack)(N_Vector, void*)
The function implementing N_VBufPack()

SUNErrCode (*nvbufunpack)(N_Vector, void*)
The function implementing N_VBufUnpack()

void (*nvprint)(N_Vector)
The function implementing N_VPrint()
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void (*nvprintfile)(N_Vector, FILE*)
The function implementing N_VPrintFile()

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z ← cx for vectors x and z and a scalar c:

void N_VScale(sunrealtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§6.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §6.2.2,
§6.2.3, §6.2.4, §6.2.5, and §6.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §6.2.2 and §6.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §6.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANYVECTOR object
(see §6.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§6.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §6.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

6.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects – these functions are particularly useful for Fortran users to utilize the NVECTOR_MANYVECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCloneVectorArray() and N_VCloneVectorArrayEmpty() create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray(int count, N_Vector w)
Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).

Arguments:

• count – number of N_Vector objects to create.

• w – template N_Vector to clone.

Return value:

• pointer to a new N_Vector array on success.

6.1. Description of the NVECTOR Modules 193



User Documentation for IDAS, v6.3.0

• NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w)
Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:

• count – number of N_Vector objects to create.

• w – template N_Vector to clone.

Return value:

• pointer to a new N_Vector array on success.

• NULL pointer on failure.

An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray(N_Vector *vs, int count)
Destroys an array of count N_Vector objects.

Arguments:

• vs – N_Vector array to destroy.

• count – number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy() operation.

If vs was allocated using N_VCloneVectorArray() then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCloneVectorArrayEmpty() then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray(), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray(), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray(int count, SUNContext sunctx)
Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.

Arguments:

• count – length of desired N_Vector array.

• sunctx – a SUNContext object

Return value:

• pointer to a new N_Vector array on success.

• NULL pointer on failure.

Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

N_Vector *N_VGetVecAtIndexVectorArray(N_Vector *vs, int index)
Accesses the N_Vector at the location index within the N_Vector array vs.

Arguments:

• vs – N_Vector array.
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• index – desired N_Vector to access from within vs.

Return value:

• pointer to the indexed N_Vector on success.

• NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray(N_Vector *vs, int index, N_Vector w)
Sets a pointer to w at the location index within the vector array vs.

Arguments:

• vs – N_Vector array.

• index – desired location to place the pointer to w within vs.

• w – N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

6.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

• Specify the content field of the N_Vector structure.

• Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty() and N_VCopyOps(). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty(SUNContext sunctx)
This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the
operations structure to NULL.

Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty(N_Vector v)
This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.
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Arguments:

• v – an N_Vector object

SUNErrCode N_VCopyOps(N_Vector w, N_Vector v)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:

• w – the vector to copy operations from

• v – the vector to copy operations to

Return value: Returns a SUNErrCode.

enum N_Vector_ID
Each N_Vector implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 6.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_-
NVEC_CUSTOM identifier.

Table 6.1: Vector Identifications associated with vector kernels supplied
with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS_NVEC_MANYVECTOR “ManyVector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled “ManyVector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

6.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§6.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

• N_VMin() and N_VMinLocal() should return the minimum of all real components of the vector, i.e., m =
min

0≤i<n
real(xi).

• N_VConst() (and similarly N_VConstVectorArray()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., zi = c+ 0j for 0 ≤ i < n.

• N_VAddConst() should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.
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• N_VWrmsNorm(), N_VWrmsNormMask(), N_VWSqrSumLocal() and N_VWSqrSumMaskLocal() should assume
that all entries of the weight vector w and the mask vector id are real-valued.

• N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current sunrealtype, this routine should be set to NULL in the custom NVECTOR
implementation.

• N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VConstrMaskLocal() and N_VMinQuotient-
Local() are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §8.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Similarly, although both the SUNNonlinearSolver_Newton and SUNNonlinearSolver_FixedPoint modules may be
used with any of the IVP solvers (CVODE(S), IDA(S) and ARKODE) for complex-valued problems, the Anderson-
acceleration option with SUNNonlinearSolver_FixedPoint cannot be used due to its reliance on N_VDotProd(). By
this same logic, the Anderson acceleration feature within KINSOL will also not work with complex-valued vectors.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare(), N_VConstrMask(), N_VMinQuotient(), N_VCon-
strMaskLocal() and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_f2003.f90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod.f90.

6.2 Description of the NVECTOR operations

6.2.1 Standard vector operations

The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these
operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N_Vector w)
Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, . . . ) from the abstract N_Vector interface. Returned values are given in Table 6.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);
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N_Vector N_VCloneEmpty(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace(N_Vector v, sunindextype *lrw, sunindextype *liw)
Returns storage requirements for the N_Vector v:

• lrw contains the number of sunrealtype words

• liw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

sunrealtype *N_VGetArrayPointer(N_Vector v)
Returns a pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of sunrealtype and is accessible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

sunrealtype *N_VGetDeviceArrayPointer(N_Vector v)
Returns a device pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal
data in N_Vector is a contiguous array of sunrealtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer(sunrealtype *vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of sunrealtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of sunrealtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:
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N_VSetArrayPointer(vdata,v);

SUNComm N_VGetCommunicator(N_Vector v)
Returns the SUNComm (which is just an MPI_Comm when SUNDIALS is built with MPI, otherwise it is an int)
associated with the vector (if applicable). For MPI-unaware vector implementations, this should return SUN_-
COMM_NULL.

Usage:

MPI_Comm comm = N_VGetCommunicator(v); // Works if MPI is enabled
int comm = N_VGetCommunicator(v); // Works if MPI is disabled
SUNComm comm = N_VGetCommunicator(v); // Works with or without MPI

sunindextype N_VGetLength(N_Vector v)
Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:

global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength(N_Vector v)
Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer() or N_VGetDeviceArrayPointer().

Usage:

local_length = N_VGetLocalLength(v);

void N_VLinearSum(sunrealtype a, N_Vector x, sunrealtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are sunrealtype scalars and x and y are of type N_Vector:

zi = axi + byi, i = 0, . . . , n− 1.

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst(sunrealtype c, N_Vector z)
Sets all components of the N_Vector z to sunrealtype c:

zi = c, i = 0, . . . , n− 1.

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

zi = xiyi, i = 0, . . . , n− 1.

Usage:
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N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

zi =
xi
yi
, i = 0, . . . , n− 1.

The yi may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale(sunrealtype c, N_Vector x, N_Vector z)
Scales the N_Vector x by the sunrealtype scalar c and returns the result in z:

zi = cxi, i = 0, . . . , n− 1.

Usage:

N_VScale(c, x, z);

void N_VAbs(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

zi = |xi|, i = 0, . . . , n− 1.

Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

zi =
1

xi
, i = 0, . . . , n− 1.

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst(N_Vector x, sunrealtype b, N_Vector z)
Adds the sunrealtype scalar b to all components of x and returns the result in the N_Vector z:

zi = xi + b, i = 0, . . . , n− 1.

Usage:

N_VAddConst(x, b, z);
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sunrealtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the vectors x and y:

d =

n−1∑
i=0

xiyi.

Usage:

d = N_VDotProd(x, y);

sunrealtype N_VMaxNorm(N_Vector x)
Returns the value of the l∞ norm of the N_Vector x:

m = max
0≤i<n

|xi|.

Usage:

m = N_VMaxNorm(x);

sunrealtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) sunrealtype weight vector w:

m =

√√√√(n−1∑
i=0

(xiwi)2

)
/n

Usage:

m = N_VWrmsNorm(x, w);

sunrealtype N_VWrmsNormMask(N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with sunrealtype weight vector w built using
only the elements of x corresponding to positive elements of the N_Vector id:

m =

√√√√(n−1∑
i=0

(xiwiH(idi))2

)
/n,

where H(α) =

{
1 α > 0

0 α ≤ 0
.

Usage:

m = N_VWrmsNormMask(x, w, id);

sunrealtype N_VMin(N_Vector x)
Returns the smallest element of the N_Vector x:

m = min
0≤i<n

xi.

Usage:

m = N_VMin(x);
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sunrealtype N_VWL2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean l2 norm of the N_Vector x with sunrealtype weight vector w:

m =

√√√√n−1∑
i=0

(xiwi)
2
.

Usage:

m = N_VWL2Norm(x, w);

sunrealtype N_VL1Norm(N_Vector x)
Returns the l1 norm of the N_Vector x:

m =

n−1∑
i=0

|xi|.

Usage:

m = N_VL1Norm(x);

void N_VCompare(sunrealtype c, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the sunrealtype scalar c and returns an N_Vector z such that
for all 0 ≤ i < n,

zi =

{
1.0 if |xi| ≥ c,
0.0 otherwise

.

Usage:

N_VCompare(c, x, z);

sunbooleantype N_VInvTest(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

zi =
1

xi
, i = 0, . . . , n− 1.

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);

sunbooleantype N_VConstrMask(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,
xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.

There is no constraint on xi if ci = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:
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t = N_VConstrMask(c, x, m);

sunrealtype N_VMinQuotient(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

min
0≤i<n

numi

denomi
.

A zero element in denom will be skipped. If no such quotients are found, then the large value SUN_BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotient(num, denom);

6.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.

SUNErrCode N_VLinearCombination(int nv, sunrealtype *c, N_Vector *X, N_Vector z)
This routine computes the linear combination of nv vectors with n elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars, xj is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns a
SUNErrCode.

Usage:

retval = N_VLinearCombination(nv, c, X, z);

SUNErrCode N_VScaleAddMulti(int nv, sunrealtype *c, N_Vector x, N_Vector *Y, N_Vector *Z)
This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of scalars, x is a vector, yj is a vector in the vector array Y, and zj is an output vector in the
vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMulti(nv, c, x, Y, Z);

SUNErrCode N_VDotProdMulti(int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the dot product of a vector with nv vectors having n elements:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,
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where d is an array of scalars containing the computed dot products, x is a vector, and yj is a vector the vector
array Y. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMulti(nv, x, Y, d);

6.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

SUNErrCode N_VLinearSumVectorArray(int nv, sunrealtype a, N_Vector *X, sunrealtype b, N_Vector *Y,
N_Vector *Z)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are scalars, xj and yj are vectors in the vector arrays X and Y respectively, and zj is a vector in
the output vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

SUNErrCode N_VScaleVectorArray(int nv, sunrealtype *c, N_Vector *X, N_Vector *Z)
This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of scalars, xj is a vector in the vector array X, and zj is a vector in the output vector array Z.
The operation returns a SUNErrCode.

Usage:

retval = N_VScaleVectorArray(nv, c, X, Z);

SUNErrCode N_VConstVectorArray(int nv, sunrealtype c, N_Vector *Z)
This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a scalar and zj is a vector in the vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VConstVectorArray(nv, c, Z);
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SUNErrCode N_VWrmsNormVectorArray(int nv, N_Vector *X, N_Vector *W, sunrealtype *m)
This routine computes the weighted root mean square norm of each vector in a vector array:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

where xj is a vector in the vector array X, wj is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

SUNErrCode N_VWrmsNormMaskVectorArray(int nv, N_Vector *X, N_Vector *W, N_Vector id, sunrealtype *m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

where H(idi) = 1 if idi > 0 and is zero otherwise, xj is a vector in the vector array X, wj is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

SUNErrCode N_VScaleAddMultiVectorArray(int nv, int nsum, sunrealtype *c, N_Vector *X, N_Vector **YY,
N_Vector **ZZ)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:

zk,j,i = ckxj,i + yk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1, k = 0, . . . , nsum− 1

where c is an array of scalars, xj is a vector in the vector array X, yk,j is a vector in the array of vector arrays YY,
and zk,j is an output vector in the array of vector arrays ZZ. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

SUNErrCode N_VLinearCombinationVectorArray(int nv, int nsum, sunrealtype *c, N_Vector **XX, N_Vector
*Z)

This routine computes the linear combination of nsum vector arrays containing nv vectors:

zj,i =

nsum−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of scalars, xk,j is a vector in array of vector arrays XX, and zj,i is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns a SUNErrCode.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);
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6.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

sunrealtype N_VDotProdLocal(N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

d =

nlocal−1∑
i=0

xiyi,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

sunrealtype N_VMaxNormLocal(N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m = max
0≤i<nlocal

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal(x);

sunrealtype N_VMinLocal(N_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m = min
0≤i<nlocal

xi,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

sunrealtype N_VL1NormLocal(N_Vector x)
This routine computes the MPI task-local portion of the l1 norm of the N_Vector x:

n =

nlocal−1∑
i=0

|xi|,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:
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n = N_VL1NormLocal(x);

sunrealtype N_VWSqrSumLocal(N_Vector x, N_Vector w)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

s =

nlocal−1∑
i=0

(xiwi)
2,

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

sunrealtype N_VWSqrSumMaskLocal(N_Vector x, N_Vector w, N_Vector id)
This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

m =

nlocal−1∑
i=0

(xiwiH(idi))
2,

where

H(α) =

{
1 α > 0

0 α ≤ 0

and nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

sunbooleantype N_VInvTestLocal(N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

zi =
1

xi
, i = 0, . . . , nlocal − 1

where nlocal corresponds to the number of components in the vector on this MPI task (or nlocal = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:

t = N_VInvTestLocal(x);

sunbooleantype N_VConstrMaskLocal(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,
xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.
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for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

sunrealtype N_VMinQuotientLocal(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by term-wise dividing numi by denomi, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value SUN_BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotientLocal(num, denom);

6.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

SUNErrCode N_VDotProdMultiLocal(int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors yj :

dj =

nlocal−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d is an array of scalars containing the computed dot products, x is a vector, yj is a vector in the vector array
Y, and nlocal corresponds to the number of components in the vector on this MPI task. The operation returns a
SUNErrCode.

Usage:

retval = N_VDotProdMultiLocal(nv, x, Y, d);

SUNErrCode N_VDotProdMultiAllReduce(int nv, N_Vector x, sunrealtype *d)
This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)

where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);
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6.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

SUNErrCode N_VBufSize(N_Vector x, sunindextype *size)
This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

SUNErrCode N_VBufPack(N_Vector x, void *buf)
This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

SUNErrCode N_VBufUnpack(N_Vector x, void *buf)
This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

6.2.7 Output operations

The following optional vector operations are for writing vector data either to stdout or to a given file.

void N_VPrint(N_Vector x)
This routine prints vector data to stdout

Usage:

N_VPrint(x);

void N_VPrintFile(N_Vector x, FILE *file)
This routine writes vector data to the given file pointer.

Usage:

FILE* fp = fopen("vector_data.txt", "w");
N_VPrintFile(x, fp);
fclose(fp);
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6.3 NVECTOR functions used by IDAS

In Table 6.2 below, we list the vector functions used in the N_Vector module used by the IDAS package. The table
also shows, for each function, which of the code modules uses the function. The IDAS column shows function usage
within the main integrator module, while the remaining columns show function usage within the IDALS linear solvers
interface, and the IDABBDPRE preconditioner module.

At this point, we should emphasize that the IDAS user does not need to know anything about the usage of vector
functions by the IDAS code modules in order to use IDAS. The information is presented as an implementation detail
for the interested reader.

Table 6.2: List of vector functions usage by IDAS code modules

IDAS IDALS IDABBDPRE IDAA
N_VGetVectorID()
N_VGetLength() 4
N_VClone() x x x x
N_VCloneEmpty() 1
N_VDestroy() x x x x
N_VCloneVectorArray() x x
N_VDestroyVectorArray() x x
N_VSpace() x 2
N_VGetArrayPointer() 1 x
N_VSetArrayPointer() 1
N_VLinearSum() x x x
N_VConst() x x x
N_VProd() x
N_VDiv() x
N_VScale() x x x x
N_VAbs() x
N_VInv() x
N_VAddConst() x
N_VMaxNorm() x
N_VWrmsNorm() x x
N_VMin() x
N_VMinQuotient() x
N_VConstrMask() x
N_VWrmsNormMask() x
N_VCompare() x
N_VLinearCombination() x
N_VScaleAddMulti() x
N_VDotProdMulti() 3
N_VLinearSumVectorArray() x
N_VScaleVectorArray() x
N_VConstVectorArray() x
N_VWrmsNormVectorArray() x
N_VWrmsNormMaskVectorArray() x
N_VScaleAddMultiVectorArray() x
N_VLinearCombinationVectorArray() x

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing SUNMATRIX_DENSE
or SUNMATRIX_BAND Jacobian matrices is used.

210 Chapter 6. Vector Data Structures



User Documentation for IDAS, v6.3.0

2. This routine is optional, and is only used in estimating space requirements for IDAS modules for user feedback.

3. The optional function N_VDotProdMulti is only used when Classical Gram-Schmidt is enabled with SPGMR
or SPFGMR. The remaining operations from Tables §6.2.2 and §6.2.3 not listed above are unused and a user-
supplied N_Vector module for IDAS could omit these operations.

4. This routine is only used when an iterative or matrix iterative SUNLinearSolver module is supplied to IDAS.

Of the functions listed in §6.2, N_VDotProd() N_VWL2Norm(), N_VL1Norm(), N_VInvTest(), and N_VGetCommu-
nicator() are not used by IDAS. Therefore a user-supplied N_Vector module for IDAS could omit these functions
(although some may be needed by SUNNonlinearSolver or SUNLinearSolver modules).

6.4 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of an N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to link to
is libsundials_nvecserial.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.4.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector content
structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

NV_OWN_DATA_S(v)
Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data.
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Implementation:

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

NV_LENGTH_S(v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand, the call NV_-
LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

NV_Ith_S(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

6.4.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in §6.2.1, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Serial (e.g. N_-
VDestroy_Serial). All the standard vector operations listed in §6.2.1 with the suffix _Serial appended are callable
via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_Vector N_VNew_Serial(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length, SUNContext sunctx)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial(sunindextype vec_length, sunrealtype *v_data, SUNContext sunctx)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

void N_VPrint_Serial(N_Vector v)
This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector
using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled as cloned
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vectors inherit the same enable/disable options as the vector they are cloned, from while vectors created with N_-
VNew_Serial() will have the default settings for the NVECTOR_SERIAL module.

SUNErrCode N_VEnableFusedOps_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the serial
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the serial vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Serial(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the serial vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = NV_DATA_S(v), or equivalently v_data = N_VGetArrayPointer(v), and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Serial() and N_VMake_Serial() set the field own_data to SUNFALSE. The implementation
of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.
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• To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than one
N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
length.

6.4.3 NVECTOR_SERIAL Fortran Interface

The NVECTOR_SERIAL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_bindingmodule which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use fnvec-
tor_serial_mod, and linking to the library libsundials_fnvectorserial_mod.lib in addition to the C library.
For details on where the library and module file fnvector_serial_mod.mod are installed see §11. We note that the
module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the libsundials_-
fnvectorserial_mod library.

6.5 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPI.
It defines the content field of an N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunrealtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library to link
to is libsundials_nvecparallel.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.5.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content structure
of type struct N_VectorContent_Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )
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NV_OWN_DATA_P(v)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

NV_DATA_P(v)
The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the local_data
for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the pointer
v_data into data.

Implementation:

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

NV_LOCLENGTH_P(v)
The assignment v_llen = NV_LOCLENGTH_P(v) sets v_llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be llen_v.

Implementation:

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

NV_COMM_P(v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,i) sets r to be the value of the i-th component of the local part of v.

The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )
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6.5.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in §6.2. Their
names are obtained from the generic names by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
sunrealtype *v_data, SUNContext sunctx)

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

sunindextype N_VGetLocalLength_Parallel(N_Vector v)
This function returns the local vector length.

void N_VPrint_Parallel(N_Vector v)
This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from, while vectors created with
N_VNew_Parallel() will have the default settings for the NVECTOR_PARALLEL module.

SUNErrCode N_VEnableFusedOps_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableScaleVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Parallel(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parallel vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the local component
array via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_P(v), and then access
v_data[i] within the loop than it is to use NV_Ith_P(v,i) within the loop.

• N_VNewEmpty_Parallel() and N_VMake_Parallel() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy()will not attempt to free the pointer data for any N_Vectorwith own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.5.3 NVECTOR_PARALLEL Fortran Interface

The NVECTOR_PARALLEL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_parallel_mod Fortran module defines interfaces to all NVECTOR_PARALLEL C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Parallel is interfaced as FN_VNew_Parallel.

The Fortran 2003 NVECTOR_PARALLEL interface module can be accessed with the use statement, i.e. use fn-
vector_parallel_mod, and linking to the library libsundials_fnvectorparallel_mod.lib in addition to the
C library. For details on where the library and module file fnvector_parallel_mod.mod are installed see §11. We
note that the module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the
libsundials_fnvectorparallel_mod library.
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6.6 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content field
of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous data array,
a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on the vector
are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module library to link to
is libsundials_nvecopenmp.lib where .lib is typically .so for shared libraries and .a for static libraries. The
Fortran module file to use when using the Fortran 2003 interface to this module is fnvector_openmp_mod.mod.

6.6.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP(v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP N_Vector content
structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

NV_OWN_DATA_OMP(v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

NV_DATA_OMP(v)
The assignment v_data = NV_DATA_OMP(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:
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#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

NV_LENGTH_OMP(v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

NV_NUM_THREADS_OMP(v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

NV_Ith_OMP(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

6.6.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _OpenMP (e.g. N_-
VDestroy_OpenMP). All the standard vector operations listed in §6.2 with the suffix _OpenMP appended are callable
via the Fortran 2003 interface by prepending an F’ (e.g. ``FN_VDestroy_OpenMP`).

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP(sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)
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void N_VPrint_OpenMP(N_Vector v)
This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMP(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMP() will
have the default settings for the NVECTOR_OPENMP module.

SUNErrCode N_VEnableFusedOps_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMP(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the OpenMP vector. The return value is a SUNErrCode.
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Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_OMP(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_OMP(v,i) within the loop.

• N_VNewEmpty_OpenMP() and N_VMake_OpenMP() set the field own_data to SUNFALSE. The implementation
of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.6.3 NVECTOR_OPENMP Fortran Interface

The NVECTOR_OPENMP module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using the
intrinsic iso_c_bindingmodule which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenMP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use fnvec-
tor_openmp_mod, and linking to the library libsundials_fnvectoropenmp_mod.lib in addition to the C library.
For details on where the library and module file fnvector_openmp_mod.mod are installed see §11.

6.7 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library to link
to is libsundials_nvecpthreads.lib where .lib is typically .so for shared libraries and .a for static libraries.
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6.7.1 NVECTOR_PTHREADS accessor macros

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT(v)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector content
structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

NV_DATA_PT(v)
The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

NV_LENGTH_PT(v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

NV_NUM_THREADS_PT(v)
Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

NV_Ith_PT(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,i) sets r to be the value of the i-th component of v.
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The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

6.7.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Pthreads (e.g.
N_VDestroy_Pthreads). All the standard vector operations listed in §6.2 are callable via the Fortran 2003 interface
by prepending an F’ (e.g. ``FN_VDestroy_Pthreads`). The module NVECTOR_PTHREADS provides the following
additional user-callable routines:

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads(sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext
sunctx)

This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

void N_VPrint_Pthreads(N_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads() will have the default settings for the NVECTOR_PTHREADS module.

SUNErrCode N_VEnableFusedOps_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableDotProdMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the Pthreads vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_PT(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Pthreads() and N_VMake_Pthreads() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy()will not attempt to free the pointer data for any N_Vectorwith own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.7.3 NVECTOR_PTHREADS Fortran Interface

The NVECTOR_PTHREADS module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.
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The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use fn-
vector_pthreads_mod, and linking to the library libsundials_fnvectorpthreads_mod.lib in addition to the
C library. For details on where the library and module file fnvector_pthreads_mod.mod are installed see §11.

6.8 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating ownership
of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunbooleantype own_parvector;
sunrealtype *data;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to be included when using this module is nvector_parhyp.h. The installed module library to link to
is libsundials_nvecparhyp.lib where .lib is typically .so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member variables.
Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

6.8.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in §6.2 except for N_VSe-
tArrayPointer() and N_VGetArrayPointer() because accessing raw vector data is handled by low-level HYPRE
functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When access to raw vector
data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to access the data. Usage
examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph.c example programs for CVODE and the
ark_diurnal_kry_ph.c example program for ARKODE.

The names of parhyp methods are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional user-
callable routines:

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp(hypre_ParVector *x, SUNContext sunctx)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v)
This function returns a pointer to the underlying HYPRE vector.
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void N_VPrint_ParHyp(N_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_ParHyp()will
have the default settings for the NVECTOR_PARHYP module.

SUNErrCode N_VEnableFusedOps_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parhyp vector. The return value is a SUNErrCode.
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Notes

• When there is a need to access components of an N_Vector_ParHyp v, it is recommended to extract the HYPRE
vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate HYPRE func-
tions.

• N_VNewEmpty_ParHyp(), and N_VMake_ParHyp() set the field
own_parvector to SUNFALSE. The implementation of N_VDestroy()will not attempt to delete an underly-
ing HYPRE vector for any N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s
responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.9 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an MPI
communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_petsc.h. The installed module library to link to
is libsundials_nvecpetsc.lib where .lib is typically .so for shared libraries and .a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member variables.
Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

6.9.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in §6.2 except for N_VGe-
tArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used with SUNDIALS Fortran
interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first, and then use
PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffice
_Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following additional user-callable
routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It is
used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great caution.

N_Vector N_VMake_Petsc(Vec *pvec, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.
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Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_Petsc() will
have the default settings for the NVECTOR_PETSC module.

SUNErrCode N_VEnableFusedOps_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the PETSc vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Petsc v, it is recommended to extract the PETSc
vector via x_vec = N_VGetVector_Petsc(v); and then access components using appropriate PETSc func-
tions.

• The functions N_VNewEmpty_Petsc() and N_VMake_Petsc(), set the field own_data to SUNFALSE. The im-
plementation of N_VDestroy() will not attempt to free the pointer pvec for any N_Vector with own_data set
to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, and a private data structure which holds additional members
that should not be accessed directly.

When instantiated with N_VNew_Cuda(), the underlying data will be allocated on both the host and the device. Al-
ternatively, a user can provide host and device data arrays by using the N_VMake_Cuda() constructor. To use CUDA
managed memory, the constructors N_VNewManaged_Cuda() and N_VMakeManaged_Cuda() are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWith-
MemHelp_Cuda(). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library libsundials_nveccuda.
lib. The extension, .lib, is typically .so for shared libraries and .a for static libraries.
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6.10.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indicating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in §6.2, §6.2.2,
§6.2.3, and §6.2.4, except for N_VSetArrayPointer(), and, if using unmanaged memory, N_VGetArrayPointer().
As such, this vector can only be used with SUNDIALS direct solvers and preconditioners when using managed mem-
ory. The NVECTOR_CUDA module provides separate functions to access data on the host and on the device for the
unmanaged memory use case. It also provides methods for copying from the host to the device and vice versa. Usage
examples of NVECTOR_CUDA are provided in example programs for CVODE [43].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:

N_Vector N_VNew_Cuda(sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.

N_Vector N_VNewManaged_Cuda(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Cuda(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length, SUNContext sunctx)
This function creates a new CUDA N_Vectorwhere the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Cuda(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda(sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a CUDA N_Vector with a user-supplied managed memory data array.

N_Vector N_VMakeWithManagedAllocator_Cuda(sunindextype length, void *(*allocfn)(size_t size), void
(*freefn)(void *ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to provide
a corresponding free function as well. The memory allocated by the allocator function must behave like CUDA
managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:
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void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy *stream_exec_policy,
SUNCudaExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction CUDA kernels. By default the vector is setup to use the SUNCudaThreadDirectExecPolicy
and SUNCudaBlockReduceAtomicExecPolicy. Any custom execution policy for reductions must ensure that
the grid dimensions (number of thread blocks) is a multiple of the CUDA warp size (32). See §6.10.2 below
for more information about the SUNCudaExecPolicy class. Providing NULL for an argument will result in the
default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy.
It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors

sunrealtype *N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Cuda(N_Vector v)
This function prints the content of a CUDA vector to stdout.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda() will
have the default settings for the NVECTOR_CUDA module.

SUNErrCode N_VEnableFusedOps_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the CUDA
vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableLinearSumVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the CUDA vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Cuda, v, it is recommended to use functions N_-
VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda(). However, when using managed
memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::cuda::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNCudaExecPolicy class is defined as

typedef sundials::cuda::ExecPolicy SUNCudaExecPolicy

where the sundials::cuda::ExecPolicy class is defined in the header file sundials_cuda_policies.hpp, as
follows:

class sundials::cuda::ExecPolicy

ExecPolicy(cudaStream_t stream = 0)

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)
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virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual const cudaStream_t *stream() const

virtual ExecPolicy *clone() const

ExecPolicy *clone_new_stream(cudaStream_t stream) const

virtual bool atomic() const

virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::cuda::ThreadDirectExecPolicy (aka in the global
namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, cudaStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t /*numWorkUnits*/ = 0, size_t /*gridDim*/ = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

In total, SUNDIALS provides 3 execution policies:

SUNCudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a CUDA stream is provided, it will be used to execute the kernel.
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SUNCudaGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a CUDA stream is provided, it
will be used to execute the kernel.

SUNCudaBlockReduceExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim)
can be set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a CUDA stream is provided, it will be used to execute
the kernel.

SUNCudaBlockReduceAtomicExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a CUDA stream is provided,
it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate(&stream);
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.11 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library [2]. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are already
familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The vector
content layout is as follows:

struct _N_VectorContent_Hip
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. it is in charge
of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy implementations
that control how the HIP kernels are launched for streaming and reduction vector kernels, and a private data structure
which holds additional members that should not be accessed directly.
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When instantiated with N_VNew_Hip(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Hip() constructor. To use managed
memory, the constructors N_VNewManaged_Hip() and N_VMakeManaged_Hip() are provided. Additionally, a user-
defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWithMemHelp_-
Hip(). Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library libsundials_nvechip.lib.
The extension, .lib, is typically .so for shared libraries and .a for static libraries.

6.11.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Hip(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Hip(N_Vector v)
This function returns a boolean flag indicating if the vector data array is in managed memory or not.

The NVECTOR_HIP module defines implementations of all standard vector operations defined in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VSetArrayPointer(). The names of vector operations are obtained from those in §6.2,
§6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Hip (e.g. N_VDestroy_Hip). The module NVECTOR_HIP pro-
vides the following additional user-callable routines:

N_Vector N_VNew_Hip(sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both the
host and device.

N_Vector N_VNewManaged_Hip(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Hip(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new HIP N_Vectorwith a user-supplied SUNMemoryHelper for allocating/freeing mem-
ory.

N_Vector N_VNewEmpty_Hip(sunindextype vec_length, SUNContext sunctx)
This function creates a new HIP N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Hip(sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a HIP N_Vector with a user-supplied managed memory data array.

The module NVECTOR_HIP also provides the following user-callable routines:

void N_VSetKernelExecPolicy_Hip(N_Vector v, SUNHipExecPolicy *stream_exec_policy, SUNHipExecPolicy
*reduce_exec_policy)
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This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction HIP kernels. By default the vector is setup to use the SUNHipThreadDirectExecPolicy()
and SUNHipBlockReduceExecPolicy(). Any custom execution policy for reductions must ensure that the grid
dimensions (number of thread blocks) is a multiple of the HIP warp size (32 for NVIDIA GPUs, 64 for AMD
GPUs). See §6.11.2 below for more information about the SUNHipExecPolicy class. Providing NULL for an
argument will result in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy.
It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors*

sunrealtype *N_VCopyToDevice_Hip(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Hip(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Hip(N_Vector v)
This function prints the content of a HIP vector to stdout.

void N_VPrintFile_Hip(N_Vector v, FILE *outfile)
This function prints the content of a HIP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip(), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Hip()will have
the default settings for the NVECTOR_HIP module.

SUNErrCode N_VEnableFusedOps_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableScaleVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the HIP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the HIP vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an N_Vector_Hip, v, it is recommended to use functions N_-
VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when using managed
memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one N_-
Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.11.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::hip::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNHipExecPolicy class is defined as

typedef sundials::hip::ExecPolicy SUNHipExecPolicy

where the sundials::hip::ExecPolicy class is defined in the header file sundials_hip_policies.hpp, as fol-
lows:

class sundials::hip::ExecPolicy

ExecPolicy(hipStream_t stream = 0)

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual const hipStream_t *stream() const

6.11. The NVECTOR_HIP Module 237



User Documentation for IDAS, v6.3.0

virtual ExecPolicy *clone() const

ExecPolicy *clone_new_stream(hipStream_t stream) const

virtual bool atomic() const

virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::hip::ThreadDirectExecPolicy (aka in the global
namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, hipStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t /*numWorkUnits*/ = 0, size_t /*gridDim*/ = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

In total, SUNDIALS provides 4 execution policies:

SUNHipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a HIP stream is provided, it will be used to execute the kernel.

SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a HIP stream is provided, it will
be used to execute the kernel.
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SUNHipBlockReduceExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can
be set to any value greater than 0. If it is set to 0, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a HIP stream is provided, it will be used to execute
the kernel.

SUNHipBlockReduceAtomicExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
Is for kernels performing a reduction across individual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a HIP stream is provided, it
will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&stream);
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer. At
present the only supported SYCL compiler is the DPC++ (Intel oneAPI) compiler. This module allows for SUNDIALS
vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with SYCL and
GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl
{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl::queue* queue;
void* priv; /* 'private' data */

};

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Sycl(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Sycl() constructor. To use managed
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(shared) memory, the constructors N_VNewManaged_Sycl() and N_VMakeManaged_Sycl() are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewWith-
MemHelp_Sycl(). Details on each of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to link to is libsundi-
als_nvecsycl.lib. The extension .lib is typically .so for shared libraries .a for static libraries.

6.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and §6.2.4,
except for N_VDotProdMulti(), N_VWrmsNormVectorArray(), N_VWrmsNormMaskVectorArray() as support for
arrays of reduction vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementa-
tion in the future. The names of vector operations are obtained from those in the aforementioned sections by appending
the suffix _Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:

N_Vector N_VNew_Sycl(sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.

N_Vector N_VNewManaged_Sycl(sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)
This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in man-
aged (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Sycl(sunindextype length, sunrealtype *h_vdata, sunrealtype *d_vdata, sycl::queue *Q,
SUNContext sunctx)

This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl(sunindextype length, sunrealtype *vdata, sycl::queue *Q, SUNContext sunctx)
This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, sycl::queue *Q, SUNContext sunctx)

This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host and device and
copying data between the two memory spaces. Note the generic NVECTOR operations N_VGetArrayPointer() and
N_VSetArrayPointer() are mapped to the corresponding HostArray functions given below. To ensure memory
coherency, a user will need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host
and device, unless managed (shared) memory is used.

sunrealtype *N_VGetHostArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector host data array.

sunrealtype *N_VGetDeviceArrayPointer_Sycl(N_Vector v)
This function returns a pointer to the vector device data array.
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void N_VSetHostArrayPointer_Sycl(sunrealtype *h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.

void N_VSetDeviceArrayPointer_Sycl(sunrealtype *d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.

void N_VCopyToDevice_Sycl(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Sycl(N_Vector v)
This function copies vector data from the device to the host.

sunbooleantype N_VIsManagedMemory_Sycl(N_Vector v)
This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it returns
SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on a
device.

SUNErrCode N_VSetKernelExecPolicy_Sycl(N_Vector v, SUNSyclExecPolicy *stream_exec_policy,
SUNSyclExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction kernels. By default the vector is setup to use the SUNSyclThreadDirectExecPolicy() and
SUNSyclBlockReduceExecPolicy(). See §6.12.2 below for more information about the SUNSyclExecPol-
icy class.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any sub-
sequent vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is used,
a user may need to call N_VCopyFromDevice_Sycl() to ensure consistency between the host and device array.

void N_VPrint_Sycl(N_Vector v)
This function prints the host data array to stdout.

void N_VPrintFile_Sycl(N_Vector v, FILE *outfile)
This function prints the host data array to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To ensure
consistency across vectors it is recommended to first create a vector with one of the above constructors, enable/disable
the desired operations on that vector with the functions below, and then use this vector in conjunction with N_VClone()
to create any additional vectors. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created by any
of the constructors above will have the default settings for the NVECTOR_SYCL module.

SUNErrCode N_VEnableFusedOps_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableLinearCombination_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the SYCL
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the SYCL vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the SYCL
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the SYCL vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Sycl(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the SYCL vector. The return value is a SUNErrCode.

Notes

• When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use N_VGetDe-
viceArrayPointer() to access the device array or N_VGetArrayPointer() for the host array. When using
managed (shared) memory, either function may be used. To ensure memory coherency, a user may need to call
the CopyTo or CopyFrom functions as necessary to transfer data between the host and device, unless managed
(shared) memory is used.

• To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials::sycl::ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNSyclExecPolicy class is defined as

typedef sundials::sycl::ExecPolicy SUNSyclExecPolicy

where the sundials::sycl::ExecPolicy class is defined in the header file sundials_sycl_policies.hpp, as
follows:

class sundials::sycl::ExecPolicy

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0)
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virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0)

virtual ExecPolicy *clone() const

virtual ~ExecPolicy()

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors. In
the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per group).
The gridSize is the number of local work groups so the global work-group range in a one-dimensional nd_range is
blockSize * gridSize (total number of threads). All vector kernels are written with a many-to-one mapping where
work units (vector elements) are mapped in a round-robin manner across the global range. As such, the blockSize
and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials::sycl::ThreadDirectExecPolicy (aka in the global
namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)

{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)

{}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const
{
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{
return blockDim_;

}

virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));

}

private:
const size_t blockDim_;

};

SUNDIALS provides the following execution policies:

SUNSyclThreadDirectExecPolicy(const size_t blockDim)
Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread). Based on the local work-group range (number of threads per group, blockSize) the
number of local work-groups (gridSize) is computed so there are enough work-items in the global
work-group range ( total number of threads, blockSize * gridSize) for one work unit per work-
item (thread).
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SUNSyclGridStrideExecPolicy(const size_t blockDim, const size_t gridDim)
Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value. In
this case the global work-group range (total number of threads, blockSize * gridSize) may be
less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy(const size_t blockDim)
Is for kernels performing a reduction, the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value or the
gridSize may be set to 0 in which case the global range is chosen so that there are enough threads
for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduce-
ExecPolicywhere the default blockDim is determined by querying the device for the max_work_group_size. User
may specify different policies by constructing a new SyclExecPolicy and attaching it with N_VSetKernelExecPol-
icy_Sycl(). For example, a policy that uses 128 work-items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length, SUNContext sunctx);
SUNSyclThreadDirectExecPolicy thread_direct(128);
SUNSyclBlockReduceExecPolicy block_reduce(128);
flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.13 The NVECTOR_RAJA Module

The NVECTOR_RAJA module is an experimental NVECTOR implementation using the RAJA hardware abstraction
layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD, NVIDIA, or Intel GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building this
vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environment, the
AMD ROCm HIP programming environment, or a compiler that supports the SYCL abstraction layer. When using the
AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can select which backend to compile
with by setting the SUNDIALS_RAJA_BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the CUDA,
HIP, and SYCL backends, RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not
used in this SUNDIALS release.

The vector content layout is as follows:

struct _N_VectorContent_Raja
{
sunindextype length;
sunbooleantype own_data;
sunrealtype* host_data;
sunrealtype* device_data;
void* priv; /* 'private' data */

};

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja(), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Raja() constructor. To use managed
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memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided. Details on each of
these constructors are provided below.

The header file to include when using this is nvector_raja.h. The installed module library to link to is libsun-
dials_nveccudaraja.lib when using the CUDA backend, libsundials_nvechipraja.lib when using the HIP
backend, and libsundials_nvecsyclraja.lib when using the SYCL backend. The extension .lib is typically
.so for shared libraries .a for static libraries.

6.13.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunrealtype *N_VGetHostArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Raja(N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and
§6.2.4, except for N_VDotProdMulti(), N_VWrmsNormVectorArray(), and N_VWrmsNormMaskVectorArray() as
support for arrays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVEC-
TOR_RAJA implementation in the future. Additionally, the operations N_VGetArrayPointer() and N_VSetArray-
Pointer() are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS direct
solvers and preconditioners. The NVECTOR_RAJA module provides separate functions to access data on the host and
on the device. It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_RAJA are provided in some example programs for CVODE [43].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Raja
(e.g. N_VDestroy_Raja). The module NVECTOR_RAJA provides the following additional user-callable routines:

N_Vector N_VNew_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.

N_Vector N_VNewManaged_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VMake_Raja(sunindextype length, sunrealtype *h_data, sunrealtype *v_data, SUNContext sunctx)
This function creates an NVECTOR_RAJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.

N_Vector N_VMakeManaged_Raja(sunindextype length, sunrealtype *vdata, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.

N_Vector N_VNewWithMemHelp_Raja(sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)

This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.
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N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.

void N_VCopyToDevice_Raja(N_Vector v)
This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja(), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja() will
have the default settings for the NVECTOR_RAJA module.

SUNErrCode N_VEnableFusedOps_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the RAJA
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the RAJA vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the RAJA vector. The return value is a SUNErrCode.

Notes
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• When there is a need to access components of an NVECTOR_RAJA vector, it is recommended to use func-
tions N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when using
managed memory, the function N_VGetArrayPointer() may also be used.

• To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.14 The NVECTOR_KOKKOS Module

Added in version 6.4.0.

The NVECTOR_KOKKOS N_Vector implementation provides a vector data structure using Kokkos [32, 64] to sup-
port a variety of backends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library,
the module is also written in modern C++ (it requires C++14) as a header only library. To utilize this N_Vector
users will need to include nvector/nvector_kokkos.hpp. More instructions on building SUNDIALS with Kokkos
enabled are given in §11.3.22. For instructions on building and using Kokkos, refer to the Kokkos documentation.

6.14.1 Using NVECTOR_KOKKOS

The NVECTOR_KOKKOS module is defined by the Vector templated class in the sundials::kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>

class Vector : public sundials::impl::BaseNVector,
public sundials::ConvertibleTo<N_Vector>

To use the NVECTOR_KOKKOS module, we construct an instance of the Vector class e.g.,

// Vector with extent length using the default execution space
sundials::kokkos::Vector<> x{length, sunctx};

// Vector with extent length using the Cuda execution space
sundials::kokkos::Vector<Kokkos::Cuda> x{length, sunctx};

// Vector based on an existing Kokkos::View
Kokkos::View<> view{"a view", length};
sundials::kokkos::Vector<> x{view, sunctx};

// Vector based on an existing Kokkos::View for device and host
Kokkos::View<Kokkos::Cuda> device_view{"a view", length};
Kokkos::View<Kokkos::HostMirror> host_view{Kokkos::create_mirror_view(device_view)};
sundials::kokkos::Vector<> x{device_view, host_view, sunctx};

Instances of the Vector class are implicitly or explicitly (using the Convert() method) convertible to a N_Vector
e.g.,

sundials::kokkos::Vector<> x{length, sunctx};
N_Vector x2 = x; // implicit conversion to N_Vector
N_Vector x3 = x.Convert(); // explicit conversion to N_Vector
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No further interaction with a Vector is required from this point, and it is possible to use the N_Vector API to operate
on x2 or x3.

Warning

N_VDestroy() should never be called on a N_Vector that was created via conversion from a sundi-
als::kokkos::Vector. Doing so may result in a double free.

The underlying Vector can be extracted from a N_Vector using GetVec() e.g.,

auto x_vec = GetVec<>(x3);

6.14.2 NVECTOR_KOKKOS API

In this section we list the public API of the sundials::kokkos::Vector class.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = class
ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector, public sundials::ConvertibleTo<N_Vector>

using view_type = Kokkos::View<sunrealtype*, MemorySpace>;

using size_type = typename view_type::size_type;

using host_view_type = typename view_type::HostMirror;

using memory_space = MemorySpace;

using exec_space = typename MemorySpace::execution_space;

using range_policy = Kokkos::RangePolicy<exec_space>;

Vector() = default
Default constructor – the vector must be copied or moved to.

Vector(size_type length, SUNContext sunctx)
Constructs a single Vector which is based on a 1D Kokkos::View with the ExecutionSpace and Memo-
rySpace provided as template arguments.

Parameters

• length – length of the vector (i.e., the extent of the View)

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(view_type view, SUNContext sunctx)
Constructs a single Vector from an existing Kokkos::View. The View ExecutionSpace and MemoryS-
pace must match the ExecutionSpace and MemorySpace provided as template arguments.

Parameters

• view – A 1D Kokkos::View

• sunctx – the SUNDIALS simulation context object (SUNContext)
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Vector(view_type view, host_view_type host_view, SUNContext sunctx)
Constructs a single Vector from an existing Kokkos::View for the device and the host. The Execution-
Space and MemorySpace of the device View must match the ExecutionSpace and MemorySpace provided
as template arguments.

Parameters

• view – A 1D Kokkos::View for the device

• host_view – A 1D Kokkos::View that is a Kokkos::HostMirrror for the device view

• sunctx – the SUNDIALS simulation context object (SUNContext)

Vector(Vector &&that_vector) noexcept
Move constructor.

Vector(const Vector &that_vector)
Copy constructor. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

Vector &operator=(Vector &&rhs) noexcept
Move assignment.

Vector &operator=(const Vector &rhs)
Copy assignment. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

virtual ~Vector() = default;
Default destructor.

size_type Length()
Get the vector length i.e., extent(0).

view_type View()
Get the underlying Kokkos:View for the device.

host_view_type HostView()
Get the underlying Kokkos:View for the host.

operator N_Vector() override
Implicit conversion to a N_Vector.

operator N_Vector() const override
Implicit conversion to a N_Vector.

N_Vector Convert() override
Explicit conversion to a N_Vector.

N_Vector Convert() const override
Explicit conversion to a N_Vector.

template<class VectorType>
inline VectorType *GetVec(N_Vector v)

Get the Vector wrapped by a N_Vector.

void CopyToDevice(N_Vector v)
Copy the data from the host view to the device view with Kokkos::deep_copy.
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void CopyFromDevice(N_Vector v)
Copy the data to the host view from the device view with Kokkos::deep_copy.

template<class VectorType>
void CopyToDevice(VectorType &v)

Copy the data from the host view to the device view with Kokkos::deep_copy.

template<class VectorType>
void CopyFromDevice(VectorType &v)

Copy the data to the host view from the device view with Kokkos::deep_copy.

6.15 The NVECTOR_OPENMPDEV Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEV implementation defines the content field of the N_Vector to be a structure containing
the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the beginning of
a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of host and device
data arrays.

struct _N_VectorContent_OpenMPDEV
{
sunindextype length;
sunbooleantype own_data;
sunrealtype *host_data;
sunrealtype *dev_data;

};

The header file to include when using this module is nvector_openmpdev.h. The installed module library to link to
is libsundials_nvecopenmpdev.lib where .lib is typically .so for shared libraries and .a for static libraries.

6.15.1 NVECTOR_OPENMPDEV accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEV vector.

NV_CONTENT_OMPDEV(v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVECTOR_OPENMPDEV
content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_OpenMPDEV)(v->content) )

NV_OWN_DATA_OMPDEV(v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first component of
the data on the host for the N_Vector v.

Implementation:
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#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )

NV_DATA_HOST_OMPDEV(v)
The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )

NV_DATA_DEV_OMPDEV(v)
The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the first compo-
nent of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV(v) = v_dev_data
sets the device component array of v to be v_dev_data by storing the pointer v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )

NV_LENGTH_OMPDEV(V)
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

6.15.2 NVECTOR_OPENMPDEV functions

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vector operations
listed in §6.2, §6.2.2, §6.2.3, and §6.2.4, except for N_VSetArrayPointer(). As such, this vector cannot be used with
the SUNDIALS direct solvers and preconditioners. It also provides methods for copying from the host to the device
and vice versa.

The names of the vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suf-
fix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEV provides the following
additional user-callable routines:

N_Vector N_VNew_OpenMPDEV(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.

N_Vector N_VNewEmpty_OpenMPDEV(sunindextype vec_length, SUNContext sunctx)
This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMPDEV(sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)

This function creates an NVECTOR_OPENMPDEV vector with user-supplied vector data arrays h_vdata and
d_vdata. This function does not allocate memory for data itself.

sunrealtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the host data array.

sunrealtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)
This function returns a pointer to the device data array.
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void N_VPrint_OpenMPDEV(N_Vector v)
This function prints the content of an NVECTOR_OPENMPDEV vector to stdout.

void N_VPrintFile_OpenMPDEV(N_Vector v, FILE *outfile)
This function prints the content of an NVECTOR_OPENMPDEV vector to outfile.

void N_VCopyToDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s host data array to the device data
array.

void N_VCopyFromDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEV module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMPDEV, enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone. This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMPDEVwill
have the default settings for the NVECTOR_OPENMPDEV module.

SUNErrCode N_VEnableFusedOps_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVECTOR_-
OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the NVECTOR_OPENMPDEV vector. The return value is a SUNErrCode.

Notes

• When looping over the components of an N_Vector v, it is most efficient to first obtain the component array via
h_data = N_VGetArrayPointer(v) for the host array or v_data = N_VGetDeviceArrayPointer(v) for
the device array, or equivalently to use the macros h_data = NV_DATA_HOST_OMPDEV(v) for the host array or
v_data = NV_DATA_DEV_OMPDEV(v) for the device array, and then access h_data[i] or v_data[i] within
the loop.

• When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

• N_VNewEmpty_OpenMPDEV() and N_VMake_OpenMPDEV() set the field own_data to SUNFALSE. The imple-
mentation of N_VDestroy() will not attempt to free the pointer data for any N_Vector with own_data set to
SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointers.

• To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

6.16 The NVECTOR_TRILINOS Module

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The interface to
Tpetra is implemented in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class. This
class simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in the content field
of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long as the N_Vector object exists.

The Tpetra vector type in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class is de-
fined as:

typedef Tpetra::Vector<sunrealtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified sunrealtype as its scalar type, int as the local ordinal type, and
sunindextype as the global ordinal type. This type definition will use Tpetra’s default node type. Available Kokkos
node types as of the Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and CUDA. The default node
type is selected when building the Kokkos package. For example, the Tpetra vector will use a CUDA node if Tpetra
was built with CUDA support and the CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module library to link to
is libsundials_nvectrilinos.lib where .lib is typically .so for shared libraries and .a for static libraries.
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6.16.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VGetArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used
with the SUNDIALS direct solvers and preconditioners. When access to raw vector data is needed, it is recommended
to extract the Trilinos Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
NVECTOR_TRILINOS are provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2 by appending the suffice _Trilinos (e.g. N_VDe-
stroy_Trilinos). Vector operations call existing Tpetra::Vectormethods when available. Vector operations spe-
cific to SUNDIALS are implemented as standalone functions in the namespace sundials::trilinos::nvector_-
tpetra::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp. The module NVECTOR_-
TRILINOS provides the following additional user-callable routines:

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v)
This C++ function takes an N_Vector as the argument and returns a reference counting pointer to the underlying
Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v)
This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a user-provided
Tpetra vector. This is a standalone function defined in the global namespace.

Notes

• The template parameter vector_type should be set as:

typedef sundials::trilinos::nvector_tpetra::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in SUNDIALS.

• When there is a need to access components of an N_Vector_Trilinos v, it is recommended to extract the
Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access components using the ap-
propriate Trilinos functions.

• The function N_VDestroy_Trilinos only deletes the N_Vector wrapper. The underlying Tpetra vector object
will exist for as long as there is at least one reference to it.

6.17 The NVECTOR_MANYVECTOR Module

The NVECTOR_MANYVECTOR module is designed to facilitate problems with an inherent data partitioning within a
computational node for the solution vector. These data partitions are entirely user-defined, through construction of dis-
tinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MANYVEC-
TOR. Two potential use cases for this flexibility include:

A. Heterogeneous computational architectures: for data partitioning between different computing resources on
a node, architecture-specific subvectors may be created for each partition. For example, a user could create
one GPU-accelerated component based on NVECTOR_CUDA, and another CPU threaded component based on
NVECTOR_OPENMP.

B. Structure of arrays (SOA) data layouts: for problems that require separate subvectors for each solution compo-
nent. For example, in an incompressible Navier-Stokes simulation, separate subvectors may be used for velocities
and pressure, which are combined together into a single NVECTOR_MANYVECTOR for the overall “solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors that imple-
ment the minimum “standard” set of operations in §6.2.1. Additionally, NVECTOR_MANYVECTOR sets no limit
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on the number of subvectors that may be attached (aside from the limitations of using sunindextype for indexing,
and standard per-node memory limitations). However, while this ostensibly supports subvectors with one entry each
(i.e., one subvector for each solution entry), we anticipate that this extreme situation will hinder performance due to
non-stride-one memory accesses and increased function call overhead. We therefore recommend a relatively coarse
partitioning of the problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MANYVECTOR. However, even at present we antici-
pate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

6.17.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure containing
the number of subvectors comprising the ManyVector, the global length of the ManyVector (including all subvectors), a
pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors
that populate subvec_array.

struct _N_VectorContent_ManyVector {
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall manyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_manyvector.h. The installed module library to link
against is libsundials_nvecmanyvector.lib where .lib is typically .so for shared libraries and .a for static
libraries.

6.17.2 NVECTOR_MANYVECTOR functions

The NVECTOR_MANYVECTOR module implements all vector operations listed in §6.2 except for N_VGetArray-
Pointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombinationVec-
torArray(). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed
according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _ManyVector (e.g. N_-
VDestroy_ManyVector). The module NVECTOR_MANYVECTOR provides the following additional user-callable
routines:

N_Vector N_VNew_ManyVector(sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)
This function creates a ManyVector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine returns NULL (e.g., a mem-
ory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §6.1.1.
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N_Vector N_VGetSubvector_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_ManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_ManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_ManyVector(sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

The function returns a SUNErrCode.

sunindextype N_VGetNumSubvectors_ManyVector(N_Vector v)
This function returns the overall number of subvectors in the ManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module, except for
N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by default. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_ManyVector(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees that the new vectors will have the same operations enabled/disabled,
since cloned vectors inherit those configuration options from the vector they are cloned from, while vectors created
with N_VNew_ManyVector() will have the default settings for the NVECTOR_MANYVECTOR module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as desired before
attaching them to the ManyVector in N_VNew_ManyVector().

SUNErrCode N_VEnableFusedOps_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the manyvec-
tor vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.
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SUNErrCode N_VEnableScaleVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the manyvector vector. The return value is a SUNErrCode.

Notes

• N_VNew_ManyVector() sets the field own_data = SUNFALSE. The ManyVector implementation of N_VDe-
stroy() will not attempt to call N_VDestroy() on any subvectors contained in the subvector array for any
N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the sub-
vectors.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MANYVECTOR implementation that
have more than one N_Vector argument do not check for consistent internal representation of these vectors. It
is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

6.18 The NVECTOR_MPIMANYVECTOR Module

The NVECTOR_MPIMANYVECTOR module is designed to facilitate problems with an inherent data partitioning
for the solution vector, and when using distributed-memory parallel architectures. As such, this implementation sup-
ports all use cases allowed by the MPI-unaware NVECTOR_MANYVECTOR implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through construction
of distinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MPI-
MANYVECTOR. Three potential use cases for this module include:

A. Heterogeneous computational architectures (single-node or multi-node): for data partitioning between different
computing resources on a node, architecture-specific subvectors may be created for each partition. For example,
a user could create one MPI-parallel component based on NVECTOR_PARALLEL, another GPU-accelerated
component based on NVECTOR_CUDA.

B. Process-based multiphysics decompositions (multi-node): for computations that combine separate MPI-based
simulations together, each subvector may reside on a different MPI communicator, and the MPIManyVector
combines these via an MPI intercommunicator that connects these distinct simulations together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for problems that require separate subvectors
for each solution component. For example, in an incompressible Navier-Stokes simulation, separate subvectors
may be used for velocities and pressure, which are combined together into a single MPIManyVector for the overall
“solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MPIMANYVECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum “standard” set of operations in §6.2.1, however significant performance benefits may be obtained
when subvectors additionally implement the optional local reduction operations listed in §6.2.4.
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Additionally, NVECTOR_MPIMANYVECTOR sets no limit on the number of subvectors that may be attached (aside
from the limitations of using sunindextype for indexing, and standard per-node memory limitations). However, while
this ostensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we anticipate that
this extreme situation will hinder performance due to non-stride-one memory accesses and increased function call
overhead. We therefore recommend a relatively coarse partitioning of the problem, although actual performance will
likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MPIMANYVECTOR. However, even at present we an-
ticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

6.18.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANYVECTOR implementation defines the content field of N_Vector to be a structure con-
taining the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number of subvectors comprising
the MPIManyVector, the global length of the MPIManyVector (including all subvectors on all MPI ranks), a pointer
to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors that
populate subvec_array.

struct _N_VectorContent_MPIManyVector {
MPI_Comm comm; /* overall MPI communicator */
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall mpimanyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array */
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_mpimanyvector.h. The installed module library to
link against is libsundials_nvecmpimanyvector.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Note

If SUNDIALS is configured with MPI disabled, then the MPIManyVector library will not be built. Furthermore, any
user codes that include nvector_mpimanyvector.hmust be compiled using an MPI-aware compiler (whether the
specific user code utilizes MPI or not). We note that the NVECTOR_MANYVECTOR implementation is designed
for ManyVector use cases in an MPI-unaware environment.

6.18.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR_MPIMANYVECTOR module implements all vector operations listed in §6.2, except for N_VGetAr-
rayPointer(), N_VSetArrayPointer(), N_VScaleAddMultiVectorArray(), and N_VLinearCombination-
VectorArray(). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. In-
stead, the NVECTOR_MPIMANYVECTOR module provides functions to access subvectors, whose data may in turn
be accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _MPIManyVector (e.g. N_-
VDestroy_MPIManyVector). The module NVECTOR_MPIMANYVECTOR provides the following additional user-
callable routines:
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N_Vector N_VNew_MPIManyVector(sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)
This function creates a MPIManyVector from a set of existing NVECTOR objects, under the requirement that
all MPI-aware subvectors use the same MPI communicator (this is checked internally). If none of the subvectors
are MPI-aware, then this may equivalently be used to describe data partitioning within a single node. We note
that this routine is designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §6.1.1.

N_Vector N_VMake_MPIManyVector(MPI_Comm comm, sunindextype num_subvectors, N_Vector *vec_array,
SUNContext sunctx)

This function creates a MPIManyVector from a set of existing NVECTOR objects, and a user-created MPI com-
municator that “connects” these subvectors. Any MPI-aware subvectors may use different MPI communicators
than the input comm. We note that this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIManyVector().

If all subvectors are MPI-unaware, then the input comm argument should be MPI_COMM_NULL, although in this
case, it would be simpler to call N_VNew_MPIManyVector() instead, or to just use the NVECTOR_MANYVEC-
TOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIManyVector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine returns NULL (e.g., if
the input vec_array is NULL).

N_Vector N_VGetSubvector_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_MPIManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_MPIManyVector(N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_MPIManyVector(sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.

The function returns a SUNErrCode.
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sunindextype N_VGetNumSubvectors_MPIManyVector(N_Vector v)
This function returns the overall number of subvectors in the MPIManyVector object.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANYVECTOR module, except
for N_VWrmsNormVectorArray() and N_VWrmsNormMaskVectorArray(), that are enabled by default. The follow-
ing additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_MPIManyVec-
tor() or N_VMake_MPIManyVector(), enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N_VClone(). This guarantees that the new vectors will have
the same operations enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew_MPIManyVector() and N_VMake_MPIManyVector() will have the
default settings for the NVECTOR_MPIMANYVECTOR module. We note that these routines do not call the corre-
sponding routines on subvectors, so those should be set up as desired before attaching them to the MPIManyVector in
N_VNew_MPIManyVector() or N_VMake_MPIManyVector().

SUNErrCode N_VEnableFusedOps_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the MPIManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the MPI-
ManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
MPIManyVector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_MPIManyVector(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the MPIManyVector vector. The return value is a SUNErrCode.

Notes

• N_VNew_MPIManyVector() and N_VMake_MPIManyVector() set the field own_data = SUNFALSE. The MPI-
ManyVector implementation of N_VDestroy() will not attempt to call N_VDestroy() on any subvectors con-
tained in the subvector array for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the subvectors.
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• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANYVECTOR implementation
that have more than one N_Vector argument do not check for consistent internal representation of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

6.19 The NVECTOR_MPIPLUSX Module

The NVECTOR_MPIPLUSX module is designed to facilitate the MPI+X paradigm, where X is some form of on-
node (local) parallelism (e.g. OpenMP, CUDA). This paradigm is becoming increasingly popular with the rise of
heterogeneous computing architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that implements the minimum
“standard” set of operations in §6.2.1. However, it is not recommended to use the NVECTOR_PARALLEL, NVEC-
TOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations underneath the NVECTOR_MPI-
PLUSX module since they already provide MPI capabilities.

6.19.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANYVECTOR. Ac-
cordingly, it adopts the same content structure as defined in §6.18.1.

The header file to include when using this module is nvector_mpiplusx.h. The installed module library to link
against is libsundials_nvecmpiplusx.lib where .lib is typically .so for shared libraries and .a for static li-
braries.

Note

If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built. Furthermore, any user
codes that include nvector_mpiplusx.h must be compiled using an MPI-aware compiler.

6.19.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in §6.2, from the NVECTOR_MPI-
MANYVECTOR (see §6.18) except for N_VGetArrayPointer(), and N_VSetArrayPointer(); the module pro-
vides its own implementation of these functions that call the local vector implementations. Therefore, the NVECTOR_-
MPIPLUSX module implements all of the operations listed in the referenced sections except for N_VScaleAddMul-
tiVectorArray(), and N_VLinearCombinationVectorArray(). Accordingly, it’s compatibility with the SUNDI-
ALS direct solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:

N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector *local_vector, SUNContext sunctx)
This function creates a MPIPlusX vector from an existing local (i.e. on node) NVECTOR object, and a user-
created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIPlusX().

This routine will copy the NVECTOR pointer to the input local_vector, so the underlying local NVECTOR
object should not be destroyed before the mpiplusx that contains it.
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Upon successful completion, the new MPIPlusX is returned; otherwise this routine returns NULL (e.g., if the
input local_vector is NULL).

N_Vector N_VGetLocalVector_MPIPlusX(N_Vector v)
This function returns the local vector underneath the MPIPlusX NVECTOR.

sunindextype N_VGetLocalLength_MPIPlusX(N_Vector v)
This function returns the local length of the vector underneath the MPIPlusX NVECTOR.

Usage:

local_length = N_VGetLocalLength_MPIPlusX(v);

sunrealtype *N_VGetArrayPointer_MPIPlusX(N_Vector v)
This function returns the data array pointer for the local vector.

If the local vector does not support the N_VGetArrayPointer() operation, then NULL is returned.

void N_VSetArrayPointer_MPIPlusX(sunrealtype *v_data, N_Vector v)
This function sets the data array pointer for the local vector if the local vector implements the N_VSetArray-
Pointer() operation.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead users should
enable/disable fused operations on the local vector.

Notes

• N_VMake_MPIPlusX() sets the field own_data = SUNFALSE and the MPIPlusX implementation of N_VDe-
stroy()will not call N_VDestroy() on the local vector. In this a case, it is the user’s responsibility to deallocate
the local vector.

• To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation that have
more than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created with
the same subvector representations.

6.20 NVECTOR Examples

There are NVECTOR examples that may be installed for eac himplementation. Each implementation makes use of the
functions in test_nvector.c. These example functions show simple usage of the NVECTOR family of functions.
The input to the examples are the vector length, number of threads (if threaded implementation), and a print timing
flag.

The following is a list of the example functions in test_nvector.c:

• Test_N_VClone: Creates clone of vector and checks validity of clone.

• Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.

• Test_N_VGetArrayPointer: Get array pointer.

• Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.

• Test_N_VGetLength: Compares self-reported length to calculated length.

• Test_N_VGetCommunicator: Compares self-reported communicator to the one used in constructor; or for
MPI-unaware vectors it ensures that NULL is reported.
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• Test_N_VLinearSum Case 1a: Test y = x + y

• Test_N_VLinearSum Case 1b: Test y = -x + y

• Test_N_VLinearSum Case 1c: Test y = ax + y

• Test_N_VLinearSum Case 2a: Test x = x + y

• Test_N_VLinearSum Case 2b: Test x = x - y

• Test_N_VLinearSum Case 2c: Test x = x + by

• Test_N_VLinearSum Case 3: Test z = x + y

• Test_N_VLinearSum Case 4a: Test z = x - y

• Test_N_VLinearSum Case 4b: Test z = -x + y

• Test_N_VLinearSum Case 5a: Test z = x + by

• Test_N_VLinearSum Case 5b: Test z = ax + y

• Test_N_VLinearSum Case 6a: Test z = -x + by

• Test_N_VLinearSum Case 6b: Test z = ax - y

• Test_N_VLinearSum Case 7: Test z = a(x + y)

• Test_N_VLinearSum Case 8: Test z = a(x - y)

• Test_N_VLinearSum Case 9: Test z = ax + by

• Test_N_VConst: Fill vector with constant and check result.

• Test_N_VProd: Test vector multiply: z = x * y

• Test_N_VDiv: Test vector division: z = x / y

• Test_N_VScale: Case 1: scale: x = cx

• Test_N_VScale: Case 2: copy: z = x

• Test_N_VScale: Case 3: negate: z = -x

• Test_N_VScale: Case 4: combination: z = cx

• Test_N_VAbs: Create absolute value of vector.

• Test_N_VInv: Compute z[i] = 1 / x[i]

** Test_N_VAddConst: add constant vector: z = c + x

• Test_N_VDotProd: Calculate dot product of two vectors.

• Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.

• Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

• Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square using
all elements except one.

• Test_N_VMin: Create vector, find and validate the min.

• Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test_N_VL1Norm: Create vector, find and validate the L1 norm.

• Test_N_VCompare: Compare vector with constant returning and validating comparison vector.

• Test_N_VInvTest: Test z[i] = 1 / x[i]
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• Test_N_VConstrMask: Test mask of vector x with vector c.

• Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

• Test_N_VLinearCombination: Case 1a: Test x = a x

• Test_N_VLinearCombination: Case 1b: Test z = a x

• Test_N_VLinearCombination: Case 2a: Test x = a x + b y

• Test_N_VLinearCombination: Case 2b: Test z = a x + b y

• Test_N_VLinearCombination: Case 3a: Test x = x + a y + b z

• Test_N_VLinearCombination: Case 3b: Test x = a x + b y + c z

• Test_N_VLinearCombination: Case 3c: Test w = a x + b y + c z

• Test_N_VScaleAddMulti: Case 1a: y = a x + y

• Test_N_VScaleAddMulti: Case 1b: z = a x + y

• Test_N_VScaleAddMulti: Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VScaleAddMulti: Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

• Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a vector
array.

• Test_N_VLinearSumVectorArray: Case 1: z = a x + b y

• Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]

• Test_N_VScaleVectorArray: Case 1a: y = c y

• Test_N_VScaleVectorArray: Case 1b: z = c y

• Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]

• Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]

• Test_N_VConstVectorArray: Case 1a: z = c

• Test_N_VConstVectorArray: Case 1b: Z[i] = c

• Test_N_VWrmsNormVectorArray: Case 1a: Create a vector of know values, find and validate the weighted
root mean square norm.

• Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find and
validate the weighted root mean square norm of each.

• Test_N_VWrmsNormMaskVectorArray: Case 1a: Create a vector of know values, find and validate the weighted
root mean square norm using all elements except one.

• Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each using all elements except one.

• Test_N_VScaleAddMultiVectorArray: Case 1a: y = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 1b: z = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]
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• Test_N_VScaleAddMultiVectorArray: Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VScaleAddMultiVectorArray: Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VLinearCombinationVectorArray: Case 1a: x = a x

• Test_N_VLinearCombinationVectorArray: Case 1b: z = a x

• Test_N_VLinearCombinationVectorArray: Case 2a: x = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 2b: z = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 3a: x = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 3b: w = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

• Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local portion of the
max norm.

• Test_N_VMinLocal: Create vector, find and validate the MPI task-local min.

• Test_N_VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1 norm.

• Test_N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local portion of the
weighted squared sum of two vectors.

• Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-local portion of
the weighted squared sum of two vectors, using all elements except one.

• Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

• Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector c.

• Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the MPI task-local
minimum quotient.

• Test_N_VMBufSize: Tests for accuracy in the reported buffer size.

• Test_N_VMBufPack: Tests for accuracy in the buffer packing routine.

• Test_N_VMBufUnpack: Tests for accuracy in the buffer unpacking routine.
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Chapter 7

Matrix Data Structures

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS additionally
provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to only depend on these generic matrix operations,
making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided matrix
types, SUNDIALS also provides at least two SUNLinearSolver implementations that factor these matrix objects and
use them in the solution of linear systems.

7.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS packages not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the particular
SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX module,
particularly in cases where they provide their own N_Vector and/or linear solver modules, and require matrices that
are compatible with those implementations. The generic SUNMatrix operations are described below, and descriptions
of the SUNMATRIX implementations provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type. Specif-
ically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix operations.

A SUNMatrix is a pointer to the _generic_SUNMatrix structure:

typedef struct _generic_SUNMatrix *SUNMatrix

struct _generic_SUNMatrix
The structure defining the SUNDIALS matrix class.

void *content
Pointer to matrix-specific member data

struct _generic_SUNMatrix_Ops *ops
A virtual table of matrix operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as
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struct _generic_SUNMatrix_Ops
The structure defining SUNMatrix operations.

SUNMatrix_ID (*getid)(SUNMatrix)
The function implementing SUNMatGetID()

SUNMatrix (*clone)(SUNMatrix)
The function implementing SUNMatClone()

void (*destroy)(SUNMatrix)
The function implementing SUNMatDestroy()

SUNErrCode (*zero)(SUNMatrix)
The function implementing SUNMatZero()

SUNErrCode (*copy)(SUNMatrix, SUNMatrix)
The function implementing SUNMatCopy()

SUNErrCode (*scaleadd)(sunrealtype, SUNMatrix, SUNMatrix)
The function implementing SUNMatScaleAdd()

SUNErrCode (*scaleaddi)(sunrealtype, SUNMatrix)
The function implementing SUNMatScaleAddI()

SUNErrCode (*matvecsetup)(SUNMatrix)
The function implementing SUNMatMatvecSetup()

SUNErrCode (*matvec)(SUNMatrix, N_Vector, N_Vector)
The function implementing SUNMatMatvec()

SUNErrCode (*mathermitiantransposevec)(SUNMatrix, N_Vector, N_Vector)
The function implementing SUNMatHermitianTransposeVec()

Added in version 7.3.0.

SUNErrCode (*space)(SUNMatrix, long int*, long int*)
The function implementing SUNMatSpace()

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

SUNErrCode SUNMatZero(SUNMatrix A)
{
return(A->ops->zero(A));

}

§7.2 contains a complete list of all matrix operations defined by the generic SUNMATRIX module. A particular
implementation of the SUNMATRIX module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
package and/or linear solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same code.
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• Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with the
new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides three utility func-
tions SUNMatNewEmpty(), SUNMatCopyOps(), and SUNMatFreeEmpty(). When used in custom SUNMATRIX con-
structors and clone routines these functions will ease the introduction of any new optional matrix operations to the
SUNMATRIX API by ensuring only required operations need to be set and all operations are copied when cloning a
matrix.

SUNMatrix SUNMatNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNMatrix object and initializes its content pointer and the function
pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNMatrix object. If an error occurs when allocating the object, then
this routine will return NULL.

SUNErrCode SUNMatCopyOps(SUNMatrix A, SUNMatrix B)
This function copies the function pointers in the ops structure of A into the ops structure of B.

Arguments:

• A – the matrix to copy operations from.

• B – the matrix to copy operations to.

Return value:

• A SUNErrCode

void SUNMatFreeEmpty(SUNMatrix A)
This routine frees the generic SUNMatrix object, under the assumption that any implementation-specific data
that was allocated within the underlying content structure has already been freed. It will additionally test whether
the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• A – the SUNMatrix object to free

type SUNMatrix_ID
Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 7.1. It is recommended that a user-supplied SUNMATRIX implementation use the SUNMATRIX_-
CUSTOM identifier.
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Table 7.1: Identifiers associated with matrix kernels supplied with SUN-
DIALS

Matrix ID Matrix type
SUNMATRIX_BAND Band M ×M matrix
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix
SUNMATRIX_CUSTOM User-provided custom matrix
SUNMATRIX_DENSE Dense M ×N matrix
SUNMATRIX_GINKGO SUNMatrix wrapper for Ginkgo matrices
SUNMATRIX_MAGMADENSE Dense M ×N matrix
SUNMATRIX_ONEMKLDENSE oneMKL dense M ×N matrix
SUNMATRIX_SLUNRLOC SUNMatrix wrapper for SuperLU_DIST SuperMatrix
SUNMATRIX_SPARSE Sparse (CSR or CSC) M ×N matrix

7.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)
Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,. . . ) from the abstract SUNMatrix interface. This is used to assess compatibility with
SUNDIALS-provided linear solver implementations. Returned values are given in Table 7.1

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone(SUNMatrix A)
Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix values, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone(A);

void SUNMatDestroy(SUNMatrix A)
Destroys the SUNMatrix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy(A);

SUNErrCode SUNMatSpace(SUNMatrix A, long int *lrw, long int *liw)
Returns the storage requirements for the matrix A. lrw contains the number of sunrealtype words and liw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:
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retval = SUNMatSpace(A, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

SUNErrCode SUNMatZero(SUNMatrix A)
Zeros all entries of the SUNMatrix A. The return value denotes the success/failure of the operation:

Ai,j = 0, i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatZero(A);

SUNErrCode SUNMatCopy(SUNMatrix A, SUNMatrix B)
Performs the operation B gets A for all entries of the matrices A and B. The return value denotes the success/failure
of the operation:

Bi,j = Ai,j , i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatCopy(A,B);

SUNErrCode SUNMatScaleAdd(sunrealtype c, SUNMatrix A, SUNMatrix B)
Performs the operation A gets cA + B. The return value denotes the success/failure of the operation:

Ai,j = cAi,j +Bi,j , i = 1, . . . ,m, j = 1, . . . , n.

Usage:

retval = SUNMatScaleAdd(c, A, B);

SUNErrCode SUNMatScaleAddI(sunrealtype c, SUNMatrix A)
Performs the operation A gets cA + I. The return value denotes the success/failure of the operation:

Ai,j = cAi,j + δi,j , i, j = 1, . . . , n.

Usage:

retval = SUNMatScaleAddI(c, A);

SUNErrCode SUNMatMatvecSetup(SUNMatrix A)
Performs any setup necessary to perform a matrix-vector product. The return value denotes the success/failure
of the operation. It is useful for SUNMatrix implementations which need to prepare the matrix itself, or com-
munication structures before performing the matrix-vector product.

Usage:

retval = SUNMatMatvecSetup(A);

SUNErrCode SUNMatMatvec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y ← Ax. It should only be called with vectors x and y that are compatible
with the matrix A – both in storage type and dimensions. The return value denotes the success/failure of the
operation:

yi =

n∑
j=1

Ai,jxj , i = 1, . . . ,m.

Usage:
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retval = SUNMatMatvec(A, x, y);

SUNErrCode SUNMatHermitianTransposeVec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y ← A∗x where ∗ is the Hermitian (conjugate) transpose. It should only be
called with vectors x and y that are compatible with the matrix A∗ – both in storage type and dimensions. The
return value denotes the success/failure of the operation:

yi =

n∑
j=1

Āj,ixj , i = 1, . . . ,m.

where c̄ denotes the complex conjugate of c.

Usage:

retval = SUNMatHermitianTransposeVec(A, x, y);

7.3 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrixmodule, SUNMATRIX_DENSE, defines the content field of SUNMatrix
to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

};

These entries of the content field contain the following information:

• M - number of rows

• N - number of columns

• data - pointer to a contiguous block of sunrealtype variables. The elements of the dense matrix are stored
columnwise, i.e. the (i, j) element of a dense SUNMatrix object (with 0 ≤ i < M and 0 ≤ j < N ) may be
accessed via data[j*M+i].

• ldata - length of the data array (= M N ).

• cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array data.
The (i, j) element of a dense SUNMatrix (with 0 ≤ i < M and 0 ≤ j < N ) may be accessed may be accessed
via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D(A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix content
structure.

Implementation:
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#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

SM_ROWS_D(A)
Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_D(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_D(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

SM_COLUMNS_D(A)
Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns = SM_-
COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assignment SM_-
COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

SM_LDATA_D(A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata = SM_LDATA_-
D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment SM_LDATA_D(A)
= A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

SM_DATA_D(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data array
for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

SM_COLS_D(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers for the
dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array of A to be A_-
cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )
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SM_COLUMN_D(A)
This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A,j) sets col_j to be a pointer to the first entry of the j-th column of
theM ×N dense matrix A (with 0 ≤ j < N ). The type of the expression SM_COLUMN_D(A,j) is sunrealtype
*. The pointer returned by the call SM_COLUMN_D(A,j) can be treated as an array which is indexed from 0 to
M-1.

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

SM_ELEMENT_D(A)
This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ij and a_ij = SM_ELEMENT_D(A,i,j) reference theAi,j el-
ement of the M ×N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N ).

Implementation:

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in §7.2. Their names
are obtained from those in that section by appending the suffix _Dense (e.g. SUNMatCopy_Dense). The module
SUNMATRIX_DENSE provides the following additional user-callable routines:

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N, SUNContext sunctx)
This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

void SUNDenseMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the dense SUNMatrix.

sunrealtype *SUNDenseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the dense SUNMatrix.

sunrealtype **SUNDenseMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.

sunrealtype *SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting pointer
should be indexed over the range 0 to M-1.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SUNDenseMatrix_Data(A), or equivalently A_data =
SM_DATA_D(A), and then access A_data[i] within the loop.
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– First obtain the array of column pointers via A_cols = SUNDenseMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_D(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj = SUNDenseMatrix_Column(A,
j) and then to access the entries within that column using A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A,i,j) within a double loop.

• Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.4 The SUNMATRIX_MAGMADENSE Module

The SUNMATRIX_MAGMADENSE module interfaces to the MAGMA linear algebra library and can target
NVIDIA’s CUDA programming model or AMD’s HIP programming model [62]. All data stored by this matrix imple-
mentation resides on the GPU at all times. The implementation currently supports a standard LAPACK column-major
storage format as well as a low-storage format for block-diagonal matrices

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1


This matrix implementation is best paired with the SUNLinearSolver_MagmaDense SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix_magmadense.h. The installed library
to link to is libsundials_sunmatrixmagmadense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

7.4.1 SUNMATRIX_MAGMADENSE Functions

The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations listed in
§7.2.

• SUNMatGetID_MagmaDense – returns SUNMATRIX_MAGMADENSE

• SUNMatClone_MagmaDense

• SUNMatDestroy_MagmaDense

• SUNMatZero_MagmaDense

• SUNMatCopy_MagmaDense

• SUNMatScaleAdd_MagmaDense

• SUNMatScaleAddI_MagmaDense

• SUNMatMatvecSetup_MagmaDense

• SUNMatMatvec_MagmaDense
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• SUNMatSpace_MagmaDense

In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_MagmaDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, void *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M ×N SUNMATRIX_MAGMADENSE SUN-
Matrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_MagmaDenseBlock(sunindextype nblocks, sunindextype M_block, sunindextype N_block,
SUNMemoryType memtype, SUNMemoryHelper memhelper, void
*queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_MAGMADENSE
SUNMatrix with nblocks of size M ×N .

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – a cudaStream_t when using CUDA or a hipStream_t when using HIP.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

sunindextype SUNMatrix_MagmaDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Mblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.
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sunindextype SUNMatrix_MagmaDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

sunindextype SUNMatrix_MagmaDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_MagmaDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.
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sunrealtype **SUNMatrix_MagmaDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_MagmaDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_MagmaDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks ∗Nblock.

sunrealtype *SUNMatrix_MagmaDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.
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Note

No bounds-checking is performed by this function, k should be strictly less than nblocks and j should be
strictly less than Nblock.

SUNErrCode SUNMatrix_MagmaDense_CopyToDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

SUNErrCode SUNMatrix_MagmaDense_CopyFromDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

7.4.2 SUNMATRIX_MAGMADENSE Usage Notes

Warning

When using the SUNMATRIX_MAGMADENSE module with a SUNDIALS package (e.g. CVODE), the stream
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and the
NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization issues may
occur.

7.5 The SUNMATRIX_ONEMKLDENSE Module

The SUNMATRIX_ONEMKLDENSE module is intended for interfacing with direct linear solvers from the Intel
oneAPI Math Kernel Library (oneMKL) using the SYCL (DPC++) programming model. The implementation currently
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supports a standard LAPACK column-major storage format as well as a low-storage format for block-diagonal matrices,

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1


This matrix implementation is best paired with the SUNLinearSolver_OneMklDense linear solver.

The header file to include when using this class is sunmatrix/sunmatrix_onemkldense.h. The installed library
to link to is libsundials_sunmatrixonemkldense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNMATRIX_ONEMKLDENSE class is experimental and subject to change.

7.5.1 SUNMATRIX_ONEMKLDENSE Functions

The SUNMATRIX_ONEMKLDENSE class defines implementations of the following matrix operations listed in §7.2.

• SUNMatGetID_OneMklDense – returns SUNMATRIX_ONEMKLDENSE

• SUNMatClone_OneMklDense

• SUNMatDestroy_OneMklDense

• SUNMatZero_OneMklDense

• SUNMatCopy_OneMklDense

• SUNMatScaleAdd_OneMklDense

• SUNMatScaleAddI_OneMklDense

• SUNMatMatvec_OneMklDense

• SUNMatSpace_OneMklDense

In addition, the SUNMATRIX_ONEMKLDENSE class defines the following implementation specific functions.

7.5.1.1 Constructors

SUNMatrix SUNMatrix_OneMklDense(sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M ×N SUNMATRIX_ONEMKLDENSE SUN-
Matrix.

Arguments:

• M – the number of matrix rows.

• N – the number of matrix columns.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.
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• queue – the SYCL queue to which operations will be submitted.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_OneMklDenseBlock(sunindextype nblocks, sunindextype M_block, sunindextype
N_block, SUNMemoryType memtype, SUNMemoryHelper
memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_ONEMKLDENSE
SUNMatrix with nblocks of size Mblock ×Nblock.

Arguments:

• nblocks – the number of matrix rows.

• M_block – the number of matrix rows in each block.

• N_block – the number of matrix columns in each block.

• memtype – the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

• memhelper – the memory helper used for allocating data.

• queue – the SYCL queue to which operations will be submitted.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

7.5.1.2 Access Matrix Dimensions

sunindextype SUNMatrix_OneMklDense_Rows(SUNMatrix A)
This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Mblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_Columns(SUNMatrix A)
This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Nblock × nblocks.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.
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7.5.1.3 Access Matrix Block Dimensions

sunindextype SUNMatrix_OneMklDense_NumBlocks(SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockRows(SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockColumns(SUNMatrix A)
This function returns the number of columns in a block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

7.5.1.4 Access Matrix Data

sunindextype SUNMatrix_OneMklDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_OneMklDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• j – the column index.
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Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks ∗Nblock.

7.5.1.5 Access Matrix Block Data

sunindextype SUNMatrix_OneMklDense_BlockLData(SUNMatrix A)
This function returns the length of the SUNMatrix data array for each block of the SUNMatrix object.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array for each block otherwise SUNMATRIX_ILL_INPUT.

sunrealtype **SUNMatrix_OneMklDense_BlockData(SUNMatrix A)
This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Block(SUNMatrix A, sunindextype k)
This function returns a pointer to the data array for block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_OneMklDense_BlockColumn(SUNMatrix A, sunindextype k, sunindextype j)
This function returns a pointer to the data array for column j of block k in the SUNMatrix.

Arguments:

• A – a SUNMatrix object.

• k – the block index.

• j – the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.
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Note

No bounds-checking is performed by this function, k should be strictly less than nblocks and j should be
strictly less than Nblock.

7.5.1.6 Copy Data

SUNErrCode SUNMatrix_OneMklDense_CopyToDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data from.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

SUNErrCode SUNMatrix_OneMklDense_CopyFromDevice(SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:

• A – a SUNMatrix object

• h_data – a host array pointer to copy data to.

Return value:

• SUN_SUCCESS – if the copy is successful.

• SUN_ERR_ARG_INCOMPATIBLE – if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.

• SUN_ERR_MEM_FAIL – if the copy fails.

7.5.2 SUNMATRIX_ONEMKLDENSE Usage Notes

Warning

The SUNMATRIX_ONEMKLDENSE class only supports 64-bit indexing, thus SUNDIALS must be built for
64-bit indexing to use this class.

When using the SUNMATRIX_ONEMKLDENSE class with a SUNDIALS package (e.g. CVODE), the queue
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatMatvec() operation. If different streams are utilized, synchronization
issues may occur.

7.6 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrixmodule, SUNMATRIX_BAND, defines the content field of SUNMatrix
to be the following structure:
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struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype smu;
sunindextype ldim;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Fig. 7.1. A more complete description
of the parts of this content field is given below:

• M - number of rows

• N - number of columns (N = M)

• mu - upper half-bandwidth, 0 ≤ mu < N

• ml - lower half-bandwidth, 0 ≤ ml < N

• smu - storage upper bandwidth, mu ≤ smu < N . The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for the
band matrix. The upper triangular factorU , however, may have an upper bandwidth as big as min(N-1, mu+ml)
because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band matrix.

• ldim - leading dimension (ldim ≥ smu+ml + 1)

• data - pointer to a contiguous block of sunrealtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to ldata contiguous locations which hold the elements within the
banded matrix.

• ldata - length of the data array (= ldimN )

• cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices
from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[j][i-j+smu] is the (i, j)-th element with j −mu ≤ i ≤ j + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B(A)
This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )
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Fig. 7.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N ×N band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from 0 to N-1 and the
(i, j)-th element of A is denoted A(i,j). The greyed out areas of the underlying component storage are used by the
associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.
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SM_ROWS_B(A)
Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_B(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_B(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

SM_COLUMNS_B(A)
Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

SM_UBAND_B(A)
Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

SM_LBAND_B(A)
Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

SM_SUBAND_B(A)
Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->smu )

SM_LDIM_B(A)
Access the ldim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

SM_LDATA_B(A)
Access the ldata parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

7.6. The SUNMATRIX_BAND Module 287



User Documentation for IDAS, v6.3.0

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

SM_DATA_B(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data array
for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

SM_COLS_B(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers for the
banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array of A to be
A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

SM_COLUMN_B(A)
This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A,j) sets col_j to be a pointer to the diagonal element of the j-th
column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression SM_COLUMN_B(A,j) is
sunrealtype *. The pointer returned by the call SM_COLUMN_B(A,j) can be treated as an array which is
indexed from -mu to ml.

Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

SM_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,i,j) reference the (i, j)-
th element of the N × N band matrix A, where 0 ≤ i, j ≤ N − 1. The location (i, j) should further satisfy
j −mu ≤ i ≤ j + ml.

Implementation:

#define SM_ELEMENT_B(A,i,j) ( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )

SM_COLUMN_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij = SM_COLUMN_ELEMENT_-
B(col_j,i,j) reference the (i, j)-th entry of the band matrix A when used in conjunction with SM_COLUMN_B
to reference the j-th column through col_j. The index (i, j) should satisfy j −mu ≤ i ≤ j + ml.

Implementation:

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])
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The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Band (e.g. SUNMatCopy_Band). The module
SUNMATRIX_BAND provides the following additional user-callable routines:

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml, SUNContext sunctx)
This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, and the upper and lower half-bandwidths of the matrix, mu and ml. The stored upper bandwidth is set
to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLINSOL_LAPACK-
BAND modules.

SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu, sunindextype ml, sunindextype smu,
SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth, smu.
When creating a band SUNMatrix, this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;

• exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

• at least mu if used in some other manner.

Note

It is strongly recommended that users call the default constructor, SUNBandMatrix(), in all standard use
cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to users who
require banded matrices for non-default purposes.

void SUNBandMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNBandMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMatrix.

sunindextype SUNBandMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the banded SUNMatrix.

sunrealtype *SUNBandMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the banded SUNMatrix.
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sunrealtype **SUNBandMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMatrix.

sunrealtype *SUNBandMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The resulting
pointer should be indexed over the range -mu to ml.

Warning

When calling this function from the Fortran interfaces the shape of the array that is returned is [1], and the
only element you can (legally) access is the diagonal element. Fortran users should instead work with the
data array returned by SUNBandMatrix_Data() directly.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SUNBandMatrix_Data(A), or equivalently A_data =
SM_DATA_B(A), and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SUNBandMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_B(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj = SUNBandMatrix_Column(A,j)
and then to access the entries within that column using SM_COLUMN_ELEMENT_B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT_B(A,i,j) within a double loop.

• Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.7 The SUNMATRIX_CUSPARSE Module

The SUNMATRIX_CUSPARSE module is an interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs
[7]. All data stored by this matrix implementation resides on the GPU at all times.

The header file to be included when using this module is sunmatrix/sunmatrix_cusparse.h. The installed library
to link to is libsundials_sunmatrixcusparse.lib where .lib is typically .so for shared libraries and .a for
static libraries.

7.7.1 SUNMATRIX_CUSPARSE Description

The implementation currently supports the cuSPARSE CSR matrix format described in the cuSPARSE documentation,
as well as a unique low-storage format for block-diagonal matrices of the form

A =


A0 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1

 ,
where all the block matrices Aj share the same sparsity pattern. We will refer to this format as BCSR (not to be
confused with the canonical BSR format where each block is stored as dense). In this format, the CSR column indices
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and row pointers are only stored for the first block and are computed only as necessary for other blocks. This can
drastically reduce the amount of storage required compared to the regular CSR format when the number of blocks is
large. This format is well-suited for, and intended to be used with, the SUNLinearSolver_cuSolverSp_batchQR
linear solver (see §8.17).

The SUNMATRIX_CUSPARSE module is experimental and subject to change.

7.7.2 SUNMATRIX_CUSPARSE Functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix operations listed
in §7.2 except for the SUNMatSpace() and SUNMatMatvecSetup() operations:

• SUNMatGetID_cuSparse – returns SUNMATRIX_CUSPARSE

• SUNMatClone_cuSparse

• SUNMatDestroy_cuSparse

• SUNMatZero_cuSparse

• SUNMatCopy_cuSparse

• SUNMatScaleAdd_cuSparse – performs A = cA+B, where A and B must have the same sparsity pattern

• SUNMatScaleAddI_cuSparse – performs A = cA+ I , where the diagonal of A must be present

• SUNMatMatvec_cuSparse

In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_cuSparse_NewCSR(int M, int N, int NNZ, cusparseHandle_t cusp, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix that uses
the CSR storage format. Its arguments are the number of rows and columns of the matrix, M and N, the number
of nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

SUNMatrix SUNMatrix_cuSparse_NewBlockCSR(int nblocks, int blockrows, int blockcols, int blocknnz,
cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix object
that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block diagonal matrix where each block
shares the same sparsity pattern. The blocks must be square. The function arguments are the number of blocks,
nblocks, the number of rows, blockrows, the number of columns, blockcols, the number of nonzeros in each
each block, blocknnz, and a valid cusparseHandle_t.

Warning

The SUNMAT_CUSPARSE_BCSR format currently only supports square matrices, i.e., blockrows == block-
cols.

SUNMatrix SUNMatrix_cuSparse_MakeCSR(cusparseMatDescr_t mat_descr, int M, int N, int NNZ, int *rowptrs,
int *colind, sunrealtype *data, cusparseHandle_t cusp, SUNContext
sunctx)

This constructor function creates a SUNMATRIX_CUSPARSE SUNMatrix object from user provided pointers.
Its arguments are a cusparseMatDescr_t that must have index base CUSPARSE_INDEX_BASE_ZERO, the num-
ber of rows and columns of the matrix, M and N, the number of nonzeros to be stored in the matrix, NNZ, and a
valid cusparseHandle_t.

7.7. The SUNMATRIX_CUSPARSE Module 291



User Documentation for IDAS, v6.3.0

int SUNMatrix_cuSparse_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

int SUNMatrix_cuSparse_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

int SUNMatrix_cuSparse_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

int SUNMatrix_cuSparse_SparseType(SUNMatrix A)
This function returns the storage type (SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR) for the sparse
SUNMatrix.

sunrealtype *SUNMatrix_cuSparse_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

int *SUNMatrix_cuSparse_IndexValues(SUNMatrix A)
This function returns a pointer to the index value array for the sparse SUNMatrix – for the CSR format this is an
array of column indices for each nonzero entry. For the BCSR format this is an array of the column indices for
each nonzero entry in the first block only.

int *SUNMatrix_cuSparse_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix – for the CSR format this is
an array of the locations of the first entry of each row in the data and indexvalues arrays, for the BCSR format
this is an array of the locations of each row in the data and indexvalues arrays in the first block only.

int SUNMatrix_cuSparse_NumBlocks(SUNMatrix A)
This function returns the number of matrix blocks.

int SUNMatrix_cuSparse_BlockRows(SUNMatrix A)
This function returns the number of rows in a matrix block.

int SUNMatrix_cuSparse_BlockColumns(SUNMatrix A)
This function returns the number of columns in a matrix block.

int SUNMatrix_cuSparse_BlockNNZ(SUNMatrix A)
This function returns the number of nonzeros in each matrix block.

sunrealtype *SUNMatrix_cuSparse_BlockData(SUNMatrix A, int blockidx)
This function returns a pointer to the location in the data array where the data for the block, blockidx, begins.
Thus, blockidx must be less than SUNMatrix_cuSparse_NumBlocks(A). The first block in the SUNMatrix
is index 0, the second block is index 1, and so on.

cusparseMatDescr_t SUNMatrix_cuSparse_MatDescr(SUNMatrix A)
This function returns the cusparseMatDescr_t object associated with the matrix.

SUNErrCode SUNMatrix_cuSparse_CopyToDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information to the GPU device from the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_CopyFromDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information from the GPU device to the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information. Otherwise:
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• The h_data array must be at least SUNMatrix_cuSparse_NNZ(A)*sizeof(sunrealtype) bytes.

• The h_idxptrs array must be at least (SUNMatrix_cuSparse_BlockDim(A)+1)*sizeof(int) bytes.

• The h_idxvals array must be at least (SUNMatrix_cuSparse_BlockNNZ(A))*sizeof(int) bytes.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_SetFixedPattern(SUNMatrix A, sunbooleantype yesno)
This function changes the behavior of the the SUNMatZero operation on the object A. By default the matrix
sparsity pattern is not considered to be fixed, thus, the SUNMatZero operation zeros out all data array as well
as the indexvalues and indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not the indexvalues or
indexpointers arrays. Providing a value of 0 or SUNFALSE for the yesno argument is equivalent to the default
behavior.

SUNErrCode SUNMatrix_cuSparse_SetKernelExecPolicy(SUNMatrix A, SUNCudaExecPolicy *exec_policy)
This function sets the execution policies which control the kernel parameters utilized when launching the CUDA
kernels. By default the matrix is setup to use a policy which tries to leverage the structure of the matrix. See
§6.10.2 for more information about the SUNCudaExecPolicy class.

7.7.3 SUNMATRIX_CUSPARSE Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for 32-bit in-
dexing to use this module.

The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE function cus-
parseSetStream on the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE constructor.

Warning

When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.g. ARKODE), the stream
given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization issues
may occur.

7.8 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module, SUNMATRIX_SPARSE, is designed to work with either
compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
sunrealtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */

(continues on next page)
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(continued from previous page)

sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation in a sparse matrix is shown in Fig. 7.2. A more complete description
of the parts of this content field is given below:

• M - number of rows

• N - number of columns

• NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

• NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N, and
for CSR matrices NP=M. This value is set automatically at construction based the input choice for sparsetype.

• data - pointer to a contiguous block of sunrealtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

• sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

• indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if CSC)
or column indices (if CSR) of each nonzero matrix entry held in data

• indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating a
sparse SUNMatrix, based on the sparse matrix storage type.

• rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.

• colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.

• colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

• rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5× 4 matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored as a CSC matrix in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;

(continues on next page)
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(continued from previous page)

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in the
matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = M;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S(A)
This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_S(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_S(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:
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Fig. 7.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here A
is an M × N sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data and
indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column
j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1 entries; the first N denote the
starting index of each column within the indexvals and data arrays, while the final entry points one past the final
nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of data
and indexvals indicate extra allocated space.
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#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

SM_COLUMNS_S(A)
Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

SM_NNZ_S(A)
Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

SM_NP_S(A)
Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

SM_SPARSETYPE_S(A)
Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

SM_DATA_S(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data array
for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

SM_INDEXVALS_S(A)
This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the array of index
values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )
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SM_INDEXPTRS_S(A)
This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the array of index
pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC formats,
respectively).

Implementation:

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Sparse (e.g. SUNMatCopy_Sparse). The
module SUNMATRIX_SPARSE provides the following additional user-callable routines:

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype, SUNContext
sunctx)

This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, sunrealtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_DENSE

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, sunrealtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX_BAND

• droptol must be non-negative

• sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNErrCode SUNSparseMatrix_Realloc(SUNMatrix A)
This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix has no wasted
space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros, indexptrs[NP]).
Returns a SUNErrCode.

SUNErrCode SUNSparseMatrix_Reallocate(SUNMatrix A, sunindextype NNZ)
Function to reallocate internal sparse matrix storage arrays so that the resulting sparse matrix has storage for a
specified number of nonzeros. Returns a SUNErrCode.

void SUNSparseMatrix_Print(SUNMatrix A, FILE *outfile)
This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.
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sunindextype SUNSparseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NP(SUNMatrix A)
This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has NP+1
entries).

int SUNSparseMatrix_SparseType(SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.

sunrealtype *SUNSparseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype *SUNSparseMatrix_IndexValues(SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix – for CSR format this is the column
index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype *SUNSparseMatrix_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix – for CSR format this is the
location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the location
of the first entry of each column.

Note

Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the matrix is
called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL, NVEC-
TOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed memory. As additional
compatible vector implementations are added to SUNDIALS, these will be included within this compatibility check.

7.9 The SUNMATRIX_SLUNRLOC Module

The SUNMATRIX_SLUNRLOC module is an interface to the SuperMatrix structure provided by the SuperLU_-
DIST sparse matrix factorization and solver library written by X. Sherry Li and collaborators [8, 37, 54, 55]. It is
designed to be used with the SuperLU_DIST SUNLinearSolver module discussed in §8.15. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {
sunbooleantype own_data;
gridinfo_t *grid;
sunindextype *row_to_proc;
pdgsmv_comm_t *gsmv_comm;
SuperMatrix *A_super;
SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

• own_data – a flag which indicates if the SUNMatrix is responsible for freeing A_super

7.9. The SUNMATRIX_SLUNRLOC Module 299



User Documentation for IDAS, v6.3.0

• grid – pointer to the SuperLU_DIST structure that stores the 2D process grid

• row_to_proc – a mapping between the rows in the matrix and the process it resides on; will be NULL until the
SUNMatMatvecSetup routine is called

• gsmv_comm – pointer to the SuperLU_DIST structure that stores the communication information needed for
matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is called

• A_super – pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype =
SLU_D, Mtype = SLU_GE; must have the full diagonal present to be used with SUNMatScaleAddI routine

• ACS_super – a column-sorted version of the matrix needed to perform matrix-vector multiplication; will be
NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed module
library to link to is libsundials_sunmatrixslunrloc .lib where .lib is typically .so for shared libraries and .a for
static libraries.

7.9.1 SUNMATRIX_SLUNRLOC Functions

The SUNMATRIX_SLUNRLOC module provides the following user-callable routines:

SUNMatrix SUNMatrix_SLUNRloc(SuperMatrix *Asuper, gridinfo_t *grid, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNMATRIX_SLUNRLOC object. Its arguments
are a fully-allocated SuperLU_DIST SuperMatrixwith Stype = SLU_NR_loc, Dtype = SLU_D, Mtype =
SLU_GE and an initialized SuperLU_DIST 2D process grid structure. It returns a SUNMatrix object if Asuper
is compatible else it returns NULL.

void SUNMatrix_SLUNRloc_Print(SUNMatrix A, FILE *fp)
This function prints the underlying SuperMatrix content. It is useful for debugging. Its arguments are the
SUNMatrix object and a FILE pointer to print to. It returns void.

SuperMatrix *SUNMatrix_SLUNRloc_SuperMatrix(SUNMatrix A)
This function returns the underlying SuperMatrix of A. Its only argument is the SUNMatrix object to access.

gridinfo_t *SUNMatrix_SLUNRloc_ProcessGrid(SUNMatrix A)
This function returns the SuperLU_DIST 2D process grid associated with A. Its only argument is the SUNMatrix
object to access.

sunbooleantype SUNMatrix_SLUNRloc_OwnData(SUNMatrix A)
This function returns true if the SUNMatrix object is responsible for freeing the underlying SuperMatrix, oth-
erwise it returns false. Its only argument is the SUNMatrix object to access.

The SUNMATRIX_SLUNRLOC module also defines implementations of all generic SUNMatrix operations listed in
§7.2:

• SUNMatGetID_SLUNRloc – returns SUNMATRIX_SLUNRLOC

• SUNMatClone_SLUNRloc

• SUNMatDestroy_SLUNRloc

• SUNMatSpace_SLUNRloc – this only returns information for the storage within the matrix interface, i.e. storage
for row_to_proc

• SUNMatZero_SLUNRloc

• SUNMatCopy_SLUNRloc

• SUNMatScaleAdd_SLUNRloc – performs A = cA+B, where A and B must have the same sparsity pattern
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• SUNMatScaleAddI_SLUNRloc – performs A = cA+ I , where the diagonal of A must be present

• SUNMatMatvecSetup_SLUNRloc – initializes the SuperLU_DIST parallel communication structures needed to
perform a matrix-vector product; only needs to be called before the first call to SUNMatMatvec() or if the matrix
changed since the last setup

• SUNMatMatvec_SLUNRloc

7.10 The SUNMATRIX_GINKGO Module

Added in version 6.4.0.

The SUNMATRIX_GINKGO implementation of the SUNMatrixAPI provides an interface to the matrix data structure
for the Ginkgo linear algebra library [11]. Ginkgo provides several different matrix formats and linear solvers which
can run on a variety of hardware, such as NVIDIA, AMD, and Intel GPUs as well as multicore CPUs. Since Ginkgo is
a modern C++ library, SUNMATRIX_GINKGO is also written in modern C++ (it requires C++14). Unlike most other
SUNDIALS modules, it is a header only library. To use the SUNMATRIX_GINKGO SUNMatrix, users will need to
include sunmatrix/sunmatrix_ginkgo.hpp. More instructions on building SUNDIALS with Ginkgo enabled are
given in §11.3.18. For instructions on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note

It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo matrices, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS.

The SUNMATRIX_GINKGO module is defined by the sundials::ginkgo::Matrix templated class:

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>;

7.10.1 Compatible Vectors

The N_Vector to use with the SUNLINEARSOLVER_GINKGO module depends on the gko::Executor uti-
lized. That is, when using the gko::CudaExecutor you should use a CUDA capable N_Vector (e.g., §6.10),
gko::HipExecutor goes with a HIP capable N_Vector (e.g., §6.11), gko::DpcppExecutor goes with a
DPC++/SYCL capable N_Vector (e.g., §6.12), and gko::OmpExecutor goes with a CPU based N_Vector (e.g., §6.6).
Specifically, what makes a N_Vector compatible with different Ginkgo executors is where they store the data. The GPU
enabled Ginkgo executors need the data to reside on the GPU, so the N_Vectormust implement N_VGetDeviceArray-
Pointer() and keep the data in GPU memory. The CPU-only enabled Ginkgo executors (e.g, gko::OmpExecutor
and gko::ReferenceExecutor) need data to reside on the CPU and will use N_VGetArrayPointer() to access the
N_Vector data.
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7.10.2 Using SUNMATRIX_GINKGO

To use the SUNMATRIX_GINKGO module, we begin by creating an instance of a Ginkgo matrix using Ginkgo’s API.
For example, below we create a Ginkgo sparse matrix that uses the CSR storage format and then fill the diagonal of the
matrix with ones to make an identity matrix:

auto gko_matrix{gko::matrix::Csr<sunrealtype, sunindextype>::create(gko_exec, matrix_dim)};
gko_matrix->read(gko::matrix_data<sunrealtype, sunindextype>::diag(matrix_dim, 1.0));

After we have a Ginkgo matrix object, we wrap it in an instance of the sundials::ginkgo::Matrix class. This
object can be provided to other SUNDIALS functions that expect a SUNMatrix object via implicit conversion, or the
Convert() method:

sundials::ginkgo::Matrix<gko::matrix::Csr> matrix{gko_matrix, sunctx};
SUNMatrix I1 = matrix.Convert(); // explicit conversion to SUNMatrix
SUNMatrix I2 = matrix; // implicit conversion to SUNMatrix

No further interaction with matrix is required from this point, and it is possible to to use the SUNMatrixAPI operating
on I1 or I2 (or if needed, via Ginkgo operations on gko_matrix).

Warning

SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a sundi-
als::ginkgo::Matrix. Doing so may result in a double free.

7.10.3 SUNMATRIX_GINKGO API

In this section we list the public API of the sundials::ginkgo::Matrix class.

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

Matrix() = default
Default constructor - means the matrix must be copied or moved to.

Matrix(std::shared_ptr<GkoMatType> gko_mat, SUNContext sunctx)
Constructs a Matrix from an existing Ginkgo matrix object.

Parameters

• gko_mat – A Ginkgo matrix object

• sunctx – The SUNDIALS simulation context object (SUNContext)

Matrix(Matrix &&that_matrix) noexcept
Move constructor.

Matrix(const Matrix &that_matrix)
Copy constructor (performs a deep copy).

Matrix &operator=(Matrix &&rhs) noexcept
Move assignment.

Matrix &operator=(const Matrix &rhs)
Copy assignment clones the gko::matrix and SUNMatrix. This is a deep copy (i.e. a new data array is
created).
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virtual ~Matrix() = default;
Default destructor.

std::shared_ptr<GkoMatType> GkoMtx() const
Get the underlying Ginkgo matrix object.

std::shared_ptr<const gko::Executor> GkoExec() const
Get the gko::Executor associated with the Ginkgo matrix.

const gko::dim<2> &GkoSize() const
Get the size, i.e. gko::dim, for the Ginkgo matrix.

operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.

7.11 The SUNMATRIX_KOKKOSDENSE Module

Added in version 6.4.0.

The SUNMATRIX_KOKKOSDENSE SUNMatrix implementation provides a data structure for dense and dense
batched (block-diagonal) matrices using Kokkos [32, 64] and KokkosKernels [63] to support a variety of backends
including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library, the module is also writ-
ten in modern C++ (it requires C++14) as a header only library. To utilize this SUNMatrix users will need to in-
clude sunmatrix/sunmatrix_kokkosdense.hpp. More instructions on building SUNDIALS with Kokkos and
KokkosKernels enabled are given in §11.3.23. For instructions on building and using Kokkos and KokkosKernels,
refer to the Kokkos and KokkosKernels. documentation.

7.11.1 Using SUNMATRIX_KOKKOSDENSE

The SUNMATRIX_KOKKOSDENSE module is defined by the DenseMatrix templated class in the sundi-
als::kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>

class DenseMatrix : public sundials::impl::BaseMatrix,
public sundials::ConvertibleTo<SUNMatrix>

To use the SUNMATRIX_KOKKOSDENSE module, we begin by constructing an instance of the Kokkos dense matrix
e.g.,

// Single matrix using the default execution space
sundials::kokkos::DenseMatrix<> A{rows, cols, sunctx};

// Batched (block-diagonal) matrix using the default execution space
(continues on next page)
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(continued from previous page)

sundials::kokkos::DenseMatrix<> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space
sundials::kokkos::DenseMatrix<Kokkos::Cuda> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space and
// a non-default execution space instance
sundials::kokkos::DenseMatrix<Kokkos::Cuda> Abatch{blocks, rows, cols,

exec_space_instance,
sunctx};

Instances of the DenseMatrix class are implicitly or explicitly (using the Convert() method) convertible to a SUN-
Matrix e.g.,

sundials::kokkos::DenseMatrix<> A{rows, cols, sunctx};
SUNMatrix B = A; // implicit conversion to SUNMatrix
SUNMatrix C = A.Convert(); // explicit conversion to SUNMatrix

No further interaction with a DenseMatrix is required from this point, and it is possible to use the SUNMatrix API to
operate on B or C.

Warning

SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a sundi-
als::kokkos::DenseMatrix. Doing so may result in a double free.

The underlying DenseMatrix can be extracted from a SUNMatrix using GetDenseMat() e.g.,

auto A_dense_mat = GetDenseMat<>(A_sunmat);

The SUNMATRIX_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module (see
§6.14) and SUNLINEARSOLVER_KOKKOSDENSE linear solver module (see §8.19).

7.11.2 SUNMATRIX_KOKKOSDENSE API

In this section we list the public API of the sundials::kokkos::DenseMatrix class.

template<class ExeccutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
class DenseMatrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

using exec_space = ExecutionSpace;

using memory_space = MemorySpace;

using view_type = Kokkos::View<sunrealtype***, memory_space>;

using size_type = typename view_type::size_type;

using range_policy = Kokkos::MDRangePolicy<exec_space, Kokkos::Rank<3>>;

using team_policy = typename Kokkos::TeamPolicy<exec_space>;
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using member_type = typename Kokkos::TeamPolicy<exec_space>::member_type;

DenseMatrix() = default
Default constructor – the matrix must be copied or moved to.

DenseMatrix(size_type rows, size_type cols, SUNContext sunctx)
Constructs a single DenseMatrix using the default execution space instance.

Parameters

• rows – number of matrix rows

• cols – number of matrix columns

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type rows, size_type cols, exec_space ex, SUNContext sunctx)
Constructs a single DenseMatrix using the provided execution space instance.

Parameters

• rows – number of matrix rows

• cols – number of matrix columns

• ex – an execution space

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, SUNContext sunctx)
Constructs a batched (block-diagonal) DenseMatrix using the default execution space instance.

Parameters

• blocks – number of matrix blocks

• block_rows – number of rows in a block

• block_cols – number of columns in a block

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, exec_space ex, SUNContext
sunctx)

Constructs a batched (block-diagonal) DenseMatrix using the provided execution space instance.

Parameters

• blocks – number of matrix blocks

• block_rows – number of rows in a block

• block_cols – number of columns in a block

• ex – an execution space

• sunctx – the SUNDIALS simulation context object (SUNContext)

DenseMatrix(DenseMatrix &&that_matrix) noexcept
Move constructor.

DenseMatrix(const DenseMatrix &that_matrix)
Copy constructor. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.
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DenseMatrix &operator=(DenseMatrix &&rhs) noexcept
Move assignment.

DenseMatrix &operator=(const DenseMatrix &rhs)
Copy assignment. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

virtual ~DenseMatrix() = default;
Default destructor.

exec_space ExecSpace()
Get the execution space instance used by the matrix.

view_type View()
Get the underlying Kokkos view with extents {blocks, block_rows, block_cols}.

size_type Blocks()
Get the number of blocks i.e., extent(0).

size_type BlockRows()
Get the number of rows in a block i.e., extent(1).

size_type BlockCols()
Get the number of columns in a block i.e., extent(2).

size_type Rows()
Get the number of rows in the block-diagonal matrix i.e., extent(0) * extent(1).

size_type Cols()
Get the number of columns in the block-diagonal matrix i.e., extent(0) * extent(2).

operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
inline DenseMatrix<MatrixType> *GetDenseMat(SUNMatrix A)

Get the dense matrix wrapped by a SUNMatrix
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7.12 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation, that make use of the functions in test_-
sunmatrix.c. These example functions show simple usage of the SUNMatrix family of functions. The inputs to the
examples depend on the matrix type, and are output to stdout if the example is run without the appropriate number
of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:

• Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.

• Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

• Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I , this test clones and copies A
to a new matrix B, computes B = −B +B, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies A to a new matrix D, clones and copies I to a new matrix C,
computes D = D + I and C = C +A using SUNMatScaleAdd(), and then verifies that C = D.

• Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I , this clones and copies I to a
new matrixB, computesB = −B+I using SUNMatScaleAddI(), and verifies that the resulting matrix entries
equal 0.

• Test_SUNMatMatvecSetup: verifies that SUNMatMatvecSetup() can be called.

• Test_SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Ax, this test has dif-
ferent behavior depending on whether A is square. If it is square, it clones and copies A to a new matrix B,
computes B = 3B + I using SUNMatScaleAddI(), clones y to new vectors w and z, computes z = Bx using
SUNMatMatvec(), computes w = 3y + x using N_VLinearSum, and verifies that w == z. If A is not square,
it just clones y to a new vector z, computes :math:`z=Ax using SUNMatMatvec(), and verifies that y = z.

• Test_SUNMatSpace: verifies that SUNMatSpace() can be called, and outputs the results to stdout.

7.13 SUNMatrix functions used by IDAS

In Table 7.2, we list the matrix functions in the SUNMatrixmodule used within the IDAS package. The table also shows,
for each function, which of the code modules uses the function. The main IDAS integrator does not call any SUNMatrix
functions directly, so the table columns are specific to the IDALS and IDABBDPRE preconditioner modules. We
further note that the IDALS interface only utilizes these routines when supplied with a matrix-based linear solver, i.e.,
the SUNMatrix object passed to IDASetLinearSolver() was not NULL.

At this point, we should emphasize that the IDAS user does not need to know anything about the usage of matrix
functions by the IDAS code modules in order to use IDAS. The information is presented as an implementation detail
for the interested reader.

Table 7.2: List of matrix functions usage by IDAS code modules

IDALS IDABBDPRE
SUNMatGetID() x
SUNMatDestroy() x
SUNMatZero() x x
SUNMatSpace() †
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The matrix functions listed with a † symbol are optionally used, in that these are only called if they are implemented
in the SUNMatrix module that is being used (i.e. their function pointers are non-NULL). The matrix functions listed in
§7.1 that are not used by IDAS are: SUNMatCopy(), SUNMatClone(), SUNMatScaleAdd(), SUNMatScaleAddI()
and SUNMatMatvec(). Therefore a user-supplied SUNMatrix module for IDAS could omit these functions.

We note that the IDABBDPRE preconditioner module is hard-coded to use the SUNDIALS-supplied band SUNMatrix
type, so the most useful information above for user-supplied SUNMatrix implementations is the column relating the
IDALS requirements.
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Linear Algebraic Solvers

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinearSolver, or “SUNLinSol”, API. This allows SUNDIALS pack-
ages to utilize any valid SUNLinSol implementation that provides a set of required functions. These functions can be
divided into three categories. The first are the core linear solver functions. The second group consists of “set” routines
to supply the linear solver object with functions provided by the SUNDIALS package, or for modification of solver
parameters. The last group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the
linear solver. All of these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS N_Vector, and optionally
SUNMatrix, modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their own
N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear solvers
or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers are also
supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to balance
error between solution components and to accelerate convergence of the linear solver. To this end, instead of solving
the linear system Ax = b directly, these apply the underlying iterative algorithm to the transformed system

Ãx̃ = b̃ (8.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b,

x̃ = S2P2x,

(8.2)

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.
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SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned residual
meeting a prescribed tolerance, i.e., ∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative SUNLinSol implementation that does not support the scaling matrices S1 and S2, the
SUNDIALS packages will adjust the value of tol accordingly (see the iterative linear tolerance section that follows for
more details). In this case, they instead request that iterative linear solvers stop based on the criterion∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case may not be optimal, in that they cannot balance error
between specific entries of the solution x, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in §8.1.1 – §8.1.3. This is followed
by the definition of functions supplied to a linear solver implementation in §8.1.4. The linear solver return codes
are described in Table 8.1. The SUNLinearSolver type and the generic SUNLinSol module are defined in §8.1.6.
§8.1.8 lists the requirements for supplying a custom SUNLinSol module and discusses some intended use cases. Users
wishing to supply their own SUNLinSol module are encouraged to use the SUNLinSol implementations provided with
SUNDIALS as a template for supplying custom linear solver modules. The section that then follows describes the
SUNLinSol functions required by this SUNDIALS package, and provides additional package specific details. Then the
remaining sections of this chapter present the SUNLinSol modules provided with SUNDIALS.

8.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize this API.
These functions can be divided into three categories. The first are the core linear solver functions. The second consist
of “set” routines to supply the linear solver with functions provided by the SUNDIALS packages and to modify solver
parameters. The final group consists of “get” routines for retrieving linear solver statistics. All of these functions are
defined in the header file sundials/sundials_linearsolver.h.

8.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions: SUNLinSolGetType() returns the linear solver
type, and SUNLinSolSolve() solves the linear system Ax = b.

The remaining optional functions return the solver ID (SUNLinSolGetID()), initialize the linear solver object once all
solver-specific options have been set (SUNLinSolInitialize()), set up the linear solver object to utilize an updated
matrix A (SUNLinSolSetup()), and destroy a linear solver object (SUNLinSolFree()).

enum SUNLinearSolver_Type
An identifier indicating the type of linear solver.

Note

See §8.1.8.1 for more information on intended use cases corresponding to the linear solver type.
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enumerator SUNLINEARSOLVER_DIRECT
The linear solver requires a matrix, and computes an “exact” solution to the linear system defined by that
matrix.

enumerator SUNLINEARSOLVER_ITERATIVE
The linear solver does not require a matrix (though one may be provided), and computes an inexact solution
to the linear system using a matrix-free iterative algorithm. That is it solves the linear system defined by the
package-supplied ATimes routine (see SUNLinSolSetATimes() below), even if that linear system differs
from the one encoded in the matrix object (if one is provided). As the solver computes the solution only
inexactly (or may diverge), the linear solver should check for solution convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_ITERATIVE
The linear solver module requires a matrix, and computes an inexact solution to the linear system defined
by that matrix using an iterative algorithm. That is it solves the linear system defined by the matrix ob-
ject even if that linear system differs from that encoded by the package-supplied ATimes routine. As the
solver computes the solution only inexactly (or may diverge), the linear solver should check for solution
convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_EMBEDDED
The linear solver sets up and solves the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

SUNLinearSolver_Type SUNLinSolGetType(SUNLinearSolver LS)
Returns the SUNLinearSolver_Type type identifier for the linear solver.

Usage:

type = SUNLinSolGetType(LS);

SUNLinearSolver_ID SUNLinSolGetID(SUNLinearSolver LS)
Returns a non-negative linear solver identifier (of type int) for the linear solver LS.

Return value:

Non-negative linear solver identifier (of type int), defined by the enumeration SUNLinearSolver_-
ID, with values shown in Table 8.2 and defined in the sundials_linearsolver.h header file.

Usage:

id = SUNLinSolGetID(LS);

Note

It is recommended that a user-supplied SUNLinearSolver return the SUNLINEARSOLVER_CUSTOM identifier.

SUNErrCode SUNLinSolInitialize(SUNLinearSolver LS)
Performs linear solver initialization (assuming that all solver-specific options have been set).

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolInitialize(LS);
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int SUNLinSolSetup(SUNLinearSolver LS, SUNMatrix A)
Performs any linear solver setup needed, based on an updated system SUNMatrixA. This may be called frequently
(e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the type of integrator
and/or nonlinear solver requesting the solves.

Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 8.1.

Usage:

retval = SUNLinSolSetup(LS, A);

int SUNLinSolSolve(SUNLinearSolver LS, SUNMatrix A, N_Vector x, N_Vector b, sunrealtype tol)
This required function solves a linear system Ax = b.

Arguments:

• LS – a SUNLinSol object.

• A – a SUNMatrix object.

• x – an N_Vector object containing the initial guess for the solution of the linear system on input, and the
solution to the linear system upon return.

• b – an N_Vector object containing the linear system right-hand side.

• tol – the desired linear solver tolerance.

Return value:

Zero for a successful call, a positive value for a recoverable failure, and a negative value for an unre-
coverable failure. Ideally this should return one of the generic error codes listed in Table 8.1.

Notes:

Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore the SUN-
Matrix input A, and should rely on the matrix-vector product function supplied through the routine
SUNLinSolSetATimes().

Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or SUNLINEARSOLVER_-
MATRIX_ITERATIVE) should attempt to solve to the specified tolerance tol in a weighted 2-norm. If
the solver does not support scaling then it should just use a 2-norm.

Matrix-embedded solvers: should ignore the SUNMatrix input A as this will be NULL. It is assumed
that within this function, the solver will call interface routines from the relevant SUNDIALS package
to directly form the linear system matrix A, and then solve Ax = b before returning with the solution
x.

Usage:

retval = SUNLinSolSolve(LS, A, x, b, tol);

SUNErrCode SUNLinSolFree(SUNLinearSolver LS)
Frees memory allocated by the linear solver.

Return value:

A SUNErrCode.

Usage:
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retval = SUNLinSolFree(LS);

8.1.2 SUNLinearSolver “set” functions

The following functions supply linear solver modules with functions defined by the SUNDIALS packages and modify
solver parameters. Only the routine for setting the matrix-vector product routine is required, and even then is only
required for matrix-free linear solver modules. Otherwise, all other set functions are optional. SUNLinSol implemen-
tations that do not provide the functionality for any optional routine should leave the corresponding function pointer
NULL instead of supplying a dummy routine.

SUNErrCode SUNLinSolSetATimes(SUNLinearSolver LS, void *A_data, SUNATimesFn ATimes)
Required for matrix-free linear solvers (otherwise optional).

Provides a SUNATimesFn function pointer, as well as a void* pointer to a data structure used by this routine, to
the linear solver object LS. SUNDIALS packages call this function to set the matrix-vector product function to
either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetATimes(LS, A_data, ATimes);

SUNErrCode SUNLinSolSetPreconditioner(SUNLinearSolver LS, void *P_data, SUNPSetupFn Pset,
SUNPSolveFn Psol)

This optional routine provides SUNPSetupFn and SUNPSolveFn function pointers that implement the precon-
ditioner solves P−11 and P−12 from (8.2). This routine is called by a SUNDIALS package, which provides
translation between the generic Pset and Psol calls and the package- or user-supplied routines.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

SUNErrCode SUNLinSolSetScalingVectors(SUNLinearSolver LS, N_Vector s1, N_Vector s2)
This optional routine provides left/right scaling vectors for the linear system solve. Here, s1 and s2 are vectors of
positive scale factors containing the diagonal of the matrices S1 and S2 from (8.2), respectively. Neither vector
needs to be tested for positivity, and a NULL argument for either indicates that the corresponding scaling matrix
is the identity.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSetScalingVectors(LS, s1, s2);

SUNErrCode SUNLinSolSetZeroGuess(SUNLinearSolver LS, sunbooleantype onoff)
This optional routine indicates if the upcoming SUNLinSolSolve() call will be made with a zero initial guess
(SUNTRUE) or a non-zero initial guess (SUNFALSE).

Return value:

8.1. The SUNLinearSolver API 313



User Documentation for IDAS, v6.3.0

A SUNErrCode.

Usage:

retval = SUNLinSolSetZeroGuess(LS, onoff);

Notes:

It is assumed that the initial guess status is not retained across calls to SUNLinSolSolve(). As such,
the linear solver interfaces in each of the SUNDIALS packages call SUNLinSolSetZeroGuess()
prior to each call to SUNLinSolSolve().

8.1.3 SUNLinearSolver “get” functions

The following functions allow SUNDIALS packages to retrieve results from a linear solve. All routines are optional.

int SUNLinSolNumIters(SUNLinearSolver LS)
This optional routine should return the number of linear iterations performed in the most-recent “solve” call.

Usage:

its = SUNLinSolNumIters(LS);

sunrealtype SUNLinSolResNorm(SUNLinearSolver LS)
This optional routine should return the final residual norm from the most-recent “solve” call.

Usage:

rnorm = SUNLinSolResNorm(LS);

N_Vector SUNLinSolResid(SUNLinearSolver LS)
If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e., either the initial guess or the preconditioner is sufficiently accurate), then this
optional routine may be called by the SUNDIALS package. This routine should return the N_Vector containing
the preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid(LS);

Notes:

Since N_Vector is actually a pointer, and the results are not modified, this routine should not require
additional memory allocation. If the SUNLinSol object does not retain a vector for this purpose, then
this function pointer should be set to NULL in the implementation.

sunindextype SUNLinSolLastFlag(SUNLinearSolver LS)
This optional routine should return the last error flag encountered within the linear solver. Although not called
by the SUNDIALS packages directly, this may be called by the user to investigate linear solver issues after a
failed solve.

Usage:

lflag = SUNLinLastFlag(LS);

SUNErrCode SUNLinSolSpace(SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)
This optional routine should return the storage requirements for the linear solver LS:

314 Chapter 8. Linear Algebraic Solvers



User Documentation for IDAS, v6.3.0

• lrw is a long int containing the number of sunrealtype words

• liw is a long int containing the number of integer words.

This function is advisory only, for use by users to help determine their total space requirements.

Return value:

A SUNErrCode.

Usage:

retval = SUNLinSolSpace(LS, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

8.1.4 Functions provided by SUNDIALS packages

To interface with SUNLinSol modules, the SUNDIALS packages supply a variety of routines for evaluating the matrix-
vector product, and setting up and applying the preconditioner. These package-provided routines translate between the
user-supplied ODE, DAE, or nonlinear systems and the generic linear solver API. The function types for these routines
are defined in the header file sundials/sundials_iterative.h, and are described below.

typedef int (*SUNATimesFn)(void *A_data, N_Vector v, N_Vector z)
Computes the action of a matrix on a vector, performing the operation z ← Av. Memory for z will already be
allocated prior to calling this function. The parameter A_data is a pointer to any information about A which the
function needs in order to do its job. The vector v should be left unchanged.

Return value:

Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSetupFn)(void *P_data)
Sets up any requisite problem data in preparation for calls to the corresponding SUNPSolveFn.

Return value:

Zero for a successful call, and non-zero upon failure.

typedef int (*SUNPSolveFn)(void *P_data, N_Vector r, N_Vector z, sunrealtype tol, int lr)
Solves the preconditioner equation Pz = r for the vector z. Memory for z will already be allocated prior to
calling this function. The parameter P_data is a pointer to any information about P which the function needs in
order to do its job (set up by the corresponding SUNPSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left or right preconditioner: lr = 1 for left and lr = 2 for right. If preconditioning is on
one side only, lr can be ignored. If the preconditioner is iterative, then it should strive to solve the preconditioner
equation so that

‖Pz − r‖wrms < tol

where the error weight vector for the WRMS norm may be accessed from the main package memory structure.
The vector r should not be modified by the SUNPSolveFn.

Return value:

Zero for a successful call, a negative value for an unrecoverable failure condition, or a positive value
for a recoverable failure condition (thus the calling routine may reattempt the solution after updating
preconditioner data).
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8.1.5 SUNLinearSolver return codes

The functions provided to SUNLinSol modules by each SUNDIALS package, and functions within the SUNDIALS-
provided SUNLinSol implementations, utilize a common set of return codes, listed in Table 8.1. These adhere to a
common pattern:

• 0 indicates success

• a positive value corresponds to a recoverable failure, and

• a negative value indicates a non-recoverable failure.

Aside from this pattern, the actual values of each error code provide additional information to the user in case of a
linear solver failure.

Table 8.1: SUNLinSol error codes

Error code Value Meaning
SUN_SUCCESS 0 successful call or converged solve
SUNLS_ATIMES_NULL -804 the Atimes function is NULL
SUNLS_ATIMES_FAIL_-
UNREC

-805 an unrecoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_UN-
REC

-806 an unrecoverable failure occurred in the Pset routine

SUNLS_PSOLVE_NULL -807 the preconditioner solve function is NULL
SUNLS_PSOLVE_FAIL_-
UNREC

-808 an unrecoverable failure occurred in the Psolve routine

SUNLS_GS_FAIL -810 a failure occurred during Gram-Schmidt orthogonalization
(SPGMR/SPFGMR)

SUNLS_QRSOL_FAIL -811 a singular $R$ matrix was encountered in a QR factorization
(SPGMR/SPFGMR)

SUNLS_RES_REDUCED 801 an iterative solver reduced the residual, but did not converge to the desired
tolerance

SUNLS_CONV_FAIL 802 an iterative solver did not converge (and the residual was not reduced)
SUNLS_ATIMES_FAIL_-
REC

803 a recoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL_REC 804 a recoverable failure occurred in the Pset routine
SUNLS_PSOLVE_FAIL_-
REC

805 a recoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FAIL_-
REC

806 a recoverable failure occurred in an external linear solver package

SUNLS_QRFACT_FAIL 807 a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

SUNLS_LUFACT_FAIL 808 a singular matrix was encountered during a LU factorization
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8.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with linear solver implementations through the SUNLinearSolver class. A SUNLin-
earSolver is a pointer to the _generic_SUNLinearSolver structure:

typedef struct _generic_SUNLinearSolver *SUNLinearSolver

struct _generic_SUNLinearSolver
The structure defining the SUNDIALS linear solver class.

void *content
Pointer to the linear solver-specific member data

SUNLinearSolver_Ops ops
A virtual table of linear solver operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef struct _generic_SUNLinearSolver_Ops *SUNLinearSolver_Ops

struct _generic_SUNLinearSolver_Ops
The structure defining SUNLinearSolver operations.

SUNLinearSolver_Type (*gettype)(SUNLinearSolver)
The function implementing SUNLinSolGetType()

SUNLinearSolver_ID (*getid)(SUNLinearSolver)
The function implementing SUNLinSolGetID()

SUNErrCode (*setatimes)(SUNLinearSolver, void*, SUNATimesFn)
The function implementing SUNLinSolSetATimes()

SUNErrCode (*setpreconditioner)(SUNLinearSolver, void*, SUNPSetupFn, SUNPSolveFn)
The function implementing SUNLinSolSetPreconditioner()

SUNErrCode (*setscalingvectors)(SUNLinearSolver, N_Vector, N_Vector)
The function implementing SUNLinSolSetScalingVectors()

SUNErrCode (*setzeroguess)(SUNLinearSolver, sunbooleantype)
The function implementing SUNLinSolSetZeroGuess()

SUNErrCode (*initialize)(SUNLinearSolver)
The function implementing SUNLinSolInitialize()

int (*setup)(SUNLinearSolver, SUNMatrix)
The function implementing SUNLinSolSetup()

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector, N_Vector, sunrealtype)
The function implementing SUNLinSolSolve()

int (*numiters)(SUNLinearSolver)
The function implementing SUNLinSolNumIters()

sunrealtype (*resnorm)(SUNLinearSolver)
The function implementing SUNLinSolResNorm()
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sunindextype (*lastflag)(SUNLinearSolver)
The function implementing SUNLinSolLastFlag()

SUNErrCode (*space)(SUNLinearSolver, long int*, long int*)
The function implementing SUNLinSolSpace()

N_Vector (*resid)(SUNLinearSolver)
The function implementing SUNLinSolResid()

SUNErrCode (*free)(SUNLinearSolver)
The function implementing SUNLinSolFree()

The generic SUNLinSol class defines and implements the linear solver operations defined in §8.1.1 – §8.1.3. These
routines are in fact only wrappers to the linear solver operations defined by a particular SUNLinSol implementation,
which are accessed through the ops field of the SUNLinearSolver structure. To illustrate this point we show below the
implementation of a typical linear solver operation from the SUNLinearSolver base class, namely SUNLinSolIni-
tialize(), that initializes a SUNLinearSolver object for use after it has been created and configured, and returns a
flag denoting a successful or failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

8.1.7 Compatibility of SUNLinearSolver modules

Not all SUNLinearSolver implementations are compatible with all SUNMatrix and N_Vector implementations pro-
vided in SUNDIALS. More specifically, all of the SUNDIALS iterative linear solvers (SPGMR, SPFGMR, SPBCGS,
SPTFQMR, and PCG) are compatible with all of the SUNDIALS N_Vector modules, but the matrix-based direct
SUNLinSol modules are specifically designed to work with distinct SUNMatrix and N_Vector modules. In the list
below, we summarize the compatibility of each matrix-based SUNLinearSolvermodule with the various SUNMatrix
and N_Vector modules. For a more thorough discussion of these compatibilities, we defer to the documentation for
each individual SUNLinSol module in the sections that follow.

• Dense

– SUNMatrix: Dense or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• LapackDense

– SUNMatrix: Dense or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• Band

– SUNMatrix: Band or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• LapackBand

– SUNMatrix: Band or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• KLU

– SUNMatrix: Sparse or user-supplied
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– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• SuperLU_MT

– SUNMatrix: Sparse or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, or user-supplied

• SuperLU_Dist

– SUNMatrix: SLUNRLOC or user-supplied

– N_Vector: Serial, OpenMP, Pthreads, Parallel, *hypre*, PETSc, or user-supplied

• Magma Dense

– SUNMatrix: Magma Dense or user-supplied

– N_Vector: HIP, RAJA, or user-supplied

• OneMKL Dense

– SUNMatrix: One MKL Dense or user-supplied

– N_Vector: SYCL, RAJA, or user-supplied

• cuSolverSp batchQR

– SUNMatrix: cuSparse or user-supplied

– N_Vector: CUDA, RAJA, or user-supplied

8.1.8 Implementing a custom SUNLinearSolver module

A particular implementation of the SUNLinearSolver module must:

• Specify the content field of the SUNLinSol module.

• Define and implement the required linear solver operations.

Note

The names of these routines should be unique to that implementation in order to permit using more than one
SUNLinSol module (each with different SUNLinearSolver internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a SUNLinearSolver
with the new content field and with ops pointing to the new linear solver operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in the ops structure. This
allows the SUNDIALS package that is using the SUNLinSol object to know whether the associated functionality is
supported.

To aid in the creation of custom SUNLinearSolver modules the generic SUNLinearSolver module provides the
utility function SUNLinSolNewEmpty(). When used in custom SUNLinearSolver constructors this function will
ease the introduction of any new optional linear solver operations to the SUNLinearSolver API by ensuring that only
required operations need to be set.

SUNLinearSolver SUNLinSolNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNLinearSolver object and initializes its content pointer and the func-
tion pointers in the operations structure to NULL.

Return value:
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If successful, this function returns a SUNLinearSolver object. If an error occurs when allocating
the object, then this routine will return NULL.

void SUNLinSolFreeEmpty(SUNLinearSolver LS)
This routine frees the generic SUNLinearSolver object, under the assumption that any implementation-specific
data that was allocated within the underlying content structure has already been freed. It will additionally test
whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• LS – a SUNLinearSolver object

Additionally, a SUNLinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver, e.g., for setting
various configuration options to tune the linear solver for a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for returning various
solve statistics.

enum SUNLinearSolver_ID
Each SUNLinSol implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 8.2. It is recommended that a user-supplied SUNLinSol implementation use the SUNLINEAR-
SOLVER_CUSTOM identifier.

Table 8.2: Identifiers associated with SUNLinearSolver modules sup-
plied with SUNDIALS

SUNLinSol ID Linear solver type ID
Value

SUNLINEARSOLVER_BAND Banded direct linear solver (internal) 0
SUNLINEARSOLVER_DENSE Dense direct linear solver (internal) 1
SUNLINEARSOLVER_KLU Sparse direct linear solver (KLU) 2
SUNLINEARSOLVER_LAPACKBAND Banded direct linear solver (LAPACK) 3
SUNLINEARSOLVER_LAPACKDENSE Dense direct linear solver (LAPACK) 4
SUNLINEARSOLVER_PCG Preconditioned conjugate gradient iterative solver 5
SUNLINEARSOLVER_SPBCGS Scaled-preconditioned BiCGStab iterative solver 6
SUNLINEARSOLVER_SPFGMR Scaled-preconditioned FGMRES iterative solver 7
SUNLINEARSOLVER_SPGMR Scaled-preconditioned GMRES iterative solver 8
SUNLINEARSOLVER_SPTFQMR Scaled-preconditioned TFQMR iterative solver 9
SUNLINEARSOLVER_SUPERLUDIST Parallel sparse direct linear solver (SuperLU_Dist) 10
SUNLINEARSOLVER_SUPERLUMT Threaded sparse direct linear solver (SuperLU_-

MT)
11

SUNLINEARSOLVER_CUSOLVERSP_-
BATCHQR

Sparse direct linear solver (CUDA) 12

SUNLINEARSOLVER_MAGMADENSE Dense or block-dense direct linear solver
(MAGMA)

13

SUNLINEARSOLVER_ONEMKLDENSE Dense or block-dense direct linear solver
(OneMKL)

14

SUNLINEARSOLVER_CUSTOM User-provided custom linear solver 15
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8.1.8.1 Intended use cases

The SUNLinSol and SUNMATRIX APIs are designed to require a minimal set of routines to ease interfacing with
custom or third-party linear solver libraries. Many external solvers provide routines with similar functionality and thus
may require minimal effort to wrap within custom SUNMATRIX and SUNLinSol implementations. As SUNDIALS
packages utilize generic SUNLinSol modules they may naturally leverage user-supplied SUNLinearSolver imple-
mentations, thus there exist a wide range of possible linear solver combinations. Some intended use cases for both the
SUNDIALS-provided and user-supplied SUNLinSol modules are discussed in the sections below.

Direct linear solvers

Direct linear solver modules require a matrix and compute an “exact” solution to the linear system defined by the matrix.
SUNDIALS packages strive to amortize the high cost of matrix construction by reusing matrix information for multiple
nonlinear iterations or time steps. As a result, each package’s linear solver interface recomputes matrix information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided by, or interfaced with,
SUNDIALS can leverage this infrastructure with minimal effort. To do so, a user must implement custom SUNMA-
TRIX and SUNLinSol wrappers for the desired matrix format and/or linear solver following the APIs described in §7
and §8. This user-supplied SUNLinSol module must then self-identify as having SUNLINEARSOLVER_DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix, and instead compute an inexact solution to the linear
system defined by the package-supplied ATimes routine. SUNDIALS supplies multiple scaled, preconditioned iterative
SUNLinSol modules that support scaling, allowing packages to handle non-dimensionalization, and users to define
variables and equations as natural in their applications. However, for linear solvers that do not support left/right scaling,
SUNDIALS packages must instead adjust the tolerance supplied to the linear solver to compensate (see the iterative
linear tolerance section that follows for more details) – this strategy may be non-optimal since it cannot handle situations
where the magnitudes of different solution components or equations vary dramatically within a single application.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, SUNDIALS a user must
implement a custom SUNLinSol wrapper for the linear solver following the API described in §8. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to the linear system
defined by the matrix. This matrix will be updated infrequently and reused across multiple solves to amortize the cost
of matrix construction. As in the direct linear solver case, only thin SUNMATRIX and SUNLinSol wrappers for the
underlying matrix and linear solver structures need to be created to utilize such a linear solver. This user-supplied
SUNLinSol module must then self-identify as having SUNLINEARSOLVER_MATRIX_ITERATIVE type.

At present, SUNDIALS has one example problem that uses this approach for wrapping a structured-grid matrix, linear
solver, and preconditioner from the hypre library; this may be used as a template for other customized implementations
(see examples/arkode/CXX_parhyp/ark_heat2D_hypre.cpp).
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Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver where the matrix is purely for preconditioning and
the linear system is defined by the package-supplied ATimes routine, we envision two current possibilities.

The preferred approach is for users to employ one of the SUNDIALS scaled, preconditioned iterative linear solver
implementations (SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(), SUNLinSol_SPTFQMR(),
or SUNLinSol_PCG()) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing with
the corresponding matrix-based linear solver, can be handled through a package’s preconditioner “setup” and “solve”
functionality without creating SUNMATRIX and SUNLinSol implementations. This usage mode is recommended
primarily because the SUNDIALS-provided modules support variable and equation scaling as described above.

A second approach supported by the linear solver APIs is as follows. If the SUNLinSol implementation is matrix-
based, self-identifies as having SUNLINEARSOLVER_ITERATIVE type, and also provides a non-NULL SUNLinSolSe-
tATimes() routine, then each SUNDIALS package will call that routine to attach its package-specific matrix-vector
product routine to the SUNLinSol object. The SUNDIALS package will then call the SUNLinSol-provided SUNLin-
SolSetup() routine (infrequently) to update matrix information, but will provide current matrix-vector products to
the SUNLinSol implementation through the package-supplied SUNATimesFn routine.

Application-specific linear solvers with embedded matrix structure

Many applications can exploit additional linear system structure arising from to the implicit couplings in their model
equations. In certain circumstances, the linear solve Ax = b may be performed without the need for a global system
matrix A, as the unformed A may be block diagonal or block triangular, and thus the overall linear solve may be per-
formed through a sequence of smaller linear solves. In other circumstances, a linear system solve may be accomplished
via specialized fast solvers, such as the fast Fourier transform, fast multipole method, or treecode, in which case no
matrix structure may be explicitly necessary. In many of the above situations, construction and preprocessing of the
linear system matrixAmay be inexpensive, and thus increased performance may be possible if the current linear system
information is used within every solve (instead of being lagged, as occurs with matrix-based solvers that reuse A).

To support such application-specific situations, SUNDIALS supports user-provided linear solvers with the SUNLINEAR-
SOLVER_MATRIX_EMBEDDED type. For an application to leverage this support, it should define a custom SUNLinSol
implementation having this type, that only needs to implement the required SUNLinSolGetType() and SUNLin-
SolSolve() operations. Within SUNLinSolSolve(), the linear solver implementation should call package-specific
interface routines (e.g., ARKStepGetNonlinearSystemData, CVodeGetNonlinearSystemData, IDAGetNonlin-
earSystemData, ARKStepGetCurrentGamma, CVodeGetCurrentGamma, IDAGetCurrentCj, or MRIStepGetCur-
rentGamma) to construct the relevant system matrixA (or portions thereof), solve the linear systemAx = b, and return
the solution vector x.

We note that when attaching this custom SUNLinearSolver object with the relevant SUNDIALS package SetLinear-
Solver routine, the input SUNMatrix A should be set to NULL.

For templates of such user-provided “matrix-embedded” SUNLinSol implementations, see the SUNDIALS exam-
ples ark_analytic_mels.c, cvAnalytic_mels.c, cvsAnalytic_mels.c, idaAnalytic_mels.c, and idasAn-
alytic_mels.c.
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8.2 IDAS SUNLinearSolver interface

Table 8.3 below lists the SUNLinearSolver module linear solver functions used within the IDALS interface. As
with the SUNMatrix module, we emphasize that the IDA user does not need to know detailed usage of linear solver
functions by the IDA code modules in order to use IDA. The information is presented as an implementation detail for
the interested reader.

The linear solver functions listed below are marked with ‘x’ to indicate that they are required, or with † to indicate that
they are only called if they are non-NULL in the SUNLinearSolver implementation that is being used. Note:

1. Although IDALS does not call SUNLinSolLastFlag directly, this routine is available for users to query linear
solver issues directly.

2. Although IDALS does not call SUNLinSolFree directly, this routine should be available for users to call when
cleaning up from a simulation.

Table 8.3: List of linear solver function usage in the IDALS interface

DIRECT ITERATIVE MATRIX_ITERATIVE
SUNLinSolGetType() x x x
SUNLinSolSetATimes() † x †
SUNLinSolSetPreconditioner() † † †
SUNLinSolSetScalingVectors() † † †
SUNLinSolInitialize() x x x
SUNLinSolSetup() x x x
SUNLinSolSolve() x x x
SUNLinSolNumIters() x x
SUNLinSolResid() x x
1 SUNLinSolLastFlag()
2SUNLinSolFree()
SUNLinSolSpace() † † †

Since there are a wide range of potential SUNLinearSolver use cases, the following subsections describe some details
of the IDALS interface, in the case that interested users wish to develop custom SUNLinearSolver modules.

8.2.1 Lagged matrix information

If the SUNLinearSolver object self-identifies as having type SUNLINEARSOLVER_DIRECT or SUNLINEARSOLVER_-
MATRIX_ITERATIVE, then the SUNLinearSolver object solves a linear system defined by a SUNMatrix object. IDALS
will update the matrix information infrequently according to the strategies outlined in §2. To this end, we differentiate

between the desired linear system Jx = b with J =

(
∂F

∂y
− cj

∂F

∂ẏ

)
, and the actual linear system J̄ x̄ = b with

J̄ =
∂F̄

∂y
− c̄j

∂F̄

∂ẏ
,

where the overlines indicate the lagged versions of these numbers and matrices.

Since IDALS updates the SUNMatrix objects infrequently and it is likely that cj 6= c̄j , then typically J 6= J̄ . Thus
after calling the SUNLinearSolver-provided SUNLinSolSolve routine, we test whether

cj
c̄j
6= 1, and if this is the

case we scale the solution x̄ to correct the linear system solution x via

x =
2

1 + cj/c̄j
x̄. (8.3)
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The motivation for this selection of the scaling factor c = 2/(1 + cj/c̄j) is discussed in detail in [16, 40]. In short, if
we consider a stationary iteration for the linear system as consisting of a solve with J̄ followed by scaling by c, then
for a linear constant-coefficient problem, the error in the solution vector will be reduced at each iteration by the error
matrix E = I − cJ̄−1J , with a convergence rate given by the spectral radius of E. Assuming that stiff systems have a
spectrum spread widely over the left half-plane, c is chosen to minimize the magnitude of the eigenvalues of E.

8.2.2 Iterative linear solver tolerance

If the SUNLinearSolver object self-identifies as having type SUNLINEARSOLVER_ITERATIVE or SUNLINEAR-
SOLVER_MATRIX_ITERATIVE then IDALS will set the input tolerance delta as described in §2.2. However, if the
iterative linear solver does not support scaling matrices (i.e., the SUNLinSolSetScalingVectors routine is NULL),
then IDALS will attempt to adjust the linear solver tolerance to account for this lack of functionality. To this end, the
following assumptions are made:

1. All solution components have similar magnitude; hence the error weight vectorW used in the WRMS norm (see
§2.2) should satisfy the assumption

Wi ≈Wmean, for i = 0, . . . , n− 1.

2. The SUNLinearSolver object uses a standard 2-norm to measure convergence.

Since IDA uses identical left and right scaling matrices, S1 = S2 = S = diag(W ), then the linear solver convergence
requirement is converted as follows (using the notation from equations (8.1) – (8.2)):∥∥∥b̃− Ãx̃∥∥∥

2
< tol

⇔
∥∥SP−11 b− SP−11 Ax

∥∥
2
< tol

⇔
n−1∑
i=0

[
Wi

(
P−11 (b−Ax)

)
i

]2
< tol2

⇔ W 2
mean

n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
< tol2

⇔
n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
<

(
tol

Wmean

)2

⇔
∥∥P−11 (b−Ax)

∥∥
2
<

tol
Wmean

Therefore the tolerance scaling factor

Wmean = ‖W‖2/
√
n

is computed and the scaled tolerance delta= tol/Wmean is supplied to the SUNLinearSolver object.

8.3 The SUNLinSol_Band Module

The SUNLinSol_Band implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations (NVECTOR_-
SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).
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8.3.1 SUNLinSol_Band Usage

The header file to be included when using this module is sunlinsol/sunlinsol_band.h. The SUNLinSol_Band
module is accessible from all SUNDIALS packages without linking to the libsundials_sunlinsolband module
library.

The SUNLinSol_Band module provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Band(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a band SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size

• A – matrix used to assess compatibility

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Band object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.

8.3.2 SUNLinSol_Band Description

The SUNLinSol_Band module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU , where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND objectA, with pivoting information encoding
P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.
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• A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth ml.

The SUNLinSol_Band module defines band implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_Band

• SUNLinSolInitialize_Band – this does nothing, since all consistency checks are performed at solver creation.

• SUNLinSolSetup_Band – this performs the LU factorization.

• SUNLinSolSolve_Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Band

• SUNLinSolSpace_Band – this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

• SUNLinSolFree_Band

8.4 The SUNLinSol_Dense Module

The SUNLinSol_Dense implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

8.4.1 SUNLinSol_Dense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_dense.h. The SUNLinSol_Dense
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsoldense module
library.

The module SUNLinSol_Dense provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Dense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a dense SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_Dense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.
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8.4.2 SUNLinSol_Dense Description

The SUNLinSol_Dense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs anLU factorization with partial (row) pivoting (O(N3) cost), PA = LU , whereP is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N2) cost).

The SUNLinSol_Dense module defines dense implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_Dense

• SUNLinSolInitialize_Dense – this does nothing, since all consistency checks are performed at solver cre-
ation.

• SUNLinSolSetup_Dense – this performs the LU factorization.

• SUNLinSolSolve_Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Dense

• SUNLinSolSpace_Dense – this only returns information for the storage within the solver object, i.e. storage for
N, last_flag, and pivots.

• SUNLinSolFree_Dense

8.5 The SUNLinSol_KLU Module

The SUNLinSol_KLU implementation of the SUNLinearSolver class is designed to be used with the corresponding
SUNMATRIX_SPARSE matrix type, and one of the serial or shared-memory N_Vector implementations (NVEC-
TOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).
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8.5.1 SUNLinSol_KLU Usage

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h. The installed module library
to link to is libsundials_sunlinsolklu .lib where .lib is typically .so for shared libraries and .a for static libraries.

The module SUNLinSol_KLU provides the following additional user-callable routines:

SUNLinearSolver SUNLinSol_KLU(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_KLU object.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_KLU object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

SUNErrCode SUNLinSol_KLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic (and numeric factorization).

Arguments:

• S – existing SUNLinSol_KLU object to reinitialize.

• A – sparse SUNMatrix matrix (with updated structure) to use for reinitialization.

• nnz – maximum number of nonzeros expected for Jacobian matrix.

• reinit_type – governs the level of reinitialization. The allowed values are:

1. The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value
passed to this call. New symbolic and numeric factorizations will be completed at the next solver
setup.

2. Only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size
has not exceeded the size of nnz given in the sparse matrix provided to the original constructor
routine (or the previous SUNKLUReInit call).

Return value:

• A SUNErrCode

Notes:
This routine assumes no other changes to solver use are necessary.

SUNErrCode SUNLinSol_KLUSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve.

Arguments:

• S – existing SUNLinSol_KLU object to update.
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• ordering_choice – type of ordering to use, options are:

0. AMD,

1. COLAMD, and

2. the natural ordering.

The default is 1 for COLAMD.

Return value:

• A SUNErrCode

sun_klu_symbolic *SUNLinSol_KLUGetSymbolic(SUNLinearSolver S)
This function returns a pointer to the KLU symbolic factorization stored in the SUNLinSol_KLU content
structure.

type sun_klu_symbolic
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_symbolic when SUNDIALS is compiled with 32-bit indices

• klu_l_symbolic when SUNDIALS is compiled with 64-bit indices

sun_klu_numeric *SUNLinSol_KLUGetNumeric(SUNLinearSolver S)
This function returns a pointer to the KLU numeric factorization stored in the SUNLinSol_KLU content struc-
ture.

type sun_klu_numeric
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_numeric when SUNDIALS is compiled with 32-bit indices

• klu_l_numeric when SUNDIALS is compiled with 64-bit indices

sun_klu_common *SUNLinSol_KLUGetCommon(SUNLinearSolver S)
This function returns a pointer to the KLU common structure stored in the SUNLinSol_KLU content structure.

type sun_klu_common
This type is an alias that depends on the SUNDIALS index size, see sunindextype and SUNDIALS_-
INDEX_SIZE. It is equivalent to:

• klu_common when SUNDIALS is compiled with 32-bit indices

• klu_l_common when SUNDIALS is compiled with 64-bit indices

8.5.2 SUNLinSol_KLU Description

The SUNLinSol_KLU module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_KLU {
int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;

(continues on next page)
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(continued from previous page)

sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,
sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• symbolic - KLU storage structure for symbolic factorization components, with underlying type klu_symbolic
or klu_l_symbolic, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respec-
tively,

• numeric - KLU storage structure for numeric factorization components, with underlying type klu_numeric or
klu_l_numeric, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

• common - storage structure for common KLU solver components, with underlying type klu_common or klu_-
l_common, depending on whether SUNDIALS was installed with 32-bit versus 64-bit indices, respectively,

• klu_solver – pointer to the appropriate KLU solver function (depending on whether it is using a CSR or CSC
sparse matrix, and on whether SUNDIALS was installed with 32-bit or 64-bit indices).

The SUNLinSol_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and solver
library written by Tim Davis and collaborators ([4, 27]). In order to use the SUNLinSol_KLU interface to KLU, it
is assumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has
been configured appropriately to link with KLU (see §11.3.21 for details). Additionally, this wrapper only supports
double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have sunrealtype set
to either extended or single (see §4.1 for details). Since the KLU library supports both 32-bit and 64-bit integers,
this interface will be compiled for either of the available sunindextype options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to block
triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be factored)
to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these ordering
choices, the default value in the SUNLinSol_KLU module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that can
be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also returns
diagnostic information that a user can examine to determine if numerical stability is being lost and a full numerical
factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_KLU module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by estimates
of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these esti-
mates of the condition number are larger than ε−2/3 (where ε is the double-precision unit roundoff), then a new
factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization at
the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored KLU data structures.
We note that in this solve KLU operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.
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The SUNLinSol_KLU module defines implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_KLU

• SUNLinSolInitialize_KLU – this sets the first_factorize flag to 1, forcing both symbolic and numerical
factorizations on the subsequent “setup” call.

• SUNLinSolSetup_KLU – this performs either a LU factorization or refactorization of the input matrix.

• SUNLinSolSolve_KLU – this calls the appropriate KLU solve routine to utilize the LU factors to solve the linear
system.

• SUNLinSolLastFlag_KLU

• SUNLinSolSpace_KLU – this only returns information for the storage within the solver interface, i.e. storage for
the integers last_flag and first_factorize. For additional space requirements, see the KLU documenta-
tion.

• SUNLinSolFree_KLU

8.6 The SUNLinSol_LapackBand Module

The SUNLinSol_LapackBand implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_BAND matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS). The

8.6.1 SUNLinSol_LapackBand Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h. The installed
module library to link to is libsundials_sunlinsollapackband .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_LapackBand provides the following user-callable routine:

SUNLinearSolver SUNLinSol_LapackBand(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK band SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackBand object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the LU factorization.
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8.6.2 SUNLinSol_LapackBand Description

SUNLinSol_LapackBand module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackBand module is a SUNLinearSolver wrapper for the LAPACK band matrix factorization
and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether SUNDIALS was configured
to have sunrealtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackBand module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §11.3.24 for details). We note
that since there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be
compiled when using extended precision for sunrealtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLinSol_LapackBand module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs an LU factorization with partial (row) pivoting, PA = LU , where P is a permutation
matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND objectA, with pivoting information encoding
P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_BAND object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor L has lower
bandwidth ml.

The SUNLinSol_LapackBand module defines band implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_LapackBand

• SUNLinSolInitialize_LapackBand – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factorization.

• SUNLinSolSolve_LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and pivots array
to perform the solve.

• SUNLinSolLastFlag_LapackBand

• SUNLinSolSpace_LapackBand – this only returns information for the storage within the solver object, i.e. stor-
age for N, last_flag, and pivots.

• SUNLinSolFree_LapackBand
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8.7 The SUNLinSol_LapackDense Module

The SUNLinSol_LapackDense implementation of the SUNLinearSolver class is designed to be used with the cor-
responding SUNMATRIX_DENSE matrix type, and one of the serial or shared-memory N_Vector implementations
(NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

8.7.1 SUNLinSol_LapackDense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h. The installed
module library to link to is libsundials_sunlinsollapackdense .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_LapackDense provides the following additional user-callable constructor routine:

SUNLinearSolver SUNLinSol_LapackDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver.

Arguments:

• y – vector used to determine the linear system size.

• A – matrix used to assess compatibility.

• sunctx – the SUNContext object (see §4.2)

Return value:
New SUNLinSol_LapackDense object, or NULL if either A or y are incompatible.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

8.7.2 SUNLinSol_LapackDense Description

The SUNLinSol_LapackDense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
sunindextype last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackDense module is a SUNLinearSolver wrapper for the LAPACK dense matrix factorization
and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether SUNDIALS was configured
to have sunrealtype set to double or single, respectively (see §4.1 for details). In order to use the SUNLinSol_-
LapackDense module it is assumed that LAPACK has been installed on the system prior to installation of SUNDIALS,
and that SUNDIALS has been configured appropriately to link with LAPACK (see §11.3.24 for details). We note
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that since there do not exist 128-bit floating-point factorization and solve routines in LAPACK, this interface cannot be
compiled when using extended precision for sunrealtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the SUNLinSol_LapackDense module also cannot be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs anLU factorization with partial (row) pivoting (O(N3) cost), PA = LU , whereP is a
permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object A, with pivoting information
encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and the
LU factors held in the SUNMATRIX_DENSE object (O(N2) cost).

The SUNLinSol_LapackDense module defines dense implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_LapackDense

• SUNLinSolInitialize_LapackDense – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_LapackDense – this calls either DGETRF or SGETRF to perform the LU factorization.

• SUNLinSolSolve_LapackDense – this calls either DGETRS or SGETRS to use the LU factors and pivots array
to perform the solve.

• SUNLinSolLastFlag_LapackDense

• SUNLinSolSpace_LapackDense – this only returns information for the storage within the solver object, i.e.
storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackDense

8.8 The SUNLinSol_MagmaDense Module

The SUNLinearSolver_MagmaDense implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_MAGMADENSE matrix, and a GPU-enabled vector. The header file to include when us-
ing this module is sunlinsol/sunlinsol_magmadense.h. The installed library to link to is libsundials_-
sunlinsolmagmadense.lib where lib is typically .so for shared libraries and .a for static libraries.

Warning

The SUNLinearSolver_MagmaDense module is experimental and subject to change.

8.8.1 SUNLinearSolver_MagmaDense Description

The SUNLinearSolver_MagmaDense implementation provides an interface to the dense LU and dense batched LU
methods in the MAGMA linear algebra library [62]. The batched LU methods are leveraged when solving block
diagonal linear systems of the form 

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An−1

xj = bj .
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8.8.2 SUNLinearSolver_MagmaDense Functions

The SUNLinearSolver_MagmaDense module defines implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_MagmaDense

• SUNLinSolInitialize_MagmaDense

• SUNLinSolSetup_MagmaDense

• SUNLinSolSolve_MagmaDense

• SUNLinSolLastFlag_MagmaDense

• SUNLinSolFree_MagmaDense

In addition, the module provides the following user-callable routines:

SUNLinearSolver SUNLinSol_MagmaDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMATRIX_MAGMADENSE matrix for checking compatibility with the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.

SUNErrCode SUNLinSol_MagmaDense_SetAsync(SUNLinearSolver LS, sunbooleantype onoff)
This function can be used to toggle the linear solver between asynchronous and synchronous modes. In asyn-
chronous mode (default), SUNLinearSolver operations are asynchronous with respect to the host. In synchronous
mode, the host and GPU device are synchronized prior to the operation returning.

Arguments:

• LS – a SUNLinSol_MagmaDense object

• onoff – 0 for synchronous mode or 1 for asynchronous mode (default 1)

Return value:

• A SUNErrCode

8.8.3 SUNLinearSolver_MagmaDense Content

The SUNLinearSolver_MagmaDense module defines the object content field of a SUNLinearSolver to be the follow-
ing structure:

struct _SUNLinearSolverContent_MagmaDense {
int last_flag;
sunbooleantype async;
sunindextype N;
SUNMemory pivots;
SUNMemory pivotsarr;

(continues on next page)
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(continued from previous page)

SUNMemory dpivotsarr;
SUNMemory infoarr;
SUNMemory rhsarr;
SUNMemoryHelper memhelp;
magma_queue_t q;

};

8.9 The SUNLinSol_OneMklDense Module

The SUNLinearSolver_OneMklDense implementation of the SUNLinearSolver class interfaces to the direct linear
solvers from the Intel oneAPI Math Kernel Library (oneMKL) for solving dense systems or block-diagonal systems
with dense blocks. This linear solver is best paired with the SUNMatrix_OneMklDense matrix.

The header file to include when using this class is sunlinsol/sunlinsol_onemkldense.h. The installed library
to link to is libsundials_sunlinsolonemkldense.lib where lib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNLinearSolver_OneMklDense class is experimental and subject to change.

8.9.1 SUNLinearSolver_OneMklDense Functions

The SUNLinearSolver_OneMklDense class defines implementations of all “direct” linear solver operations listed in
§8.1:

• SUNLinSolGetType_OneMklDense – returns SUNLINEARSOLVER_ONEMKLDENSE

• SUNLinSolInitialize_OneMklDense

• SUNLinSolSetup_OneMklDense

• SUNLinSolSolve_OneMklDense

• SUNLinSolLastFlag_OneMklDense

• SUNLinSolFree_OneMklDense

In addition, the class provides the following user-callable routines:

SUNLinearSolver SUNLinSol_OneMklDense(N_Vector y, SUNMatrix A, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMatrix_OneMklDense matrix for checking compatibility with the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL. This routine analyzes the input matrix and vector to determine the linear system size and to assess
compatibility with the solver.
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8.9.2 SUNLinearSolver_OneMklDense Usage Notes

Warning

The SUNLinearSolver_OneMklDense class only supports 64-bit indexing, thus SUNDIALS must be built for 64-bit
indexing to use this class.

When using the SUNLinearSolver_OneMklDense class with a SUNDIALS package (e.g. CVODE), the queue
given to the matrix is also used for the linear solver.

8.10 The SUNLinSol_PCG Module

The SUNLinSol_PCG implementation of the SUNLinearSolver class performs the PCG (Preconditioned Conjugate
Gradient [38]) method; this is an iterative linear solver that is designed to be compatible with any N_Vector implemen-
tation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of
memory that does not increase with the number of allowed iterations.

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric linear
systems (e.g. mass matrix linear systems encountered in ARKODE). As a result, the explanation of the role of scaling
and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves a linear
system Ax = b where A is a symmetric (AT = A), real-valued matrix. Preconditioning is allowed, and is applied in
a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We denote the
preconditioner and scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators are required. The
diagonal of the matrix S is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (8.4)

where

Ã = SP−1AP−1S,

b̃ = SP−1b,

x̃ = S−1Px.

(8.5)

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.
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8.10.1 SUNLinSol_PCG Usage

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h. The SUNLinSol_PCG
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolpcgmodule library.

The module SUNLinSol_PCG provides the following user-callable routines:

SUNLinearSolver SUNLinSol_PCG(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a PCG SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the maximum number of linear iterations to allow.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pre-
type inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of the symmetric
preconditioner; any other integer input will result in the default (no preconditioning). Although some SUN-
DIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only
right preconditioning (KINSOL), PCG should only be used with these packages when the linear systems
are known to be symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric
matrix, symmetric preconditioning should work appropriately even for packages designed with one-sided
preconditioning in mind.

SUNErrCode SUNLinSol_PCGSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_PCG object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode
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Notes:
As above, any one of the input values, SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTHwill enable
preconditioning; SUN_PREC_NONE disables preconditioning.

SUNErrCode SUNLinSol_PCGSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_PCG object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

8.10.2 SUNLinSol_PCG Description

The SUNLinSol_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

• maxl - number of PCG iterations to allow (default is 5),

• pretype - flag for use of preconditioning (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,
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• PData - pointer to structure for Psetup and Psolve,

• s - vector pointer for supplied scaling matrix (default is NULL),

• r - a N_Vector which holds the preconditioned linear system residual,

• p, z, Ap - N_Vector used for workspace by the PCG algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those options
have been supplied.

The SUNLinSol_PCG module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_PCG

• SUNLinSolInitialize_PCG

• SUNLinSolSetATimes_PCG

• SUNLinSolSetPreconditioner_PCG

• SUNLinSolSetScalingVectors_PCG – since PCG only supports symmetric scaling, the second N_Vector
argument to this function is ignored.

• SUNLinSolSetZeroGuess_PCG – note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_PCG.

• SUNLinSolSetup_PCG

• SUNLinSolSolve_PCG

• SUNLinSolNumIters_PCG

• SUNLinSolResNorm_PCG

• SUNLinSolResid_PCG

• SUNLinSolLastFlag_PCG

• SUNLinSolSpace_PCG

• SUNLinSolFree_PCG
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8.11 The SUNLinSol_SPBCGS Module

The SUNLinSol_SPBCGS implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [65] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, SP-
BCGS requires a fixed amount of memory that does not increase with the number of allowed iterations.

8.11.1 SUNLinSol_SPBCGS Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h. The SUNLinSol_-
SPBCGS module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspbcgs
module library.

The module SUNLinSol_SPBCGS provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPBCGS(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the maximum number of linear iterations to allow.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPBCGS object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Note

With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess() to indicate the initial guess is zero).

SUNErrCode SUNLinSol_SPBCGSSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.
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Arguments:

• S – SUNLinSol_SPBCGS object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPBCGSSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_SPBCGS object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

8.11.2 SUNLinSol_SPBCGS Description

The SUNLinSol_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

};

These entries of the content field contain the following information:
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• maxl - number of SPBCGS iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r - a N_Vector which holds the current scaled, preconditioned linear system residual,

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• p, q, u, Ap, vtemp - N_Vector used for workspace by the SPBCGS algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPBCGS to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPBCGS module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPBCGS

• SUNLinSolInitialize_SPBCGS

• SUNLinSolSetATimes_SPBCGS

• SUNLinSolSetPreconditioner_SPBCGS

• SUNLinSolSetScalingVectors_SPBCGS

• SUNLinSolSetZeroGuess_SPBCGS – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPBCGS.

• SUNLinSolSetup_SPBCGS

• SUNLinSolSolve_SPBCGS

• SUNLinSolNumIters_SPBCGS

• SUNLinSolResNorm_SPBCGS
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• SUNLinSolResid_SPBCGS

• SUNLinSolLastFlag_SPBCGS

• SUNLinSolSpace_SPBCGS

• SUNLinSolFree_SPBCGS

8.12 The SUNLinSol_SPFGMR Module

The SUNLinSol_SPFGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [59] method; this is an iterative linear solver that is designed to be compatible
with any N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_-
VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the other Krylov
iterative linear solvers supplied with SUNDIALS, FGMRES is specifically designed to work with a changing precon-
ditioner (e.g. from an iterative method).

8.12.1 SUNLinSol_SPFGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h. The SUNLinSol_-
SPFGMR module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspfgmr
module library.

The module SUNLinSol_SPFGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPFGMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning). We note that some SUNDIALS
solvers are designed to only work with left preconditioning (IDA and IDAS). While it is possible to use a
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right-preconditioned SUNLinSol_SPFGMR object for these packages, this use mode is not supported and
may result in inferior performance.

SUNErrCode SUNLinSol_SPFGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

Notes:
Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs SUN_PREC_LEFT, SUN_PREC_RIGHT, or SUN_PREC_BOTH will result in use of SUN_PREC_RIGHT;
any other integer input will result in the default (no preconditioning).

SUNErrCode SUNLinSol_SPFGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• gstype – a flag indicating the type of orthogonalization to use:

– SUN_MODIFIED_GS

– SUN_CLASSICAL_GS

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of FGMRES restarts to allow.

Arguments:

• S – SUNLinSol_SPFGMR object to update.

• maxrs – maximum number of restarts to allow. A negative input will result in the default of 0.

Return value:

• A SUNErrCode
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8.12.2 SUNLinSol_SPFGMR Description

The SUNLinSol_SPFGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
sunrealtype **Hes;
sunrealtype *givens;
N_Vector xcor;
sunrealtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of FGMRES basis vectors to use (default is 5),

• pretype - flag for use of preconditioning (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of FGMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], ..., V[maxl]. Each vi is a vector of
type N_Vector,

• Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], ..., Z[maxl]. Each zi
is a vector of type N_Vector,
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• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
rithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1, givens[3]
= s1, . . ., givens[2j] = cj , givens[2j+1] = sj ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of sunrealtype values used to hold “short” vectors (e.g. y and g),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPFGMR module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPFGMR

• SUNLinSolInitialize_SPFGMR

• SUNLinSolSetATimes_SPFGMR

• SUNLinSolSetPreconditioner_SPFGMR

• SUNLinSolSetScalingVectors_SPFGMR

• SUNLinSolSetZeroGuess_SPFGMR – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPFGMR.

• SUNLinSolSetup_SPFGMR

• SUNLinSolSolve_SPFGMR

• SUNLinSolNumIters_SPFGMR
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• SUNLinSolResNorm_SPFGMR

• SUNLinSolResid_SPFGMR

• SUNLinSolLastFlag_SPFGMR

• SUNLinSolSpace_SPFGMR

• SUNLinSolFree_SPFGMR

8.13 The SUNLinSol_SPGMR Module

The SUNLinSol_SPGMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned, Gen-
eralized Minimum Residual [60] method; this is an iterative linear solver that is designed to be compatible with any
N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(),
N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()).

8.13.1 SUNLinSol_SPGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h. The SUNinSol_SPGMR
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolspgmr module
library.

The module SUNLinSol_SPGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPGMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPGMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPGMR object
to use any of the preconditioning options with these solvers, this use mode is not supported and may result
in inferior performance.
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SUNErrCode SUNLinSol_SPGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• gstype – a flag indicating the type of orthogonalization to use:

– SUN_MODIFIED_GS

– SUN_CLASSICAL_GS

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• maxrs – maximum number of restarts to allow. A negative input will result in the default of 0.

Return value:

• A SUNErrCode

8.13.2 SUNLinSol_SPGMR Description

The SUNLinSol_SPGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;

(continues on next page)
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int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
sunrealtype **Hes;
sunrealtype *givens;
N_Vector xcor;
sunrealtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of GMRES basis vectors to use (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of GMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], ... V[maxl]. Each vi is a vector of type
N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algorithm.
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These matrices are F0, F1, . . . , Fj , where
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are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2] = c1, givens[3]
= s1, . . ., givens[2j] = cj , givens[2j+1] = sj ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of sunrealtype values used to hold “short” vectors (e.g. y and g),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and default
solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPGMR to supply
the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts if
those options have been supplied.

The SUNLinSol_SPGMR module defines implementations of all “iterative” linear solver operations listed in §8.1:

• SUNLinSolGetType_SPGMR

• SUNLinSolInitialize_SPGMR

• SUNLinSolSetATimes_SPGMR

• SUNLinSolSetPreconditioner_SPGMR

• SUNLinSolSetScalingVectors_SPGMR

• SUNLinSolSetZeroGuess_SPGMR – note the solver assumes a non-zero guess by default and the zero guess flag
is reset to SUNFALSE after each call to SUNLinSolSolve_SPGMR.

• SUNLinSolSetup_SPGMR

• SUNLinSolSolve_SPGMR

• SUNLinSolNumIters_SPGMR

• SUNLinSolResNorm_SPGMR

• SUNLinSolResid_SPGMR

• SUNLinSolLastFlag_SPGMR
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• SUNLinSolSpace_SPGMR

• SUNLinSolFree_SPGMR

8.14 The SUNLinSol_SPTFQMR Module

The SUNLinSol_SPTFQMR implementation of the SUNLinearSolver class performs a Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [35] method; this is an iterative linear solver that is designed to be compat-
ible with any N_Vector implementation that supports a minimal subset of operations (N_VClone(), N_VDotProd(),
N_VScale(), N_VLinearSum(), N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR
and SPFGMR algorithms, SPTFQMR requires a fixed amount of memory that does not increase with the number of
allowed iterations.

8.14.1 SUNLinSol_SPTFQMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_sptfqmr.h. The SUNLinSol_SPT-
FQMR module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolsptfqmr
module library.

The module SUNLinSol_SPTFQMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPTFQMR(N_Vector y, int pretype, int maxl, SUNContext sunctx)
This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver.

Arguments:

• y – a template vector.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

• maxl – the number of Krylov basis vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either y is incompatible then this routine will return NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with a consistent N_Vector imple-
mentation (i.e. that it supplies the requisite vector operations).

A maxl argument that is ≤ 0 will result in the default value (5).

Some SUNDIALS solvers are designed to only work with left preconditioning (IDA and IDAS) and others
with only right preconditioning (KINSOL). While it is possible to configure a SUNLinSol_SPTFQMR
object to use any of the preconditioning options with these solvers, this use mode is not supported and may
result in inferior performance.
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Note

With SUN_PREC_RIGHT or SUN_PREC_BOTH the initial guess must be zero (use SUNLinSolSetZe-
roGuess() to indicate the initial guess is zero).

SUNErrCode SUNLinSol_SPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning.

Arguments:

• S – SUNLinSol_SPGMR object to update.

• pretype – a flag indicating the type of preconditioning to use:

– SUN_PREC_NONE

– SUN_PREC_LEFT

– SUN_PREC_RIGHT

– SUN_PREC_BOTH

Return value:

• A SUNErrCode

SUNErrCode SUNLinSol_SPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

Arguments:

• S – SUNLinSol_SPTFQMR object to update.

• maxl – maximum number of linear iterations to allow. Any non-positive input will result in the default
value (5).

Return value:

• A SUNErrCode

8.14.2 SUNLinSol_SPTFQMR Description

The SUNLinSol_SPTFQMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
sunbooleantype zeroguess;
int numiters;
sunrealtype resnorm;
int last_flag;
SUNATimesFn ATimes;
void* ATData;
SUNPSetupFn Psetup;
SUNPSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;

(continues on next page)
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N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:

• maxl - number of TFQMR iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform Av product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• q, d, v, p, u - N_Vector used for workspace by the SPTFQMR algorithm,

• r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

• vtemp1, vtemp2, vtemp3 - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector that
is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDIALS
solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-supplied
or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in §8.1:
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• SUNLinSolGetType_SPTFQMR

• SUNLinSolInitialize_SPTFQMR

• SUNLinSolSetATimes_SPTFQMR

• SUNLinSolSetPreconditioner_SPTFQMR

• SUNLinSolSetScalingVectors_SPTFQMR

• SUNLinSolSetZeroGuess_SPTFQMR – note the solver assumes a non-zero guess by default and the zero guess
flag is reset to SUNFALSE after each call to SUNLinSolSolve_SPTFQMR.

• SUNLinSolSetup_SPTFQMR

• SUNLinSolSolve_SPTFQMR

• SUNLinSolNumIters_SPTFQMR

• SUNLinSolResNorm_SPTFQMR

• SUNLinSolResid_SPTFQMR

• SUNLinSolLastFlag_SPTFQMR

• SUNLinSolSpace_SPTFQMR

• SUNLinSolFree_SPTFQMR

8.15 The SUNLinSol_SuperLUDIST Module

The SUNLinsol_SuperLUDIST implementation of the SUNLinearSolver class interfaces with the SuperLU_DIST
library. This is designed to be used with the SUNMatrix_SLUNRloc SUNMatrix, and one of the serial, threaded or
parallel N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVEC-
TOR_PARALLEL, NVECTOR_PARHYP).

8.15.1 SUNLinSol_SuperLUDIST Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superludist.h. The installed
module library to link to is libsundials_sunlinsolsuperludist .lib where .lib is typically .so for shared libraries
and .a for static libraries.

The module SUNLinSol_SuperLUDIST provides the following user-callable routines:

Warning

Starting with SuperLU_DIST version 6.3.0, some structures were renamed to have a prefix for the floating point
type. The double precision API functions have the prefix ‘d’. To maintain backwards compatibility with the un-
prefixed types, SUNDIALS provides macros to these SuperLU_DIST types with an ‘x’ prefix that expand to the
correct prefix. E.g., the SUNDIALS macro xLUstruct_t expands to dLUstruct_t or LUstruct_t based on the
SuperLU_DIST version.

SUNLinearSolver SUNLinSol_SuperLUDIST(N_Vector y, SuperMatrix *A, gridinfo_t *grid, xLUstruct_t *lu,
xScalePermstruct_t *scaleperm, xSOLVEstruct_t *solve,
SuperLUStat_t *stat, superlu_dist_options_t *options, SUNContext
sunctx)

This constructor function creates and allocates memory for a SUNLinSol_SuperLUDIST object.
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Arguments:

• y – a template vector.

• A – a template matrix

• grid, lu, scaleperm, solve, stat, options – SuperLU_DIST object pointers.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess the
compatibility with the SuperLU_DIST library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMatrix_SLUNRloc matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, NVECTOR_PARALLEL, and
NVECTOR_PARHYP vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The grid, lu, scaleperm, solve, and options arguments are not checked and are passed directly to
SuperLU_DIST routines.

Some struct members of the options argument are modified internally by the SUNLinSol_SuperLUDIST
solver. Specifically, the member Fact is modified in the setup and solve routines.

sunrealtype SUNLinSol_SuperLUDIST_GetBerr(SUNLinearSolver LS)
This function returns the componentwise relative backward error of the computed solution. It takes one argument,
the SUNLinearSolver object. The return type is sunrealtype.

gridinfo_t *SUNLinSol_SuperLUDIST_GetGridinfo(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the 2D process grid. It takes one
argument, the SUNLinearSolver object.

xLUstruct_t *SUNLinSol_SuperLUDIST_GetLUstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the distributed L and U structures.
It takes one argument, the SUNLinearSolver object.

superlu_dist_options_t *SUNLinSol_SuperLUDIST_GetSuperLUOptions(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the options which control how the
linear system is factorized and solved. It takes one argument, the SUNLinearSolver object.

xScalePermstruct_t *SUNLinSol_SuperLUDIST_GetScalePermstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains the vectors that describe the trans-
formations done to the matrix A. It takes one argument, the SUNLinearSolver object.

xSOLVEstruct_t *SUNLinSol_SuperLUDIST_GetSOLVEstruct(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that contains information for communication
during the solution phase. It takes one argument the SUNLinearSolver object.

SuperLUStat_t *SUNLinSol_SuperLUDIST_GetSuperLUStat(SUNLinearSolver LS)
This function returns a pointer to the SuperLU_DIST structure that stores information about runtime and flop
count. It takes one argument, the SUNLinearSolver object.
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8.15.2 SUNLinSol_SuperLUDIST Description

The SUNLinSol_SuperLUDIST module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUDIST {
sunbooleantype first_factorize;
int last_flag;
sunrealtype berr;
gridinfo_t *grid;
xLUstruct_t *lu;
superlu_dist_options_t *options;
xScalePermstruct_t *scaleperm;
xSOLVEstruct_t *solve;
SuperLUStat_t *stat;
sunindextype N;

};

These entries of the content field contain the following information:

• first_factorize – flag indicating whether the factorization has ever been performed,

• last_flag – last error return flag from internal function evaluations,

• berr – the componentwise relative backward error of the computed solution,

• grid – pointer to the SuperLU_DIST structure that stores the 2D process grid

• lu – pointer to the SuperLU_DIST structure that stores the distributed L and U factors,

• scaleperm – pointer to the SuperLU_DIST structure that stores vectors describing the transformations done to
the matrix A,

• options – pointer to the SuperLU_DIST structure which contains options that control how the linear system is
factorized and solved,

• solve – pointer to the SuperLU_DIST solve structure,

• stat – pointer to the SuperLU_DIST structure that stores information about runtime and flop count,

• N – the number of equations in the system.

The SUNLinSol_SuperLUDIST module is a SUNLinearSolver adapter for the SuperLU_DIST sparse matrix factor-
ization and solver library written by X. Sherry Li and collaborators [8, 37, 54, 55]. The package uses a SPMD parallel
programming model and multithreading to enhance efficiency in distributed-memory parallel environments with multi-
core nodes and possibly GPU accelerators. It uses MPI for communication, OpenMP for threading, and CUDA for GPU
support. In order to use the SUNLinSol_SuperLUDIST interface to SuperLU_DIST, it is assumed that SuperLU_DIST
has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appropri-
ately to link with SuperLU_DIST (see §11.3.33 for details). Additionally, the wrapper only supports double-precision
calculations, and therefore cannot be compiled if SUNDIALS is configured to use single or extended precision. More-
over, since the SuperLU_DIST library may be installed to support either 32-bit or 64-bit integers, it is assumed that the
SuperLU_DIST library is installed using the same integer size as SUNDIALS.

The SuperLU_DIST library provides many options to control how a linear system will be factorized and solved. These
options may be set by a user on an instance of the superlu_dist_options_t struct, and then it may be provided as
an argument to the SUNLinSol_SuperLUDIST constructor. The SUNLinSol_SuperLUDIST module will respect all
options set except for Fact – this option is necessarily modified by the SUNLinSol_SuperLUDIST module in the setup
and solve routines.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUDIST module is constructed to perform the following operations:
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• The first time that the “setup” routine is called, it sets the SuperLU_DIST option Fact to DOFACT so that a
subsequent call to the “solve” routine will perform a symbolic factorization, followed by an initial numerical
factorization before continuing to solve the system.

• On subsequent calls to the “setup” routine, it sets the SuperLU_DIST option Fact to SamePattern so that a
subsequent call to “solve” will perform factorization assuming the same sparsity pattern as prior, i.e. it will reuse
the column permutation vector.

• If “setup” is called prior to the “solve” routine, then the “solve” routine will perform a symbolic factorization,
followed by an initial numerical factorization before continuing to the sparse triangular solves, and, potentially,
iterative refinement. If “setup” is not called prior, “solve” will skip to the triangular solve step. We note that in
this solve SuperLU_DIST operates on the native data arrays for the right-hand side and solution vectors, without
requiring costly data copies.

The SUNLinSol_SuperLUDIST module defines implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_SuperLUDIST

• SUNLinSolInitialize_SuperLUDIST – this sets the first_factorize flag to 1 and resets the internal Su-
perLU_DIST statistics variables.

• SUNLinSolSetup_SuperLUDIST – this sets the appropriate SuperLU_DIST options so that a subsequent solve
will perform a symbolic and numerical factorization before proceeding with the triangular solves

• SUNLinSolSolve_SuperLUDIST – this calls the SuperLU_DIST solve routine to perform factorization (if the
setup routine was called prior) and then use the $LU$ factors to solve the linear system.

• SUNLinSolLastFlag_SuperLUDIST

• SUNLinSolSpace_SuperLUDIST – this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements, see the
SuperLU_DIST documentation.

• SUNLinSolFree_SuperLUDIST

8.16 The SUNLinSol_SuperLUMT Module

The SUNLinSol_SuperLUMT implementation of the SUNLinearSolver class interfaces with the SuperLU_MT li-
brary. This is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the se-
rial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_-
PTHREADS). While these are compatible, it is not recommended to use a threaded vector module with SUNLinSol_-
SuperLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library has also been compiled with
OpenMP.

8.16.1 SUNLinSol_SuperLUMT Usage

The header file to be included when using this module is sunlinsol/sunlinsol.SuperLUMT.h. The installed mod-
ule library to link to is libsundials_sunlinsolsuperlumt .lib where .lib is typically .so for shared libraries and
.a for static libraries.

The module SUNLinSol_SuperLUMT provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SuperLUMT(N_Vector y, SUNMatrix A, int num_threads, SUNContext sunctx)
This constructor function creates and allocates memory for a SUNLinSol_SuperLUMT object.

Arguments:

• y – a template vector.
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• A – a template matrix

• num_threads – desired number of threads (OpenMP or Pthreads, depending on how SuperLU_MT was
installed) to use during the factorization steps.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object; otherwise this routine will return NULL.

Notes:
This routine analyzes the input matrix and vector to determine the linear system size and to assess compat-
ibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (using
either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added
to SUNDIALS, these will be included within this compatibility check.

The num_threads argument is not checked and is passed directly to SuperLU_MT routines.

SUNErrCode SUNLinSol_SuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve.

Arguments:

• S – the SUNLinSol_SuperLUMT object to update.

• ordering_choice:

0. natural ordering

1. minimal degree ordering on ATA

2. minimal degree ordering on AT +A

3. COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value:

• A SUNErrCode

8.16.2 SUNLinSol_SuperLUMT Description

The SUNLinSol_SuperLUMT module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SuperLUMT {
int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
sunrealtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};
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These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• A, AC, L, U, B - SuperMatrix pointers used in solve,

• Gstat - GStat_t object used in solve,

• perm_r, perm_c - permutation arrays used in solve,

• N - size of the linear system,

• num_threads - number of OpenMP/Pthreads threads to use,

• diag_pivot_thresh - threshold on diagonal pivoting,

• ordering - flag for which reordering algorithm to use,

• options - pointer to SuperLU_MT options structure.

The SUNLinSol_SuperLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix factoriza-
tion and solver library written by X. Sherry Li and collaborators [9, 29, 53]. The package performs matrix factorization
using threads to enhance efficiency in shared memory parallel environments. It should be noted that threads are only
used in the factorization step. In order to use the SUNLinSol_SuperLUMT interface to SuperLU_MT, it is assumed
that SuperLU_MT has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with SuperLU_MT (see §11.3.34 for details). Additionally, this wrapper only sup-
ports single- and double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured to have
sunrealtype set to extended (see §4.1 for details). Moreover, since the SuperLU_MT library may be installed to
support either 32-bit or 64-bit integers, it is assumed that the SuperLU_MT library is installed using the same integer
precision as the SUNDIALS sunindextype option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequentLU factorizations (using COLAMD, minimal degree ordering onAT ∗A, minimal
degree ordering on AT + A, or natural ordering). Of these ordering choices, the default value in the SUNLinSol_-
SuperLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUMT module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side and
solution vectors, without requiring costly data copies.

The SUNLinSol_SuperLUMT module defines implementations of all “direct” linear solver operations listed in §8.1:

• SUNLinSolGetType_SuperLUMT

• SUNLinSolInitialize_SuperLUMT – this sets the first_factorize flag to 1 and resets the internal Su-
perLU_MT statistics variables.

• SUNLinSolSetup_SuperLUMT – this performs either a LU factorization or refactorization of the input matrix.

• SUNLinSolSolve_SuperLUMT – this calls the appropriate SuperLU_MT solve routine to utilize the LU factors
to solve the linear system.

• SUNLinSolLastFlag_SuperLUMT
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• SUNLinSolSpace_SuperLUMT – this only returns information for the storage within the solver interface, i.e.
storage for the integers last_flag and first_factorize. For additional space requirements, see the Su-
perLU_MT documentation.

• SUNLinSolFree_SuperLUMT

8.17 The SUNLinSol_cuSolverSp_batchQR Module

The SUNLinSol_cuSolverSp_batchQR implementation of the SUNLinearSolver class is designed to be used with
the SUNMATRIX_CUSPARSE matrix, and the NVECTOR_CUDA vector. The header file to include when using this
module is sunlinsol/sunlinsol_cusolversp_batchqr.h. The installed library to link to is libsundials_-
sunlinsolcusolversp.lib where .lib is typically .so for shared libraries and .a for static libraries.

Warning

The SUNLinearSolver_cuSolverSp_batchQR module is experimental and subject to change.

8.17.1 SUNLinSol_cuSolverSp_batchQR description

The SUNLinearSolver_cuSolverSp_batchQR implementation provides an interface to the batched sparse QR factor-
ization method provided by the NVIDIA cuSOLVER library [6]. The module is designed for solving block diagonal
linear systems of the form 

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

xj = bj

where all block matrices Aj share the same sparsity pattern. The matrix must be the SUNMatrix.cuSparse.

8.17.2 SUNLinSol_cuSolverSp_batchQR functions

The SUNLinearSolver_cuSolverSp_batchQR module defines implementations of all “direct” linear solver opera-
tions listed in §8.1:

• SUNLinSolGetType_cuSolverSp_batchQR

• SUNLinSolInitialize_cuSolverSp_batchQR – this sets the first_factorize flag to 1

• SUNLinSolSetup_cuSolverSp_batchQR – this always copies the relevant SUNMATRIX_SPARSE data to the
GPU; if this is the first setup it will perform symbolic analysis on the system

• SUNLinSolSolve_cuSolverSp_batchQR – this calls the cusolverSpXcsrqrsvBatched routine to perform
factorization

• SUNLinSolLastFlag_cuSolverSp_batchQR

• SUNLinSolFree_cuSolverSp_batchQR

In addition, the module provides the following user-callable routines:
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SUNLinearSolver SUNLinSol_cuSolverSp_batchQR(N_Vector y, SUNMatrix A, cusolverHandle_t cusol,
SUNContext sunctx)

The function SUNLinSol_cuSolverSp_batchQR creates and allocates memory for a SUNLinearSolver object.

Arguments:

• y – a vector for checking compatibility with the solver.

• A – a SUNMATRIX_cuSparse matrix for checking compatibility with the solver.

• cusol – cuSolverSp object to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
If successful, a SUNLinearSolver object. If either A or y are incompatible then this routine will return
NULL.

Notes:
This routine will perform consistency checks to ensure that it is called with consistent N_Vector and SUN-
Matrix implementations. These are currently limited to the SUNMATRIX_CUSPARSE matrix type and
the NVECTOR_CUDA vector type. Since the SUNMATRIX_CUSPARSE matrix type is only compatible
with the NVECTOR_CUDA the restriction is also in place for the linear solver. As additional compatible
matrix and vector implementations are added to SUNDIALS, these will be included within this compati-
bility check.

void SUNLinSol_cuSolverSp_batchQR_GetDescription(SUNLinearSolver LS, char **desc)
The function SUNLinSol_cuSolverSp_batchQR_GetDescription accesses the string description of the ob-
ject (empty by default).

void SUNLinSol_cuSolverSp_batchQR_SetDescription(SUNLinearSolver LS, const char *desc)
The function SUNLinSol_cuSolverSp_batchQR_SetDescription sets the string description of the object
(empty by default).

void SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace(SUNLinearSolver S, size_t *cuSolverInternal, size_t
*cuSolverWorkspace)

The function SUNLinSol_cuSolverSp_batchQR_GetDeviceSpace returns the cuSOLVER batch QR method
internal buffer size, in bytes, in the argument cuSolverInternal and the cuSOLVER batch QR workspace
buffer size, in bytes, in the argument cuSolverWorkspace. The size of the internal buffer is proportional to the
number of matrix blocks while the size of the workspace is almost independent of the number of blocks.

8.17.3 SUNLinSol_cuSolverSp_batchQR content

The SUNLinSol_cuSolverSp_batchQR module defines the content field of a SUNLinearSolver to be the following
structure:

struct _SUNLinearSolverContent_cuSolverSp_batchQR {
int last_flag; /* last return flag */
sunbooleantype first_factorize; /* is this the first factorization? */
size_t internal_size; /* size of cusolver buffer for Q and R */
size_t workspace_size; /* size of cusolver memory for factorization */
cusolverSpHandle_t cusolver_handle; /* cuSolverSp context */
csrqrInfo_t info; /* opaque cusolver data structure */
void* workspace; /* memory block used by cusolver */
const char* desc; /* description of this linear solver */

};
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8.18 The SUNLINEARSOLVER_GINKGO Module

Added in version 6.4.0.

The SUNLINEARSOLVER_GINKGO implementation of the SUNLinearSolver API provides an interface to the
linear solvers from the Ginkgo linear algebra library [11]. Since Ginkgo is a modern C++ library, SUNLINEAR-
SOLVER_GINKGO is also written in modern C++ (specifically, C++14). Unlike most other SUNDIALS modules, it
is a header only library. To use the SUNLINEARSOLVER_GINKGO SUNLinearSolver, users will need to include
sunlinsol/sunlinsol_ginkgo.hpp. The module is meant to be used with the SUNMATRIX_GINKGO module
described in §7.10. Instructions on building SUNDIALS with Ginkgo enabled are given in §11.3.18. For instructions
on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note

It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo linear solvers, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS. Most,
if not all, of the Ginkgo linear solver should work with this interface.

8.18.1 Using SUNLINEARSOLVER_GINKGO

After choosing a compatible N_Vector (see §7.10.1) and creating a Ginkgo-enabled SUNMatrix (see §7.10) to use the
SUNLINEARSOLVER_GINKGO module, we first create a Ginkgo stopping criteria object. Importantly, the sundi-
als::ginkgo::DefaultStop class provided by SUNDIALS implements a stopping criterion that matches the default
SUNDIALS stopping criterion. Namely, it checks if the max iterations (5 by default) were reached or if the absolute
residual norm was below a specified tolerance. The criterion can be created just like any other Ginkgo stopping criteria:

auto crit{sundials::ginkgo::DefaultStop::build().with_max_iters(max_iters).on(gko_exec)};

Warning

It is highly recommended to employ this criterion when using Ginkgo solvers with SUNDIALS, but it is optional.
However, to use the Ginkgo multigrid or cbgmres linear solvers, different Ginkgo criterion must be used.

Once we have created our stopping criterion, we create a Ginkgo solver factory object and wrap it in a sundi-
als::ginkgo::LinearSolver object. In this example, we create a Ginkgo conjugate gradient solver:

using GkoMatrixType = gko::matrix::Csr<sunrealtype, sunindextype>;
using GkoSolverType = gko::solver::Cg<sunrealtype>;

auto gko_solver_factory = gko::share(
GkoSolverType::build().with_criteria(std::move(crit)).on(gko_exec));

sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType> LS{
gko_solver_factory, sunctx};

Finally, we can pass the instance of sundials::ginkgo::LinearSolver to any function expecting a SUNLinear-
Solver object through the implicit conversion operator or explicit conversion function.

// Attach linear solver and matrix to CVODE.
//

(continues on next page)
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(continued from previous page)

// Implicit conversion from sundials::ginkgo::LinearSolver<GkoSolverType, GkoMatrixType>
// to a SUNLinearSolver object is done.
//
// For details about creating A see the SUNMATRIX_GINKGO module.
CVodeSetLinearSolver(cvode_mem, LS, A);

// Alternatively with explicit conversion of LS to a SUNLinearSolver
// and A to a SUNMatrix:
CVodeSetLinearSolver(cvode_mem, LS->Convert(), A->Convert());

Warning

SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion from a sun-
dials::ginkgo::LinearSolver. Doing so may result in a double free.

8.18.2 SUNLINEARSOLVER_GINKGO API

In this section we list the public API of the sundials::ginkgo::LinearSolver class.

template<class GkoSolverType, class GkoMatrixType>
class sundials::ginkgo::LinearSolver : public sundials::ConvertibleTo<SUNLinearSolver>

LinearSolver() = default;
Default constructor - means the solver must be moved to.

LinearSolver(std::shared_ptr<typename GkoSolverType::Factory> gko_solver_factory, SUNContext sunctx)
Constructs a new LinearSolver from a Ginkgo solver factory.

Parameters

• gko_solver_factory – The Ginkgo solver factory (typically
gko::matrix::<type>::Factory`)

• sunctx – The SUNDIALS simulation context (SUNContext)

LinearSolver(LinearSolver &&that_solver) noexcept
Move constructor.

LinearSolver &operator=(LinearSolver &&rhs)
Move assignment.

~LinearSolver() override = default
Default destructor.

operator SUNLinearSolver() override
Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override
Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() override
Explicit conversion to a SUNLinearSolver.
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SUNLinearSolver Convert() const override
Explicit conversion to a SUNLinearSolver.

std::shared_ptr<const gko::Executor> GkoExec() const
Get the gko::Executor associated with the Ginkgo solver.

std::shared_ptr<typename GkoSolverType::Factory> GkoFactory()
Get the underlying Ginkgo solver factory.

GkoSolverType *GkoSolver()
Get the underlying Ginkgo solver.

Note

This will be nullptr until the linear solver setup phase.

int NumIters() const
Get the number of linear solver iterations in the most recent solve.

sunrealtype ResNorm() const
Get the residual norm of the solution at the end of the last solve.

The type of residual norm depends on the Ginkgo stopping criteria used with the solver. With the De-
faultStop criteria this would be the absolute residual 2-norm.

GkoSolverType *Setup(Matrix<GkoMatrixType> *A)
Setup the linear system.

Parameters
A – the linear system matrix

Returns
Pointer to the Ginkgo solver generated from the factory

gko::LinOp *Solve(N_Vector b, N_Vector x, sunrealtype tol)
Solve the linear system Ax = b to the specified tolerance.

Parameters

• b – the right-hand side vector

• x – the solution vector

• tol – the tolerance to solve the system to

Returns
gko::LinOp* the solution
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8.19 The SUNLINEARSOLVER_KOKKOSDENSE Module

Added in version 6.4.0.

The SUNLINEARSOLVER_KOKKOSDENSE SUNLinearSolver implementation provides an interface to
KokkosKernels [63] linear solvers for dense and batched dense (block-diagonal) systems. Since Kokkos is a mod-
ern C++ library, the module is also written in modern C++ (it requires C++14) as a header only library. To utilize
this SUNLinearSolver user will need to include sunlinsol/sunlinsol_kokkosdense.hpp. More instructions on
building SUNDIALS with Kokkos and KokkosKernels enabled are given in §11.3.23. For instructions on building and
using Kokkos and KokkosKernels, refer to the Kokkos and KokkosKernels. documentation.

8.19.1 Using SUNLINEARSOLVER_KOKKOSDENSE

The SUNLINEARSOLVER_KOKKOSDENSE module is defined by the DenseLinearSolver templated class in the
sundials::kokkos namespace:

template<class ExecSpace = Kokkos::DefaultExecutionSpace,
class MemSpace = typename ExecSpace::memory_space>

class DenseLinearSolver : public sundials::impl::BaseLinearSolver,
public sundials::ConvertibleTo<SUNLinearSolver>

To use the SUNLINEARSOLVER_KOKKOSDENSE module, we begin by constructing an instance of a dense linear
solver e.g.,

// Create a dense linear solver
sundials::kokkos::DenseLinearSolver<> LS{sunctx};

Instances of the DenseLinearSolver class are implicitly or explicitly (using the Convert() method) convertible to
a SUNLinearSolver e.g.,

sundials::kokkos::DenseLinearSolver<> LS{sunctx};
SUNLinearSolver LSA = LS; // implicit conversion to SUNLinearSolver
SUNLinearSolver LSB = LS.Convert(); // explicit conversion to SUNLinearSolver

Warning

SUNLinSolFree() should never be called on a SUNLinearSolver that was created via conversion from a sun-
dials::kokkos::DenseLinearSolver. Doing so may result in a double free.

The SUNLINEARSOLVER_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module
(see §6.14) and SUNMATRIX_KOKKOSDENSE matrix module (see §7.11).
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8.19.2 SUNLINEARSOLVER_KOKKOSDENSE API

In this section we list the public API of the sundials::kokkos::DenseLinearSolver class.

template<class ExecSpace = Kokkos::DefaultExecutionSpace, class MemSpace = typename
ExecSpace::memory_space>
class DenseLinearSolver : public sundials::impl::BaseLinearSolver, public
sundials::ConvertibleTo<SUNLinearSolver>

DenseLinearSolver() = default;
Default constructor - means the solver must be moved to.

DenseLinearSolver(SUNContext sunctx)
Constructs a new DenseLinearSolver.

Parameters
sunctx – The SUNDIALS simulation context (SUNContext)

DenseLinearSolver(DenseLinearSolver &&that_solver) noexcept
Move constructor.

DenseLinearSolver &operator=(DenseLinearSolver &&rhs)
Move assignment.

~DenseLinearSolver() override = default
Default destructor.

operator SUNLinearSolver() override
Implicit conversion to a SUNLinearSolver.

operator SUNLinearSolver() const override
Implicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() override
Explicit conversion to a SUNLinearSolver.

SUNLinearSolver Convert() const override
Explicit conversion to a SUNLinearSolver.

8.20 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the functions
in test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver family of modules.
The inputs to the examples depend on the linear solver type, and are output to stdout if the example is run without
the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:

• Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.

• Test_SUNLinSolGetID: Verifies the returned solver identifier against the value that should be returned.

• Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns successfully.

• Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

8.20. SUNLinearSolver Examples 367



User Documentation for IDAS, v6.3.0

• Test_SUNLinSolSolve: Given a SUNMatrix object A, N_Vector objects x and b (where Ax = b) and a
desired solution tolerance tol, this routine clones x into a new vector y, calls SUNLinSolSolve to fill y as the
solution to Ay = b (to the input tolerance), verifies that each entry in x and y match to within 10*tol, and
overwrites x with y prior to returning (in case the calling routine would like to investigate further).

• Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be called and
returns successfully.

• Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that SUNLinSolSetPreconditioner
can be called and returns successfully.

• Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that SUNLinSolSetScalingVectors
can be called and returns successfully.

• Test_SUNLinSolSetZeroGuess (iterative solvers only): Verifies that SUNLinSolSetZeroGuess can be called
and returns successfully.

• Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result to std-
out.

• Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called, and out-
puts the result to stdout.

• Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called, and that the
result is non-negative.

• Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative linear solvers, Test_-
SUNLinSolInitializemust be called before Test_SUNLinSolSetup, which must be called before Test_SUNLin-
SolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes, Test_SUNLinSolSetPrecondi-
tioner and Test_SUNLinSolSetScalingVectors should be called before Test_SUNLinSolInitialize; sim-
ilarly Test_SUNLinSolNumIters, Test_SUNLinSolResNorm and Test_SUNLinSolResid should be called after
Test_SUNLinSolSolve. These are called in the appropriate order in all of the example problems.
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Nonlinear Algebraic Solvers

SUNDIALS time integration packages are written in terms of generic nonlinear solver operations defined by the SUN-
NonlinSol API and implemented by a particular SUNNonlinSol module of type SUNNonlinearSolver. Users can
supply their own SUNNonlinSol module, or use one of the modules provided with SUNDIALS. Depending on the pack-
age, nonlinear solver modules can either target system presented in a rootfinding (F (y) = 0) or fixed-point (G(y) = y)
formulation. For more information on the formulation of the nonlinear system(s) see the §9.2 section.

The time integrators in SUNDIALS specify a default nonlinear solver module and as such this chapter is intended
for users that wish to use a non-default nonlinear solver module or would like to provide their own nonlinear solver
implementation. Users interested in using a non-default solver module may skip the description of the SUNNonlinSol
API in section §9.1 and proceeded to the subsequent sections in this chapter that describe the SUNNonlinSol modules
provided with SUNDIALS.

For users interested in providing their own SUNNonlinSol module, the following section presents the SUNNonlinSol
API and its implementation beginning with the definition of SUNNonlinSol functions in the sections §9.1.1, §9.1.2
and §9.1.3. This is followed by the definition of functions supplied to a nonlinear solver implementation in the section
§9.1.4. The nonlinear solver return codes are given in the section §9.1.5. The SUNNonlinearSolver type and the
generic SUNNonlinSol module are defined in the section §9.1.6. Finally, the section §9.1.7 lists the requirements for
supplying a custom SUNNonlinSol module. Users wishing to supply their own SUNNonlinSol module are encouraged
to use the SUNNonlinSol implementations provided with SUNDIALS as a template for supplying custom nonlinear
solver modules.

9.1 The SUNNonlinearSolver API

The SUNNonlinSol API defines several nonlinear solver operations that enable SUNDIALS integrators to utilize any
SUNNonlinSol implementation that provides the required functions. These functions can be divided into three cate-
gories. The first are the core nonlinear solver functions. The second consists of “set” routines to supply the nonlinear
solver with functions provided by the SUNDIALS time integrators and to modify solver parameters. The final group
consists of “get” routines for retrieving nonlinear solver statistics. All of these functions are defined in the header file
sundials/sundials_nonlinearsolver.h.
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9.1.1 SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type (SUNNonlinSol-
GetType()) and solve the nonlinear system (SUNNonlinSolSolve()). The remaining three functions for nonlinear
solver initialization (SUNNonlinSolInitialize()), setup (SUNNonlinSolSetup()), and destruction (SUNNonlin-
SolFree()) are optional.

enum SUNNonlinearSolver_Type
An identifier indicating the form of the nonlinear system expected by the nonlinear solver.

enumerator SUNNONLINEARSOLVER_ROOTFIND
The nonlinear solver expects systems in rootfinding form F (y) = 0

enumerator SUNNONLINEARSOLVER_FIXEDPOINT
The nonlinear solver expects systems in fixed-point form G(y) = y.

SUNNonlinearSolver_Type SUNNonlinSolGetType(SUNNonlinearSolver NLS)
This required function returns the nonlinear solver type.

Arguments:

• NLS – a SUNNonlinSol object.

Return value:
The SUNNonlinearSolver_Type type identifier for the nonlinear solver.

SUNErrCode SUNNonlinSolInitialize(SUNNonlinearSolver NLS)
This optional function handles nonlinear solver initialization and may perform any necessary memory alloca-
tions.

Arguments:

• NLS – a SUNNonlinSol object.

Return value:
A SUNErrCode.

Notes:
It is assumed all solver-specific options have been set prior to calling SUNNonlinSolInitialize(). SUN-
NonlinSol implementations that do not require initialization may set this operation to NULL.

SUNErrCode SUNNonlinSolSetup(SUNNonlinearSolver NLS, N_Vector y, void *mem)
This optional function performs any solver setup needed for a nonlinear solve.

Arguments:

• NLS – a SUNNonlinSol object.

• y – the initial guess passed to the nonlinear solver.

• mem – the SUNDIALS integrator memory structure.

Return value:
A SUNErrCode.

Notes:
SUNDIALS integrators call SUNNonlinSolSetup() before each step attempt. SUNNonlinSol implemen-
tations that do not require setup may set this operation to NULL.

int SUNNonlinSolSolve(SUNNonlinearSolver NLS, N_Vector y0, N_Vector ycor, N_Vector w, sunrealtype tol,
sunbooleantype callLSetup, void *mem)

This required function solves the nonlinear system F (y) = 0 or G(y) = y.
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Arguments:

• NLS – a SUNNonlinSol object.

• y0 – the predicted value for the new solution state. This must remain unchanged throughout the solution
process.

• ycor – on input the initial guess for the correction to the predicted state (zero) and on output the final
correction to the predicted state.

• w – the solution error weight vector used for computing weighted error norms.

• tol – the requested solution tolerance in the weighted root-mean-squared norm.

• callLSetup – a flag indicating that the integrator recommends for the linear solver setup function to be
called.

• mem – the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error (i.e., the solve failed
and the integrator should reduce the step size and reattempt the step), and a negative value for an unrecov-
erable error (i.e., the solve failed the and the integrator should halt and return an error to the user).

SUNErrCode SUNNonlinSolFree(SUNNonlinearSolver NLS)
This optional function frees any memory allocated by the nonlinear solver.

Arguments:

• NLS – a SUNNonlinSol object.

Return value:

• A SUNErrCode

9.1.2 SUNNonlinearSolver “set” functions

The following functions are used to supply nonlinear solver modules with functions defined by the SUNDIALS inte-
grators and to modify solver parameters. Only the routine for setting the nonlinear system defining function (SUNNon-
linSolSetSysFn()) is required. All other set functions are optional.

SUNErrCode SUNNonlinSolSetSysFn(SUNNonlinearSolver NLS, SUNNonlinSolSysFn SysFn)
This required function is used to provide the nonlinear solver with the function defining the nonlinear system.
This is the function F (y) in F (y) = 0 for SUNNONLINEARSOLVER_ROOTFINDmodules orG(y) inG(y) = y for
SUNNONLINEARSOLVER_FIXEDPOINT modules.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system. See §9.1.4 for the definition of SUNNonlinSol-
SysFn.

Return value:

• A SUNErrCode

SUNErrCode SUNNonlinSolSetLSetupFn(SUNNonlinearSolver NLS, SUNNonlinSolLSetupFn SetupFn)
This optional function is called by SUNDIALS integrators to provide the nonlinear solver with access to its linear
solver setup function.

Arguments:
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• NLS – a SUNNonlinSol object.

• SetupFn – a wrapper function to the SUNDIALS integrator’s linear solver setup function. See §9.1.4
for the definition of SUNNonlinSolLSetupFn.

Return value:

• A SUNErrCode

Notes:
The SUNNonlinSolLSetupFn function sets up the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0 (when using SUNLinSol direct linear solvers) or calls the user-
defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlinSol
implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may set this operation to NULL.

SUNErrCode SUNNonlinSolSetLSolveFn(SUNNonlinearSolver NLS, SUNNonlinSolLSolveFn SolveFn)
This optional function is called by SUNDIALS integrators to provide the nonlinear solver with access to its linear
solver solve function.

Arguments:

• NLS – a SUNNonlinSol object.

• SolveFn – a wrapper function to the SUNDIALS integrator’s linear solver solve function. See §9.1.4
for the definition of SUNNonlinSolLSolveFn.

Return value:

• A SUNErrCode

Notes:
The SUNNonlinSolLSolveFn function solves the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0. SUNNonlinSol implementations that do not require solving
this system or do not use SUNLinSol linear solvers may set this operation to NULL.

SUNErrCode SUNNonlinSolSetConvTestFn(SUNNonlinearSolver NLS, SUNNonlinSolConvTestFn CTestFn, void
*ctest_data)

This optional function is used to provide the nonlinear solver with a function for determining if the nonlinear
solver iteration has converged. This is typically called by SUNDIALS integrators to define their nonlinear con-
vergence criteria, but may be replaced by the user.

Arguments:

• NLS – a SUNNonlinSol object.

• CTestFn – a SUNDIALS integrator’s nonlinear solver convergence test function. See §9.1.4 for the
definition of SUNNonlinSolConvTestFn.

• ctest_data – is a data pointer passed to CTestFn every time it is called.

Return value:

• A SUNErrCode

Notes:
SUNNonlinSol implementations utilizing their own convergence test criteria may set this function to NULL.

SUNErrCode SUNNonlinSolSetMaxIters(SUNNonlinearSolver NLS, int maxiters)
This optional function sets the maximum number of nonlinear solver iterations. This is typically called by
SUNDIALS integrators to define their default iteration limit, but may be adjusted by the user.

Arguments:
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• NLS – a SUNNonlinSol object.

• maxiters – the maximum number of nonlinear iterations.

Return value:

• A SUNErrCode

9.1.3 SUNNonlinearSolver “get” functions

The following functions allow SUNDIALS integrators to retrieve nonlinear solver statistics. The routines to get the
number of iterations in the most recent solve (SUNNonlinSolGetNumIters()) and number of convergence failures
are optional. The routine to get the current nonlinear solver iteration (SUNNonlinSolGetCurIter()) is required when
using the convergence test provided by the SUNDIALS integrator or when using an iterative SUNLinSol linear solver
module; otherwise SUNNonlinSolGetCurIter() is optional.

SUNErrCode SUNNonlinSolGetNumIters(SUNNonlinearSolver NLS, long int *niters)
This optional function returns the number of nonlinear solver iterations in the most recent solve. This is typically
called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also be called by the user.

Arguments:

• NLS – a SUNNonlinSol object.

• niters – the total number of nonlinear solver iterations.

Return value:

• A SUNErrCode

SUNErrCode SUNNonlinSolGetCurIter(SUNNonlinearSolver NLS, int *iter)
This function returns the iteration index of the current nonlinear solve. This function is required when using
SUNDIALS integrator-provided convergence tests or when using an iterative SUNLinSol linear solver module;
otherwise it is optional.

Arguments:

• NLS – a SUNNonlinSol object.

• iter – the nonlinear solver iteration in the current solve starting from zero.

Return value:

• A SUNErrCode

SUNErrCode SUNNonlinSolGetNumConvFails(SUNNonlinearSolver NLS, long int *nconvfails)
This optional function returns the number of nonlinear solver convergence failures in the most recent solve. This
is typically called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also be called by
the user.

Arguments:

• NLS – a SUNNonlinSol object.

• nconvfails – the total number of nonlinear solver convergence failures.

Return value:

• A SUNErrCode
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9.1.4 Functions provided by SUNDIALS integrators

To interface with SUNNonlinSol modules, the SUNDIALS integrators supply a variety of routines for evaluating the
nonlinear system, calling the SUNLinSol setup and solve functions, and testing the nonlinear iteration for convergence.
These integrator-provided routines translate between the user-supplied ODE or DAE systems and the generic interfaces
to the nonlinear or linear systems of equations that result in their solution. The functions provided to a SUNNonlinSol
module have types defined in the header file sundials/sundials_nonlinearsolver.h; these are also described
below.

typedef int (*SUNNonlinSolSysFn)(N_Vector ycor, N_Vector F, void *mem)
These functions evaluate the nonlinear system F (y) for SUNNONLINEARSOLVER_ROOTFIND type modules or
G(y) for SUNNONLINEARSOLVER_FIXEDPOINT type modules. Memory for F must by be allocated prior to
calling this function. The vector ycor will be left unchanged.

Arguments:

• ycor – is the current correction to the predicted state at which the nonlinear system should be evaluated.

• F – is the output vector containing F (y) or G(y), depending on the solver type.

• mem – is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
SUNDIALS integrators formulate nonlinear systems as a function of the correction to the predicted solu-
tion. On each call to the nonlinear system function the integrator will compute and store the current solution
based on the input correction. Additionally, the residual will store the value of the ODE right-hand side
function or DAE residual used in computing the nonlinear system. These stored values are then directly
used in the integrator-supplied linear solver setup and solve functions as applicable.

typedef int (*SUNNonlinSolLSetupFn)(sunbooleantype jbad, sunbooleantype *jcur, void *mem)
These functions are wrappers to the SUNDIALS integrator’s function for setting up linear solves with SUNLinSol
modules.

Arguments:

• jbad – is an input indicating whether the nonlinear solver believes that A has gone stale (SUNTRUE) or
not (SUNFALSE).

• jcur – is an output indicating whether the routine has updated the Jacobian A (SUNTRUE) or not
(SUNFALSE).

• mem – is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
The SUNNonlinSolLSetupFn function sets up the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0 (when using SUNLinSol direct linear solvers) or calls the user-
defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlinSol
implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver setup function assumes that the
nonlinear system function has been called prior to the linear solver setup function as the setup will utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).
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typedef int (*SUNNonlinSolLSolveFn)(N_Vector b, void *mem)
These functions are wrappers to the SUNDIALS integrator’s function for solving linear systems with SUNLinSol
modules.

Arguments:

• b – contains the right-hand side vector for the linear solve on input and the solution to the linear system
on output.

• mem – is the SUNDIALS integrator memory structure.

Return value:
The return value is zero for a successful solve, a positive value for a recoverable error, and a negative value
for an unrecoverable error.

Notes:
The SUNNonlinSolLSolveFn function solves the linear systemAx = bwhereA = ∂F

∂y is the linearization
of the nonlinear residual function F (y) = 0. SUNNonlinSol implementations that do not require solving
this system or do not use SUNLinSol linear solvers may ignore these functions.

As discussed in the description of SUNNonlinSolSysFn, the linear solver solve function assumes that the
nonlinear system function has been called prior to the linear solver solve function as the setup may utilize
saved values from the nonlinear system evaluation (e.g., the updated solution).

typedef int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N_Vector ycor, N_Vector del, sunrealtype tol,
N_Vector ewt, void *ctest_data)

These functions are SUNDIALS integrator-specific convergence tests for nonlinear solvers and are typically
supplied by each SUNDIALS integrator, but users may supply custom problem-specific versions as desired.

Arguments:

• NLS – is the SUNNonlinSol object.

• ycor – is the current correction (nonlinear iterate).

• del – is the difference between the current and prior nonlinear iterates.

• tol – is the nonlinear solver tolerance.

• ewt – is the weight vector used in computing weighted norms.

• ctest_data – is the data pointer provided to SUNNonlinSolSetConvTestFn().

Return value:
The return value of this routine will be a negative value if an unrecoverable error occurred or one of the
following:

• SUN_SUCCESS – the iteration is converged.

• SUN_NLS_CONTINUE – the iteration has not converged, keep iterating.

• SUN_NLS_CONV_RECVR – the iteration appears to be diverging, try to recover.

Notes:
The tolerance passed to this routine by SUNDIALS integrators is the tolerance in a weighted root-mean-
squared norm with error weight vector ewt. SUNNonlinSol modules utilizing their own convergence cri-
teria may ignore these functions.
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9.1.5 SUNNonlinearSolver return codes

The functions provided to SUNNonlinSol modules by each SUNDIALS integrator, and functions within the
SUNDIALS-provided SUNNonlinSol implementations, utilize a common set of return codes shown in Table 9.1. Here,
negative values correspond to non-recoverable failures, positive values to recoverable failures, and zero to a successful
call.

Table 9.1: Description of the SUNNonlinearSolver return codes.

Name Value Description
SUN_SUCCESS 0 successful call or converged solve
SUN_NLS_CONTINUE 901 the nonlinear solver is not converged, keep iterating
SUN_NLS_CONV_RECVR 902 the nonlinear solver appears to be diverging, try to recover

9.1.6 The generic SUNNonlinearSolver module

SUNDIALS integrators interact with specific SUNNonlinSol implementations through the generic SUNNonlinSol
module on which all other SUNNonlinSol implementations are built. The SUNNonlinearSolver type is a pointer
to a structure containing an implementation-dependent content field and an ops field.

A SUNNonlinearSolver is a pointer to the _generic_SUNNonlinearSolver structure:

typedef struct _generic_SUNNonlinearSolver *SUNNonlinearSolver

struct _generic_SUNNonlinearSolver
The structure defining the SUNDIALS nonlinear solver class.

void *content
Pointer to nonlinear solver-specific member data

SUNNonlinearSolver_Ops ops
A virtual table of nonlinear solver operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef struct _generic_SUNNonlinearSolver_Ops *SUNNonlinearSolver_Ops

struct _generic_SUNNonlinearSolver_Ops
The structure defining SUNNonlinearSolver operations.

SUNNonlinearSolver_Type (*gettype)(SUNNonlinearSolver)
The function implementing SUNNonlinSolGetType()

int (*initialize)(SUNNonlinearSolver)
The function implementing SUNNonlinSolInitialize()

int (*setup)(SUNNonlinearSolver, N_Vector, void*)
The function implementing SUNNonlinSolSetup()

int (*solve)(SUNNonlinearSolver, N_Vector, N_Vector, N_Vector, sunrealtype, sunbooleantype, void*)
The function implementing SUNNonlinSolSolve()
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int (*free)(SUNNonlinearSolver)
The function implementing SUNNonlinSolFree()

int (*setsysfn)(SUNNonlinearSolver, SUNNonlinSolSysFn)
The function implementing SUNNonlinSolSetSysFn()

int (*setlsetupfn)(SUNNonlinearSolver, SUNNonlinSolLSetupFn)
The function implementing SUNNonlinSolSetLSetupFn()

int (*setlsolvefn)(SUNNonlinearSolver, SUNNonlinSolLSolveFn)
The function implementing SUNNonlinSolSetLSolveFn()

int (*setctestfn)(SUNNonlinearSolver, SUNNonlinSolConvTestFn, void*)
The function implementing SUNNonlinSolSetConvTestFn()

int (*setmaxiters)(SUNNonlinearSolver, int)
The function implementing SUNNonlinSolSetMaxIters()

int (*getnumiters)(SUNNonlinearSolver, long int*)
The function implementing SUNNonlinSolGetNumIters()

int (*getcuriter)(SUNNonlinearSolver, int*)
The function implementing SUNNonlinSolGetCurIter()

int (*getnumconvfails)(SUNNonlinearSolver, long int*)
The function implementing SUNNonlinSolGetNumConvFails()

The generic SUNNonlinSol module defines and implements the nonlinear solver operations defined in §9.1.1–§9.1.3.
These routines are in fact only wrappers to the nonlinear solver operations provided by a particular SUNNonlinSol im-
plementation, which are accessed through the ops field of the SUNNonlinearSolver structure. To illustrate this point
we show below the implementation of a typical nonlinear solver operation from the generic SUNNonlinSol module,
namely SUNNonlinSolSolve(), which solves the nonlinear system and returns a flag denoting a successful or failed
solve:

int SUNNonlinSolSolve(SUNNonlinearSolver NLS,
N_Vector y0, N_Vector y,
N_Vector w, sunrealtype tol,
sunbooleantype callLSetup, void* mem)

{
return((int) NLS->ops->solve(NLS, y0, y, w, tol, callLSetup, mem));

}

9.1.7 Implementing a Custom SUNNonlinearSolver Module

A SUNNonlinSol implementation must do the following:

• Specify the content of the SUNNonlinSol module.

• Define and implement the required nonlinear solver operations defined in §9.1.1–§9.1.3. Note that the names of
the module routines should be unique to that implementation in order to permit using more than one SUNNon-
linSol module (each with different SUNNonlinearSolver internal data representations) in the same code.

• Define and implement a user-callable constructor to create a SUNNonlinearSolver object.

To aid in the creation of custom SUNNonlinearSolvermodules, the generic SUNNonlinearSolvermodule provides
the utility functions SUNNonlinSolNewEmpty() and SUNNonlinSolFreeEmpty(). When used in custom SUNNon-
linearSolver constructors these functions will ease the introduction of any new optional nonlinear solver operations
to the SUNNonlinearSolver API by ensuring that only required operations need to be set.
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SUNNonlinearSolver SUNNonlinSolNewEmpty(SUNContext sunctx)
This function allocates a new generic SUNNonlinearSolver object and initializes its content pointer and the
function pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNNonlinearSolver object. If an error occurs when allocating the
object, then this routine will return NULL.

void SUNNonlinSolFreeEmpty(SUNNonlinearSolver NLS)
This routine frees the generic SUNNonlinearSolver object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been freed. It will additionally
test whether the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:

• NLS – a SUNNonlinearSolver object

Additionally, a SUNNonlinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNNonlinearSolver object, e.g.,
for setting various configuration options to tune the performance of the nonlinear solve algorithm.

• Provide additional user-callable “get” routines acting on the SUNNonlinearSolver object, e.g., for returning
various solve statistics.

9.2 IDAS SUNNonlinearSolver interface

As discussed in Chapter §2 each integration step requires the (approximate) solution of the nonlinear system

G(yn) = F

(
tn, yn, h

−1
n

q∑
i=0

αn,iyn−i

)
= 0.

Rather than solving this system for the new state yn IDAS reformulates the system to solve for the correction ycor to
the predicted new state ypred and its derivative ẏpred so that yn = ypred + ycor and ẏn = ẏpred + h−1n αn,0 ycor. The
nonlinear system rewritten in terms of ycor is

G(ycor) = F (tn, ypred + ycor, ẏpred + αycor) = 0. (9.1)

where α = h−1n αn,0.

Similarly in the forward sensitivity analysis case the nonlinear system is also reformulated in terms of the correction to
the predicted sensitivities.

The nonlinear system function provided by IDAS to the nonlinear solver module internally updates the current value
of the new state and its derivative based on the current correction passed to the function (as well as the sensitivities).
These values are used when calling the DAE residual function and when setting up linear solves (e.g., for updating the
Jacobian or preconditioner).

IDAS provides several advanced functions that will not be needed by most users, but might be useful for users who
choose to provide their own implementation of the SUNNonlinearSolver API. For example, such a user might need
access to the current y and ẏ vectors to compute Jacobian data.

int IDAGetCurrentCj(void *ida_mem, sunrealtype *cj)
The function IDAGetCurrentCj() returns the scalar cj which is proportional to the inverse of the step size (α
in (2.7)).

Arguments:
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• ida_mem – pointer to the IDAS memory block.

• cj – the value of cj .

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The IDAS memory block is NULL.

int IDAGetCurrentY(void *ida_mem, N_Vector *ycur)
The function IDAGetCurrentY() returns the current y vector.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• y – the current y vector.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The IDAS memory block is NULL.

int IDAGetCurrentYp(void *ida_mem, N_Vector *ypcur)
The function IDAGetCurrentYp() returns the current ẏ vector.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• yp – the current ẏ vector.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The IDAS memory block is NULL.

int IDAGetCurrentYSens(void *ida_mem, N_Vector **yyS)
The function IDAGetCurrentYSens() returns the current sensitivity vector array.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• yyS – pointer to the vector array that is set to the array of sensitivity vectors.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAGetCurrentYpSens(void *ida_mem, N_Vector **ypS)
The function IDAGetCurrentYpSens() returns the derivative the current sensitivity vector array.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• ypS – pointer to the vector array that is set to the array of sensitivity vector derivatives.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.
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int IDAGetNonlinearSystemData(void *ida_mem, sunrealtype *tcur, N_Vector *yypred, N_Vector *yppred,
N_Vector *yyn, N_Vector *ypn, N_Vector *res, sunrealtype *cj, void
**user_data)

The function IDAGetNonlinearSystemData() returns all internal data required to construct the current non-
linear system (9.1).

Arguments:

• ida_mem – pointer to the IDAS memory block.

• tcur – current value of the independent variable tn.

• yypred – predicted value of ypred at tn.

• yppred – predicted value of ẏpred at tn.

• yyn – the vector yn. This vector may not be current and may need to be filled (see the note below).

• ypn – the vector ẏn. This vector may not be current and may need to be filled (see the note below).

• res – the resiudal function evaluated at the current time and state, F (tn, yn, ẏn). This vector may not
be current and may need to be filled (see the note below).

• cj – the scalar cj which is proportional to the inverse of the step size (α in (9.1)).

• user_data – pointer to the user-defined data structures.

Return value:

• IDA_SUCCESS – The optional output values have been successfully set.

• IDA_MEM_NULL – The IDAS memory block is NULL.

Notes:
This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn to an existing SUN-
NonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlinear
system data to compute the nonlinear system function as part of a custom SUNNonlinearSolver object.

When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver object, the user
should call IDAGetNonlinearSystemData() inside the nonlinear system function to access the requi-
site data for evaluating the nonlinear system function of their choosing. Additionlly, if the SUNNonlin-
earSolver object (existing or custom) leverages the SUNNonlinSolLSetupFn and/or SUNNonlinSolL-
SolveFn functions supplied by IDAS (through calls to SUNNonlinSolSetLSetupFn() and SUNNonlin-
SolSetLSolveFn() respectively) the vectors yyn and ypn, and res must be filled in by the user’s SUN-
NonlinSolSysFn with the current state and corresponding evaluation of the right-hand side function re-
spectively i.e.,

yyn = ypred + ycor,

ypn = ẏpred + αẏcor,

res = F (tn, yn, ẏn) ,

where ycor was the first argument supplied to the SUNNonlinSolSysFn. If this function is called as part of
a custom linear solver (i.e., the default SUNNonlinSolSysFn is used) then the vectors yn, ypn and res are
only current when IDAGetNonlinearSystemData() is called after an evaluation of the nonlinear system
function.

int IDAGetNonlinearSystemDataSens(void *ida_mem, sunrealtype *tcur, N_Vector **yySpred, N_Vector
**ypSpred, N_Vector **yySn, N_Vector **ypSn, sunrealtype *cj, void
**user_data)

The function IDAGetNonlinearSystemDataSens() returns all internal sensitivity data required to construct
the current nonlinear system (9.1).
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Arguments:

• ida_mem – pointer to the IDAS memory block.

• tcur – current value of the independent variable tn.

• yySpred – predicted value of ySi,pred at tn for i = 0 . . . Ns − 1.

• ypSpred – predicted value of ẏSi,pred at tn for i = 0 . . . Ns − 1.

• yySn – the vectors ySi,n. These vectors may be not current see the note below.

• ypSn – the vectors ẏSi,n. These vectors may be not current see the note below.

• cj – the scalar cj which is proportional to the inverse of the step size α in (2.7).

• user_data – pointer to the user-defined data structures

Return value:

• IDA_SUCCESS – The optional output values have been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

Notes:
This routine is intended for users who wish to attach a custom SUNNonlinSolSysFn to an existing SUN-
NonlinearSolver object (through a call to SUNNonlinSolSetSysFn()) or who need access to nonlinear
system data to compute the nonlinear system function as part of a custom SUNNonlinearSolver object.
When supplying a custom SUNNonlinSolSysFn to an existing SUNNonlinearSolver object, the user
should call IDAGetNonlinearSystemDataSens() inside the nonlinear system function to access the req-
uisite data for evaluating the nonlinear system function of their choosing. Additionlly, if the the vectors yySn
and ypSn are provided as additional workspace and do not need to be filled in by the user’s SUNNonlin-
SolSysFn. If this function is called as part of a custom linear solver (i.e., the default SUNNonlinSolSysFn
is used) then the vectors yySn and ypSn are only current when IDAGetNonlinearSystemDataSens() is
called after an evaluation of the nonlinear system function.

int IDAComputeY(void *ida_mem, N_Vector ycor, N_Vector y)
The function computes the current y(t) vector based on the given correction vector from the nonlinear solver.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• ycor – the correction.

• y – the output vector.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The IDAS memory block is NULL.

int IDAComputeYp(void *ida_mem, N_Vector ycor, N_Vector yp)
The function computes ẏ(t) based on the given correction vector from the nonlinear solver.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• ycor – the correction.

• yp – the output vector array.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.
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• IDA_MEM_NULL – The IDAS memory block is NULL.

int IDAComputeYSens(void *ida_mem, N_Vector *ycorS, N_Vector *yys)
The function computes the sensitivities based on the given correction vector from the nonlinear solver.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• ycorS – the correction.

• yyS – the output vector array.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

int IDAComputeYpSens(void *ida_mem, N_Vector *ycorS, N_Vector *ypS)
The function computes the sensitivity derivatives based on the given correction vector from the nonlinear solver.

Arguments:

• ida_mem – pointer to the IDAS memory block.

• ycorS – the correction.

• ypS – the output vector array.

Return value:

• IDA_SUCCESS – The optional output value has been successfully set.

• IDA_MEM_NULL – The ida_mem pointer is NULL.

9.3 The SUNNonlinSol_Newton implementation

This section describes the SUNNonlinSol implementation of Newton’s method. To access the SUNNonlinSol_Newton
module, include the header file sunnonlinsol/sunnonlinsol_newton.h. We note that the SUNNonlinSol_Newton
module is accessible from SUNDIALS integrators without separately linking to the libsundials_sunnonlinsol-
newton module library.

9.3.1 SUNNonlinSol_Newton description

To find the solution to

F (y) = 0 (9.2)

given an initial guess y(0), Newton’s method computes a series of approximate solutions

y(m+1) = y(m) + δ(m+1)

where m is the Newton iteration index, and the Newton update δ(m+1) is the solution of the linear system

A(y(m))δ(m+1) = −F (y(m)) , (9.3)

in which A is the Jacobian matrix

A ≡ ∂F/∂y . (9.4)
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Depending on the linear solver used, the SUNNonlinSol_Newton module will employ either a Modified Newton method
or an Inexact Newton method [15, 20, 28, 30, 48]. When used with a direct linear solver, the Jacobian matrix A is held
constant during the Newton iteration, resulting in a Modified Newton method. With a matrix-free iterative linear solver,
the iteration is an Inexact Newton method.

In both cases, calls to the integrator-supplied SUNNonlinSolLSetupFn function are made infrequently to amortize the
increased cost of matrix operations (updatingA and its factorization within direct linear solvers, or updating the precon-
ditioner within iterative linear solvers). Specifically, SUNNonlinSol_Newton will call the SUNNonlinSolLSetupFn
function in two instances:

(a) when requested by the integrator (the input callLSetSetup is SUNTRUE) before attempting the Newton iteration,
or

(b) when reattempting the nonlinear solve after a recoverable failure occurs in the Newton iteration with stale Ja-
cobian information (jcur is SUNFALSE). In this case, SUNNonlinSol_Newton will set jbad to SUNTRUE before
calling the SUNNonlinSolLSetupFn() function.

Whether the Jacobian matrix A is fully or partially updated depends on logic unique to each integrator-supplied SUN-
NonlinSolLSetupFn routine. We refer to the discussion of nonlinear solver strategies provided in the package-specific
Mathematics section of the documentation for details.

The default maximum number of iterations and the stopping criteria for the Newton iteration are supplied by the SUN-
DIALS integrator when SUNNonlinSol_Newton is attached to it. Both the maximum number of iterations and the
convergence test function may be modified by the user by calling the SUNNonlinSolSetMaxIters() and/or SUNNon-
linSolSetConvTestFn() functions after attaching the SUNNonlinSol_Newton object to the integrator.

9.3.2 SUNNonlinSol_Newton functions

The SUNNonlinSol_Newton module provides the following constructor for creating the SUNNonlinearSolver object.

SUNNonlinearSolver SUNNonlinSol_Newton(N_Vector y, SUNContext sunctx)
This creates a SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of
the form F (y) = 0 using Newton’s method.

Arguments:

• y – a template for cloning vectors needed within the solver.

• sunctx – the SUNContext object (see §4.2)

Return value:
A SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

The SUNNonlinSol_Newton module implements all of the functions defined in §9.1.1–§9.1.3 except for SUNNon-
linSolSetup(). The SUNNonlinSol_Newton functions have the same names as those defined by the generic SUN-
NonlinSol API with _Newton appended to the function name. Unless using the SUNNonlinSol_Newton module as a
standalone nonlinear solver the generic functions defined in §9.1.1–§9.1.3 should be called in favor of the SUNNon-
linSol_Newton-specific implementations.

The SUNNonlinSol_Newton module also defines the following user-callable function.

SUNErrCode SUNNonlinSolGetSysFn_Newton(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
This returns the residual function that defines the nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.
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Return value:

• A SUNErrCode

Notes:
This function is intended for users that wish to evaluate the nonlinear residual in a custom convergence test
function for the SUNNonlinSol_Newton module. We note that SUNNonlinSol_Newton will not leverage
the results from any user calls to SysFn.

9.3.3 SUNNonlinSol_Newton content

The content field of the SUNNonlinSol_Newton module is the following structure.

struct _SUNNonlinearSolverContent_Newton {

SUNNonlinSolSysFn Sys;
SUNNonlinSolLSetupFn LSetup;
SUNNonlinSolLSolveFn LSolve;
SUNNonlinSolConvTestFn CTest;

N_Vector delta;
sunbooleantype jcur;
int curiter;
int maxiters;
long int niters;
long int nconvfails;
void* ctest_data;

};

These entries of the content field contain the following information:

• Sys – the function for evaluating the nonlinear system,

• LSetup – the package-supplied function for setting up the linear solver,

• LSolve – the package-supplied function for performing a linear solve,

• CTest – the function for checking convergence of the Newton iteration,

• delta – the Newton iteration update vector,

• jcur – the Jacobian status (SUNTRUE = current, SUNFALSE = stale),

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of Newton iterations allowed in a solve,

• niters – the total number of nonlinear iterations across all solves,

• nconvfails – the total number of nonlinear convergence failures across all solves,

• ctest_data – the data pointer passed to the convergence test function,
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9.4 The SUNNonlinSol_FixedPoint implementation

This section describes the SUNNonlinSol implementation of a fixed point (functional) iteration with optional An-
derson acceleration. To access the SUNNonlinSol_FixedPoint module, include the header file sunnonlinsol/
sunnonlinsol_fixedpoint.h. We note that the SUNNonlinSol_FixedPoint module is accessible from SUNDIALS
integrators without separately linking to the libsundials_sunnonlinsolfixedpoint module library.

9.4.1 SUNNonlinSol_FixedPoint description

To find the solution to

G(y) = y (9.5)

given an initial guess y(0), the fixed point iteration computes a series of approximate solutions

y(n+1) = G(y(n)) (9.6)

where n is the iteration index. The convergence of this iteration may be accelerated using Anderson’s method [10, 33,
56, 66]. With Anderson acceleration using subspace size m, the series of approximate solutions can be formulated as
the linear combination

y(n+1) = β

mn∑
i=0

α
(n)
i G(y(n−mn+i)) + (1− β)

mn∑
i=0

α
(n)
i yn−mn+i (9.7)

where mn = min {m,n} and the factors

α(n) = (α
(n)
0 , . . . , α(n)

mn
)

solve the minimization problem min
α
‖FnαT ‖2 under the constraint that

mn∑
i=0

αi = 1 where

Fn = (fn−mn , . . . , fn)

with fi = G(y(i)) − y(i). Due to this constraint, in the limit of m = 0 the accelerated fixed point iteration formula
(9.7) simplifies to the standard fixed point iteration (9.6).

Following the recommendations made in [66], the SUNNonlinSol_FixedPoint implementation computes the series of
approximate solutions as

y(n+1) = G(y(n))−
mn−1∑
i=0

γ
(n)
i ∆gn−mn+i − (1− β)(f(y(n))−

mn−1∑
i=0

γ
(n)
i ∆fn−mn+i) (9.8)

with ∆gi = G(y(i+1))−G(y(i)) and where the factors

γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1)

solve the unconstrained minimization problem min
γ
‖fn −∆Fnγ

T ‖2 where

∆Fn = (∆fn−mn , . . . ,∆fn−1),

with ∆fi = fi+1 − fi. The least-squares problem is solved by applying a QR factorization to ∆Fn = QnRn and
solving Rnγ = QTnfn.

The acceleration subspace size m is required when constructing the SUNNonlinSol_FixedPoint object. The default
maximum number of iterations and the stopping criteria for the fixed point iteration are supplied by the SUNDIALS
integrator when SUNNonlinSol_FixedPoint is attached to it. Both the maximum number of iterations and the conver-
gence test function may be modified by the user by calling SUNNonlinSolSetMaxIters() and SUNNonlinSolSet-
ConvTestFn() after attaching the SUNNonlinSol_FixedPoint object to the integrator.
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9.4.2 SUNNonlinSol_FixedPoint functions

The SUNNonlinSol_FixedPoint module provides the following constructor for creating the SUNNonlinearSolver
object.

SUNNonlinearSolver SUNNonlinSol_FixedPoint(N_Vector y, int m, SUNContext sunctx)
This creates a SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of
the form G(y) = y.

Arguments:

• y – a template for cloning vectors needed within the solver.

• m – the number of acceleration vectors to use.

• sunctx – the SUNContext object (see §4.2)

Return value:
A SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

Since the accelerated fixed point iteration (9.6) does not require the setup or solution of any linear systems, the SUN-
NonlinSol_FixedPoint module implements all of the functions defined in §9.1.1–§9.1.3 except for the SUNNonlin-
SolSetup(), SUNNonlinSolSetLSetupFn(), and SUNNonlinSolSetLSolveFn() functions, that are set to NULL.
The SUNNonlinSol_FixedPoint functions have the same names as those defined by the generic SUNNonlinSol API
with _FixedPoint appended to the function name. Unless using the SUNNonlinSol_FixedPoint module as a stan-
dalone nonlinear solver the generic functions defined in §9.1.1–§9.1.3 should be called in favor of the SUNNonlin-
Sol_FixedPoint-specific implementations.

The SUNNonlinSol_FixedPoint module also defines the following user-callable functions.

SUNErrCode SUNNonlinSolGetSysFn_FixedPoint(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
This returns the fixed-point function that defines the nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.

Return value:

• A SUNErrCode

Notes:
This function is intended for users that wish to evaluate the fixed-point function in a custom convergence
test function for the SUNNonlinSol_FixedPoint module. We note that SUNNonlinSol_FixedPoint will not
leverage the results from any user calls to SysFn.

SUNErrCode SUNNonlinSolSetDamping_FixedPoint(SUNNonlinearSolver NLS, sunrealtype beta)
This sets the damping parameter β to use with Anderson acceleration. By default damping is disabled i.e.,
β = 1.0.

Arguments:

• NLS – a SUNNonlinSol object.

• beta – the damping parameter 0 < β ≤ 1.

Return value:

• A SUNErrCode
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Notes:
A beta value should satisfy 0 < β < 1 if damping is to be used. A value of one or more will disable
damping.

9.4.3 SUNNonlinSol_FixedPoint content

The content field of the SUNNonlinSol_FixedPoint module is the following structure.

struct _SUNNonlinearSolverContent_FixedPoint {

SUNNonlinSolSysFn Sys;
SUNNonlinSolConvTestFn CTest;

int m;
int *imap;
sunrealtype *R;
sunbooleantype damping
sunrealtype beta
sunrealtype *gamma;
sunrealtype *cvals;
N_Vector *df;
N_Vector *dg;
N_Vector *q;
N_Vector *Xvecs;
N_Vector yprev;
N_Vector gy;
N_Vector fold;
N_Vector gold;
N_Vector delta;
int curiter;
int maxiters;
long int niters;
long int nconvfails;
void *ctest_data;

};

The following entries of the content field are always allocated:

• Sys – function for evaluating the nonlinear system,

• CTest – function for checking convergence of the fixed point iteration,

• yprev – N_Vector used to store previous fixed-point iterate,

• gy – N_Vector used to store G(y) in fixed-point algorithm,

• delta – N_Vector used to store difference between successive fixed-point iterates,

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of fixed-point iterations allowed in a solve,

• niters – the total number of nonlinear iterations across all solves,

• nconvfails – the total number of nonlinear convergence failures across all solves,

• ctest_data – the data pointer passed to the convergence test function,

• m – number of acceleration vectors,
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If Anderson acceleration is requested (i.e., m > 0 in the call to SUNNonlinSol_FixedPoint()), then the following
items are also allocated within the content field:

• imap – index array used in acceleration algorithm (length m),

• damping – a flag indicating if damping is enabled,

• beta – the damping parameter,

• R – small matrix used in acceleration algorithm (length m*m),

• gamma – small vector used in acceleration algorithm (length m),

• cvals – small vector used in acceleration algorithm (length m+1),

• df – array of vectors used in acceleration algorithm (length m),

• dg – array of vectors used in acceleration algorithm (length m),

• q – array of vectors used in acceleration algorithm (length m),

• Xvecs – vector pointer array used in acceleration algorithm (length m+1),

• fold – vector used in acceleration algorithm, and

• gold – vector used in acceleration algorithm.

9.5 The SUNNonlinSol_PetscSNES implementation

This section describes the SUNNonlinSol interface to the PETSc SNES nonlinear solver(s). To enable the SUNon-
linSol_PetscSNES module, SUNDIALS must be configured to use PETSc. Instructions on how to do this are
given in §11.3.30. To access the SUNNonlinSol_PetscSNES module, include the header file sunnonlinsol/
sunnonlinsol_petscsnes.h. The library to link to is libsundials_sunnonlinsolpetsc.lib where .lib is
typically .so for shared libraries and .a for static libraries. Users of the SUNNonlinSol_PetscSNES module should
also see §6.9 which discusses the NVECTOR interface to the PETSc Vec API.

9.5.1 SUNNonlinSol_PetscSNES description

The SUNNonlinSol_PetscSNES implementation allows users to utilize a PETSc SNES nonlinear solver to solve the
nonlinear systems that arise in the SUNDIALS integrators. Since SNES uses the KSP linear solver interface underneath
it, the SUNNonlinSol_PetscSNES implementation does not interface with SUNDIALS linear solvers. Instead, users
should set nonlinear solver options, linear solver options, and preconditioner options through the PETSc SNES, KSP,
and PC APIs.

Important usage notes for the SUNNonlinSol_PetscSNES implementation:

• The SUNNonlinSol_PetscSNES implementation handles calling SNESSetFunction at construction. The ac-
tual residual function F (y) is set by the SUNDIALS integrator when the SUNNonlinSol_PetscSNES object is
attached to it. Therefore, a user should not call SNESSetFunction on a SNES object that is being used with
SUNNonlinSol_PetscSNES. For these reasons it is recommended, although not always necessary, that the user
calls SUNNonlinSol_PetscSNES() with the new SNES object immediately after calling SNESCreate.

• The number of nonlinear iterations is tracked by SUNDIALS separately from the count kept by SNES. As such,
the function SUNNonlinSolGetNumIters() reports the cumulative number of iterations across the lifetime of
the SUNNonlinearSolver object.
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• Some “converged” and “diverged” convergence reasons returned by SNES are treated as recoverable convergence
failures by SUNDIALS. Therefore, the count of convergence failures returned by SUNNonlinSolGetNumCon-
vFails() will reflect the number of recoverable convergence failures as determined by SUNDIALS, and may
differ from the count returned by SNESGetNonlinearStepFailures.

• The SUNNonlinSol_PetscSNES module is not currently compatible with the CVODES or IDAS staggered or
simultaneous sensitivity strategies.

9.5.2 SUNNonlinearSolver_PetscSNES functions

The SUNNonlinSol_PetscSNES module provides the following constructor for creating a SUNNonlinearSolver ob-
ject.

SUNNonlinearSolver SUNNonlinSol_PetscSNES(N_Vector y, SNES snes, SUNContext sunctx)
This creates a SUNNonlinSol object that wraps a PETSc SNES object for use with SUNDIALS. This will call
SNESSetFunction on the provided SNES object.

Arguments:

• snes – a PETSc SNES object.

• y – a N_Vector object of type NVECTOR_PETSC that is used as a template for the residual vector.

• sunctx – the SUNContext object (see §4.2)

Return value:
A SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

Warning

This function calls SNESSetFunction and will overwrite whatever function was previously set. Users should
not call SNESSetFunction on the SNES object provided to the constructor.

The SUNNonlinSol_PetscSNES module implements all of the functions defined in §9.1.1–§9.1.3 except for SUN-
NonlinSolSetup(), SUNNonlinSolSetLSetupFn(), SUNNonlinSolSetLSolveFn(), SUNNonlinSolSetCon-
vTestFn(), and SUNNonlinSolSetMaxIters().

The SUNNonlinSol_PetscSNES functions have the same names as those defined by the generic SUNNonlinSol API
with _PetscSNES appended to the function name. Unless using the SUNNonlinSol_PetscSNES module as a standalone
nonlinear solver the generic functions defined in §9.1.1–§9.1.3 should be called in favor of the SUNNonlinSol_Petsc-
SNES specific implementations.

The SUNNonlinSol_PetscSNES module also defines the following user-callable functions.

SUNErrCode SUNNonlinSolGetSNES_PetscSNES(SUNNonlinearSolver NLS, SNES *snes)
This gets the SNES object that was wrapped.

Arguments:

• NLS – a SUNNonlinSol object.

• snes – a pointer to a PETSc SNES object that will be set upon return.

Return value:
A SUNErrCode

SUNErrCode SUNNonlinSolGetPetscError_PetscSNES(SUNNonlinearSolver NLS, PetscErrorCode *error)
This gets the last error code returned by the last internal call to a PETSc API function.
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Arguments:

• NLS – a SUNNonlinSol object.

• error – a pointer to a PETSc error integer that will be set upon return.

Return value:
A SUNErrCode

SUNErrCode SUNNonlinSolGetSysFn_PetscSNES(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
This returns the residual function that defines the nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object.

• SysFn – the function defining the nonlinear system.

Return value:
A SUNErrCode

9.5.3 SUNNonlinearSolver_PetscSNES content

The content field of the SUNNonlinSol_PetscSNES module is the following structure.

struct _SUNNonlinearSolverContent_PetscSNES {
int sysfn_last_err;
PetscErrorCode petsc_last_err;
long int nconvfails;
long int nni;
void *imem;
SNES snes;
Vec r;
N_Vector y, f;
SUNNonlinSolSysFn Sys;

};

These entries of the content field contain the following information:

• sysfn_last_err – last error returned by the system defining function,

• petsc_last_err – last error returned by PETSc,

• nconvfails – number of nonlinear converge failures (recoverable or not),

• nni – number of nonlinear iterations,

• imem – SUNDIALS integrator memory,

• snes – PETSc SNES object,

• r – the nonlinear residual,

• y – wrapper for PETSc vectors used in the system function,

• f – wrapper for PETSc vectors used in the system function,

• Sys – nonlinear system defining function.
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Tools for Memory Management

To support applications which leverage memory pools, or utilize a memory abstraction layer, SUNDIALS provides a
set of utilities that we collectively refer to as the SUNMemoryHelper API. The goal of this API is to allow users to
leverage operations defined by native SUNDIALS data structures while allowing the user to have finer-grained control
of the memory management.

10.1 The SUNMemoryHelper API

This API consists of three new SUNDIALS types: SUNMemoryType, SUNMemory, and SUNMemoryHelper:

typedef struct SUNMemory_ *SUNMemory
The SUNMemory type is a pointer the structure

struct SUNMemory_

void *ptr;
The actual data.

SUNMemoryType type;
The data memory type.

sunbooleantype own;
A flag indicating ownership.

size_t bytes;
The size of the data allocated.

size_t stride;
Added in version 7.3.0.

The stride of the data.

SUNMemory SUNMemoryNewEmpty(SUNContext sunctx)
This function returns an empty SUNMemory object.

Parameters

• sunctx – the SUNContext object.

Returns
an uninitialized SUNMemory object
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Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

enum SUNMemoryType
The SUNMemoryType type is an enumeration that defines the supported memory types:

enumerator SUNMEMTYPE_HOST
Pageable memory accessible on the host

enumerator SUNMEMTYPE_PINNED
Page-locked memory accessible on the host

enumerator SUNMEMTYPE_DEVICE
Memory accessible from the device

enumerator SUNMEMTYPE_UVM
Memory accessible from the host or device

typedef struct SUNMemoryHelper_ *SUNMemoryHelper
The SUNMemoryHelper type is a pointer to the structure

struct SUNMemoryHelper_

void *content;
Pointer to the implementation-specific member data

void *queue;
Pointer to the implementation-specific queue (e.g., a cudaStream_t*) to use by default when one is
not provided for an operation

Added in version 7.3.0.

SUNMemoryHelper_Ops ops;
A virtual method table of member functions

SUNContext sunctx;
The SUNDIALS simulation context

typedef struct SUNMemoryHelper_Ops_ *SUNMemoryHelper_Ops
The SUNMemoryHelper_Ops type is defined as a pointer to the structure containing the function pointers to the
member function implementations. This structure is define as

struct SUNMemoryHelper_Ops_

SUNErrCode (*alloc)(SUNMemoryHelper, SUNMemory *memptr, size_t mem_size, SUNMemoryType
mem_type, void *queue)

The function implementing SUNMemoryHelper_Alloc()

SUNErrCode (*allocstrided)(SUNMemoryHelper, SUNMemory *memptr, size_t mem_size, size_t
stride, SUNMemoryType mem_type, void *queue)

The function implementing SUNMemoryHelper_AllocStrided()

Added in version 7.3.0.

SUNErrCode (*dealloc)(SUNMemoryHelper, SUNMemory mem, void *queue)
The function implementing SUNMemoryHelper_Dealloc()

SUNErrCode (*copy)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size, void
*queue)

The function implementing SUNMemoryHelper_Copy()
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SUNErrCode (*copyasync)(SUNMemoryHelper, SUNMemory dst, SUNMemory src, size_t mem_size,
void *queue)

The function implementing SUNMemoryHelper_CopyAsync()

SUNErrCode (*getallocstats)(SUNMemoryHelper, SUNMemoryType mem_type, unsigned long
*num_allocations, unsigned long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

The function implementing SUNMemoryHelper_GetAllocStats()

SUNMemoryHelper (*clone)(SUNMemoryHelper)
The function implementing SUNMemoryHelper_Clone()

SUNErrCode (*destroy)(SUNMemoryHelper)
The function implementing SUNMemoryHelper_Destroy()

10.1.1 Implementation defined operations

The SUNMemory API defines the following operations that an implementation to must define:

SUNMemory SUNMemoryHelper_Alloc(SUNMemoryHelper helper, SUNMemory *memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

Returns
A new SUNMemory object

SUNMemory SUNMemoryHelper_AllocStrided(SUNMemoryHelper helper, SUNMemory *memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type, void
*queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes with the specified stride, and is of
type mem_type. The new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_-
Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the stride of the memory in bytes.

• mem_type – the SUNMemoryType of the ptr.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.
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Returns
A new SUNMemory object

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src, size_t
mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

Returns
A SUNErrCode indicating success or failure.

10.1.2 Utility Functions

The SUNMemoryHelper API defines the following functions which do not require a SUNMemoryHelper instance:

SUNMemory SUNMemoryHelper_Alias(SUNMemoryHelper helper, SUNMemory mem1)
Returns a SUNMemory object whose ptr field points to the same address as mem1. The new object will not have
ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – a SUNMemoryHelper object.

• mem1 – a SUNMemory object.

Returns
A SUNMemory object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.
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SUNMemory SUNMemoryHelper_Wrap(SUNMemoryHelper helper, void *ptr, SUNMemoryType mem_type)
Returns a SUNMemory object whose ptr field points to the ptr argument passed to the function. The new object
will not have ownership of ptr, therefore, it will not free ptr when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – a SUNMemoryHelper object.

• ptr – the data pointer to wrap in a SUNMemory object.

• mem_type – the SUNMemoryType of the ptr.

Returns
A SUNMemory object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNMemoryHelper SUNMemoryHelper_NewEmpty(SUNContext sunctx)
Returns an empty SUNMemoryHelper. This is useful for building custom SUNMemoryHelper implementations.

Parameters

• helper – a SUNMemoryHelper object.

Returns
A SUNMemoryHelper object or NULL if an error occurs.

Changed in version 7.0.0: The SUNMemoryHelper argument was added to the function signature.

SUNErrCode SUNMemoryHelper_CopyOps(SUNMemoryHelper src, SUNMemoryHelper dst)
Copies the ops field of src to the ops field of dst. This is useful for building custom SUNMemoryHelper
implementations.

Parameters

• src – the object to copy from.

• dst – the object to copy to.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats(SUNMemoryHelper helper, SUNMemoryType mem_type,
unsigned long *num_allocations, unsigned long
*num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about the allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of allocations done through the helper.

• num_deallocations – (output argument) number of deallocations done through the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.
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Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_SetDefaultQueue(SUNMemoryHelper helper, void *queue)
Sets the default queue for the helper.

Parameters

• helper – the SUNMemoryHelper object.

• queue – pointer to the queue to use by default.

Returns
A SUNErrCode indicating success or failure.

Added in version 7.3.0.

10.1.3 Implementation overridable operations with defaults

In addition, the SUNMemoryHelper API defines the following optionally overridable operations which an implemen-
tation may define:

SUNErrCode SUNMemoryHelper_CopyAsync(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
should use the memory types of dst and src to determine the appropriate transfer type necessary. The ctx
argument is used when a different execution stream needs to be provided to perform the copy in, e.g. with CUDA
this would be a cudaStream_t.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – typically a handle for an object representing an alternate execution stream (e.g., a
CUDA/HIP stream or SYCL queue), but it can also be any implementation specific data.

An int flag indicating success (zero) or failure (non-zero).

Note

If this operation is not defined by the implementation, then SUNMemoryHelper_Copy() will be used.

SUNMemoryHelper SUNMemoryHelper_Clone(SUNMemoryHelper helper)
Clones the SUNMemoryHelper object itself.

Parameters

• helper – the SUNMemoryHelper object to clone.

Returns
A SUNMemoryHelper object.
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Note

If this operation is not defined by the implementation, then the default clone will only copy the SUNMemory-
Helper_Ops structure stored in helper->ops, and not the helper->content field.

SUNErrCode SUNMemoryHelper_Destroy(SUNMemoryHelper helper)
Destroys (frees) the SUNMemoryHelper object itself.

Parameters

• helper – the SUNMemoryHelper object to destroy.

Returns
A SUNErrCode indicating success or failure.

Note

If this operation is not defined by the implementation, then the default destroy will only free the helper->ops
field and the helper itself. The helper->content field will not be freed.

10.1.4 Implementing a custom SUNMemoryHelper

A particular implementation of the SUNMemoryHelper API must:

• Define and implement the required operations. Note that the names of these routines should be unique to that
implementation in order to permit using more than one SUNMemoryHelper module in the same code.

• Optionally, specify the content field of SUNMemoryHelper.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMemory-
Helper.

An example of a custom SUNMemoryHelper is given in examples/utilities/custom_memory_helper.h.

10.2 The SUNMemoryHelper_Sys Implementation

The SUNMemoryHelper_Sys module is an implementation of the SUNMemoryHelper. API that interfaces with stan-
dard library memory management through malloc/free. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Sys(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling system memory if successful. Otherwise, it
returns NULL.
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10.2.1 SUNMemoryHelper_Sys API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

• SUNMemoryHelper_Alloc()

• SUNMemoryHelper_AllocStrided()

• SUNMemoryHelper_Dealloc()

• SUNMemoryHelper_Copy()

• SUNMemoryHelper_Clone()

• SUNMemoryHelper_GetAllocStats()

• SUNMemoryHelper_Destroy()

10.3 The SUNMemoryHelper_Cuda Implementation

The SUNMemoryHelper_Cuda module is an implementation of the SUNMemoryHelper API that interfaces to the
NVIDIA [5] library. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Cuda(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling CUDA memory if successful. Otherwise it re-
turns NULL.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNMemoryHelper object; otherwise it will return NULL.

10.3.1 SUNMemoryHelper_Cuda API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Cuda(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are: * SUNMEMTYPE_HOST –
memory is allocated with a call to malloc. * SUNMEMTYPE_PINNED – memory is allocated
with a call to cudaMallocHost. * SUNMEMTYPE_DEVICE – memory is allocated with a call
to cudaMalloc. * SUNMEMTYPE_UVM – memory is allocated with a call to cudaMalloc-
Managed.

• queue – currently unused.
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Returns
A new SUNMemory object.

SUNMemory SUNMemoryHelper_AllocStrided_Cuda(SUNMemoryHelper helper, SUNMemory memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type,
void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the number of bytes between elements in the array.

• mem_type – the SUNMemoryType of the ptr.

• queue – currently unused.

Returns
A new SUNMemory object.

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc_Cuda(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.
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SUNErrCode SUNMemoryHelper_CopyAsync_Cuda(SUNMemoryHelper helper, SUNMemory dst, SUNMemory
src, size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the cudaStream_t handle for the stream that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Cuda(SUNMemoryHelper helper, SUNMemoryType
mem_type, unsigned long *num_allocations, unsigned
long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the
helper.

• num_deallocations – (output argument) number of memory deallocations done through
the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

Returns
A SUNErrCode indicating success or failure.

10.4 The SUNMemoryHelper_Hip Implementation

The SUNMemoryHelper_Hip module is an implementation of the SUNMemoryHelper API that interfaces to the AMD
ROCm HIP library [2]. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Hip(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling HIP memory if successful. Otherwise it returns
NULL.

Parameters

• sunctx – the current SUNContext object.
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Returns
if successful, a usable SUNMemoryHelper object; otherwise it will return NULL.

10.4.1 SUNMemoryHelper_Hip API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Hip(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are: * SUNMEMTYPE_HOST –
memory is allocated with a call to malloc. * SUNMEMTYPE_PINNED – memory is allocated
with a call to hipMallocHost. * SUNMEMTYPE_DEVICE – memory is allocated with a call to
hipMalloc. * SUNMEMTYPE_UVM – memory is allocated with a call to hipMallocManaged.

• queue – currently unused.

Returns
A new SUNMemory object.

SUNMemory SUNMemoryHelper_AllocStrided_Hip(SUNMemoryHelper helper, SUNMemory memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type, void
*queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the number of bytes between elements in the array.

• mem_type – the SUNMemoryType of the ptr.

• queue – currently unused.

Returns
A new SUNMemory object.

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc_Hip(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.
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• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src, size_t
mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – currently unused.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_CopyAsync_Hip(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the hipStream_t handle for the stream that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Hip(SUNMemoryHelper helper, SUNMemoryType mem_type,
unsigned long *num_allocations, unsigned long
*num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the
helper.

• num_deallocations – (output argument) number of memory deallocations done through
the helper.
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• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

Returns
A SUNErrCode indicating success or failure.

10.5 The SUNMemoryHelper_Sycl Implementation

The SUNMemoryHelper_Sycl module is an implementation of the SUNMemoryHelperAPI that interfaces to the SYCL
abstraction layer. The implementation defines the constructor

SUNMemoryHelper SUNMemoryHelper_Sycl(SUNContext sunctx)
Allocates and returns a SUNMemoryHelper object for handling SYCL memory using the provided queue. Oth-
erwise it returns NULL.

Parameters

• sunctx – the current SUNContext object.

Returns
if successful, a usable SUNMemoryHelper object; otherwise it will return NULL.

10.5.1 SUNMemoryHelper_Sycl API Functions

The implementation provides the following operations defined by the SUNMemoryHelper API:

SUNMemory SUNMemoryHelper_Alloc_Sycl(SUNMemoryHelper helper, SUNMemory memptr, size_t mem_size,
SUNMemoryType mem_type, void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.

Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• mem_type – the SUNMemoryType of the ptr. Supported values are: * SUNMEMTYPE_HOST –
memory is allocated with a call to malloc. * SUNMEMTYPE_PINNED – memory is allocated
with a call to sycl::malloc_host. * SUNMEMTYPE_DEVICE – memory is allocated with a
call to sycl::malloc_device. * SUNMEMTYPE_UVM – memory is allocated with a call to
sycl::malloc_shared.

• queue – the sycl::queue handle for the stream that the allocation will be performed on.

Returns
A new SUNMemory object.

SUNMemory SUNMemoryHelper_AllocStrided_Sycl(SUNMemoryHelper helper, SUNMemory memptr, size_t
mem_size, size_t stride, SUNMemoryType mem_type,
void *queue)

Allocates a SUNMemory object whose ptr field is allocated for mem_size bytes and is of type mem_type. The
new object will have ownership of ptr and will be deallocated when SUNMemoryHelper_Dealloc() is called.
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Parameters

• helper – the SUNMemoryHelper object.

• memptr – pointer to the allocated SUNMemory.

• mem_size – the size in bytes of the ptr.

• stride – the number of bytes between elements in the array.

• mem_type – the SUNMemoryType of the ptr.

• queue – the sycl::queue handle for the stream that the allocation will be performed on.

Returns
A new SUNMemory object.

Added in version 7.3.0.

SUNErrCode SUNMemoryHelper_Dealloc_Sycl(SUNMemoryHelper helper, SUNMemory mem, void *queue)
Deallocates the mem->ptr field if it is owned by mem, and then deallocates the mem object.

Parameters

• helper – the SUNMemoryHelper object.

• mem – the SUNMemory object.

• queue – the sycl::queue handle for the queue that the deallocation will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_Copy_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory src,
size_t mem_size, void *queue)

Synchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.

• mem_size – the number of bytes to copy.

• queue – the sycl::queue handle for the queue that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_CopyAsync_Sycl(SUNMemoryHelper helper, SUNMemory dst, SUNMemory
src, size_t mem_size, void *queue)

Asynchronously copies mem_size bytes from the the source memory to the destination memory. The copy can
be across memory spaces, e.g. host to device, or within a memory space, e.g. host to host. The helper object
will use the memory types of dst and src to determine the appropriate transfer type necessary.

Parameters

• helper – the SUNMemoryHelper object.

• dst – the destination memory to copy to.

• src – the source memory to copy from.
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• mem_size – the number of bytes to copy.

• queue – the sycl::queue handle for the queue that the copy will be performed on.

Returns
A SUNErrCode indicating success or failure.

SUNErrCode SUNMemoryHelper_GetAllocStats_Sycl(SUNMemoryHelper helper, SUNMemoryType
mem_type, unsigned long *num_allocations, unsigned
long *num_deallocations, size_t *bytes_allocated, size_t
*bytes_high_watermark)

Returns statistics about memory allocations performed with the helper.

Parameters

• helper – the SUNMemoryHelper object.

• mem_type – the SUNMemoryType to get stats for.

• num_allocations – (output argument) number of memory allocations done through the
helper.

• num_deallocations – (output argument) number of memory deallocations done through
the helper.

• bytes_allocated – (output argument) total number of bytes allocated through the helper
at the moment this function is called.

• bytes_high_watermark – (output argument) max number of bytes allocated through the
helper at any moment in the lifetime of the helper.

Returns
A SUNErrCode indicating success or failure.
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Chapter 11

Installing SUNDIALS

In this chapter we discuss two ways for building and installing SUNDIALS from source. The first is with the Spack
HPC package manager and the second is with CMake.

11.1 Installing with Spack

Spack is a package management tool that provides a simple spec syntax to configure and install software on a wide
variety of platforms and environments. See the Getting Started section in the Spack documentation for more information
on installing Spack.

Once Spack is setup on your system, the default SUNDIALS configuration can be install with the command

spack install sundials

Additional options can be enabled through various Spack package variants. For information on the available variants
visit the SUNDIALS Spack package web page or use the command

spack info sundials

11.2 Installing with CMake

CMake provides a platform-independent build system capable of generating Unix and Linux Makefiles, as well as
KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. A GUI front end is also
available allowing for an interactive build and installation process.

At a minimum, building SUNDIALS requires CMake version 3.18.0 or higher and a working C compiler. If a compat-
ible version of CMake is not already installed on you system, source files or pre-built binary files can be obtained from
the CMake Download website.

When building with CMake, you will need to obtain the SUNDIALS source code. You can get the source files by either
cloning the SUNDIALS GitHub repository with the command

git clone https://github.com/LLNL/sundials

or by downloading release compressed archives (.tar.gz files) from the SUNDIALS download website. The com-
pressed archives allow for downloading the entire SUNDIALS suite or individual packages. The name of the distri-
bution archive is of the form SOLVER-7.3.0.tar.gz, where SOLVER is one of: sundials, cvode, cvodes, arkode,
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ida, idas, or kinsol, and 7.3.0 represents the version number of the SUNDIALS suite or of the individual package.
After downloading the relevant archives, uncompress and expand the sources. For example, by running

tar -zxf SOLVER-7.3.0.tar.gz

the extracted source files will be under the SOLVER-7.3.0 directory.

In the installation steps below we will refer to the following directories:

• SOLVER_DIR is the sundials directory created when cloning from GitHub or the SOLVER-7.3.0 directory
created after uncompressing the release archive.

• BUILD_DIR is the (temporary) directory under which SUNDIALS is built. In-source builds are prohibited; the
build directory BUILD_DIR can not be the same as SOLVER_DIR and such an attempt will lead to an error. This
prevents “polluting” the source tree, simplifies building with different configurations and/or options, and makes
it easy to clean-up all traces of the build by simply removing the build directory.

• INSTALL_DIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
The installation directory INSTALL_DIR can not be the same as the SOLVER_DIR directory. Typically, header files
are exported under a directory INSTALL_DIR/include while libraries are typically installed under INSTALL_-
DIR/lib or INSTALL_LIB/lib64, with INSTALL_DIR specified at configuration time.

11.2.1 Linux/Unix systems

CMake can be used from the command line with the cmake command, or from graphical interfaces with the ccmake
or cmake-gui commands. Below we present the installation steps using the command line interface.

Using CMake from the command line is simply a matter of generating the build files for the desired configuration,
building, and installing. For example, the following commands will build and install the default configuration:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR

cd BUILD_DIR
make
make install

The default configuration will install static and shared libraries for all SUNDIALS packages and install the associated
example codes. Additional features can be enabled by specifying more options in the configuration step. For example,
to enable MPI add -D ENABLE_MPI=ON to the cmake command above:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON

See section §11.3 below for a complete list of SUNDIALS configuration options and additional configuration examples.
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11.2.2 Windows Systems

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Create a separate BUILD_DIR

2. Open a Visual Studio Command Prompt and cd to BUILD_DIR

3. Run cmake-gui ../SOLVER_DIR

a. Hit Configure

b. Check/Uncheck solvers to be built

c. Change CMAKE_INSTALL_PREFIX to INSTALL_DIR

d. Set other options as desired (see section §11.3)

e. Hit Generate

4. Back in the VS Command Window:

a. Run msbuild ALL_BUILD.vcxproj

b. Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTALL_DIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file to
open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

11.2.3 HPC Clusters

This section is a guide for installing SUNDIALS on specific HPC clusters. In general, the procedure is the same as
described previously in §11.2.1 for Unix/Linux machines. The main differences are in the modules and environment
variables that are specific to different HPC clusters. We aim to keep this section as up to date as possible, but it may
lag the latest software updates to each cluster.

11.2.3.1 Frontier

Frontier is an Exascale supercomputer at the Oak Ridge Leadership Computing Facility. If you are new to this system,
then we recommend that you review the Frontier user guide.

A Standard Installation

Load the modules and set the environment variables needed to build SUNDIALS. This configuration enables both MPI
and HIP support for distributed and GPU parallelism. It uses the HIP compiler for C and C++ and the Cray Fortran
compiler. Other configurations are possible.

# required dependencies
module load PrgEnv-cray-amd/8.5.0
module load craype-accel-amd-gfx90a
module load rocm/5.3.0
module load cmake/3.23.2

# GPU-aware MPI
(continues on next page)

11.2. Installing with CMake 409

https://www.olcf.ornl.gov/frontier/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html


User Documentation for IDAS, v6.3.0

(continued from previous page)

export MPICH_GPU_SUPPORT_ENABLED=1

# compiler environment hints
export CC=$(which hipcc)
export CXX=$(which hipcc)
export FC=$(which ftn)
export CFLAGS="-I${ROCM_PATH}/include"
export CXXFLAGS="-I${ROCM_PATH}/include -Wno-pass-failed"
export LDFLAGS="-L${ROCM_PATH}/lib -lamdhip64 ${PE_MPICH_GTL_DIR_amd_gfx90a} -lmpi_gtl_hsa"

Now we can build SUNDIALS. In general, this is the same procedure described in the previous sections. The following
command builds and installs SUNDIALS with MPI, HIP, and the Fortran interface enabled, where <account> is your
allocation account on Frontier:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D AMDGPU_TARGETS=gfx90a \
-D ENABLE_HIP=ON \
-D ENABLE_MPI=ON \
-D BUILD_FORTRAN_MODULE_INTERFACE=ON

cd BUILD_DIR
make -j8 install
# Need an allocation to run the tests:
salloc -A <account> -t 10 -N 1 -p batch
make test
make test_install_all

11.3 Configuration options

All available SUNDIALS CMake options are described in the sections below. The default values for some options
(e.g., compiler flags and installation paths) are for a Linux system and are provided as illustration only.

Note

When using a CMake graphical interface (ccmake or cmake-gui), multiple configuration passes are performed
before generating the build files. For options where the default value depends on the value of another option,
the initial value is set on the first configuration pass and is not updated automatically if the related option value is
changed in subsequent passes. For example, the default value of EXAMPLES_INSTALL_PATH is CMAKE_INSTALL_-
PREFIX/examples; if the value of CMAKE_INSTALL_PREFIX is updated, then EXAMPLES_INSTALL_PATH will
also need to be updated as its value was set using the CMAKE_INSTALL_PREFIX default.
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11.3.1 Build Type

The build type determines the level of compiler optimization, if debug information is included, and if additional error
checking code is generated. The provided build types are:

• Debug – no optimization flags, debugging information included, additional error checking enabled

• Release – high optimization flags, no debugging information, no additional error checks

• RelWithDebInfo – high optimization flags, debugging information included, no additional error checks

• MinSizeRel – minimize size flags, no debugging information, no additional error checks

Each build type has a corresponding option for the set of compiler flags that are appended to the user-specified compiler
flags. See section §11.3.2 for more information.

CMAKE_BUILD_TYPE

Choose the type of build for single-configuration generators (e.g., Makefiles or Ninja).

Default: RelWithDebInfo

CMAKE_CONFIGURATION_TYPES

Specifies the build types for multi-config generators (e.g. Visual Studio, Xcode, or Ninja Multi-Config) as a
semicolon-separated list.

Default: Debug, Release, RelWithDebInfo, and MinSizeRel

11.3.2 Compilers and Compiler Flags

Building SUNDIALS requires a C compiler that supports at least a subset of the C99 standard (specifically those
features implemented by Visual Studio 2015).

Additional SUNDIALS features that interface with external C++ libraries or GPU programming models require a C++
compiler (e.g., CUDA, HIP, SYCL, Ginkgo, Trilinos, etc.). The C++ standard required depends on the particular library
or programming model used and is noted with the relevant options below. The C++ convenience classes provided by
SUNDIALS require C++14 or newer. C++ applications that require an earlier C++ standard should use the SUNDIALS
C API.

When enabling the SUNDIALS Fortran interfaces, a Fortran compiler that supports the Fortran 2003 or newer standard
is required in order to utilize the ISO_C_BINDING module.

11.3.2.1 C Compiler

CMAKE_C_COMPILER

The full path to the C compiler

Default: CMake will attempt to automatically locate a C compiler on the system (e.g., from the CC environment
variable or common installation paths).

CMAKE_C_FLAGS

User-specified flags for the C compiler. The value of this option should be a string with flags separated by spaces.

Default: Initialized by the CFLAGS environment variable.

CMAKE_C_FLAGS_DEBUG

C compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g
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CMAKE_C_FLAGS_RELEASE

C compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3 -DNDEBUG

CMAKE_C_FLAGS_RELWITHDEBINFO

C compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g -DNDEBUG

CMAKE_C_FLAGS_MINSIZEREL

C compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os -DNDEBUG

CMAKE_C_STANDARD

The C standard used when building SUNDIALS C source files.

Default: 99

Options: 99, 11, or 17

CMAKE_C_EXTENSIONS

Enable compiler specific C extensions.

Default: ON

11.3.2.2 C++ Compiler

CMAKE_CXX_COMPILER

The full path to the C++ compiler

Default: CMake will attempt to automatically locate a C++ compiler on the system (e.g., from the CXX environ-
ment variable or common installation paths).

CMAKE_CXX_FLAGS

User-specified flags for the C++ compiler. The value of this option should be a string with flags separated by
spaces.

Default: Initialized by the CXXFLAGS environment variable.

CMAKE_CXX_FLAGS_DEBUG

C++ compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

CMAKE_CXX_FLAGS_RELEASE

C++ compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3 -DNDEBUG

CMAKE_CXX_FLAGS_RELWITHDEBINFO

C++ compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g -DNDEBUG

CMAKE_CXX_FLAGS_MINSIZEREL

C++ compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os -DNDEBUG
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CMAKE_CXX_STANDARD

The C++ standard used when building SUNDIALS C++ source files.

Default: 14

Options: 14, 17, or 20

CMAKE_CXX_EXTENSIONS

Enable compiler specific C++ extensions.

Default: ON

11.3.2.3 Fortran Compiler

CMAKE_Fortran_COMPILER

The full path to the Fortran compiler

Default: CMake will attempt to automatically locate a Fortran compiler on the system (e.g., from the FC envi-
ronment variable or common installation paths).

CMAKE_Fortran_FLAGS

User-specified flags for the Fortran compiler. The value of this option should be a string with flags separated by
spaces.

Default: Initialized by the FFLAGS environment variable.

CMAKE_Fortran_FLAGS_DEBUG

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is Debug

Default: -g

CMAKE_Fortran_FLAGS_RELEASE

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is Release

Default: -O3

CMAKE_Fortran_FLAGS_RELWITHDEBINFO

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is RelWithDebInfo

Default: -O2 -g

CMAKE_Fortran_FLAGS_MINSIZEREL

Fortran compiler flags appended when the CMAKE_BUILD_TYPE is MinSizeRel

Default: -Os

11.3.3 Install Location

Use the following options to set where the SUNDIALS headers, library, and CMake configuration files will be installed.

CMAKE_INSTALL_PREFIX

Install path prefix (INSTALL_DIR), prepended onto install directories

Default: /usr/local
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Note

The user must have write access to the location specified through this option. Exported SUNDIALS header
files and libraries will be installed under subdirectories include and CMAKE_INSTALL_LIBDIR of CMAKE_-
INSTALL_PREFIX , respectively.

CMAKE_INSTALL_LIBDIR

The directory under CMAKE_INSTALL_PREFIX where libraries will be installed

Default: Set based on the system as lib, lib64, or lib/<multiarch-tuple>

SUNDIALS_INSTALL_CMAKEDIR

The directory under CMAKE_INSTALL_PREFIX where the SUNDIALS CMake package configuration files will
be installed (see section §11.6.1 for more information)

Default: CMAKE_INSTALL_LIBDIR/cmake/sundials

11.3.4 Shared and Static Libraries

Use the following options to set which types of libraries will be installed. By default both static and shared libraries
are installed.

BUILD_SHARED_LIBS

Build shared libraries

Default: ON

BUILD_STATIC_LIBS

Build static libraries

Default: ON

11.3.5 Index Size

SUNDIALS_INDEX_SIZE

The integer size (in bits) used for indices in SUNDIALS (e.g., for vector and matrix entries), options are: 32 or
64

Default: 64

Note

The build system tries to find an integer type of the appropriate size. Candidate 64-bit integer types are (in
order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order
of preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to
provide a type not listed here.

SUNDIALS_INDEX_TYPE

The integer type used for SUNDIALS indices. The type size must match the size provided in the SUNDIALS_-
INDEX_SIZE option.

Default: Automatically determined based on SUNDIALS_INDEX_SIZE
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Changed in version 3.2.0: In prior versions, this option could be set to INT64_T to use 64-bit integers or INT32_T
to use 32-bit integers. These special values are deprecated and a user will only need to use the SUNDIALS_-
INDEX_SIZE option in most cases.

11.3.6 Precision

SUNDIALS_PRECISION

The floating-point precision used in SUNDIALS packages and class implementations, options are: single,
double, or extended

Default: double

11.3.7 Math Library

SUNDIALS_MATH_LIBRARY

The standard C math library (e.g., libm) to link with.

Default: -lm on Unix systems, none otherwise

11.3.8 SUNDIALS Packages

The following options can be used to enable/disable particular SUNDIALS packages.

BUILD_ARKODE

Build the ARKODE library

Default: ON

BUILD_CVODE

Build the CVODE library

Default: ON

BUILD_CVODES

Build the CVODES library

Default: ON

BUILD_IDA

Build the IDA library

Default: ON

BUILD_IDAS

Build the IDAS library

Default: ON

BUILD_KINSOL

Build the KINSOL library

Default: ON
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11.3.9 Example Programs

EXAMPLES_ENABLE_C

Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CXX

Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_CUDA

Build the SUNDIALS CUDA examples

Default: ON when ENABLE_CUDA is ON, otherwise OFF

EXAMPLES_ENABLE_F2003

Build the SUNDIALS Fortran 2003 examples

Default: ON when BUILD_FORTRAN_MODULE_INTERFACE is ON, otherwise OFF

EXAMPLES_INSTALL

Install example program source files and sample output files. See EXAMPLES_INSTALL_PATH for the install
location.

A CMakeLists.txt file to build the examples will be automatically generated and installed with the source
files. If building on a Unix-like system, a Makefile for compiling the installed example programs will be also
generated and installed.

Default: ON

EXAMPLES_INSTALL_PATH

Full path to where example source and output files will be installed

Default: CMAKE_INSTALL_PREFIX/examples

11.3.10 Fortran Interfaces

BUILD_FORTRAN_MODULE_INTERFACE

Build the SUNDIALS Fortran 2003 interface

Default: OFF

Note

The Fortran interface are only compatible with double precision (i.e., SUNDIALS_PRECISION must be dou-
ble).

Warning

There is a known issue with MSYS/gfortran and SUNDIALS shared libraries that causes linking the Fortran
interfaces to fail when building SUNDIALS. For now the work around is to only build with static libraries
when using MSYS with gfortran on Windows.
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11.3.11 Error Checking

For more information on error handling in SUNDIALS, see Error Checking.

SUNDIALS_ENABLE_ERROR_CHECKS

Build SUNDIALS with more extensive checks for unrecoverable errors.

Default: ON when CMAKE_BUILD_TYPE is Debug, otherwise OFF

Warning

Error checks will impact performance, but can be helpful for debugging.

11.3.12 Logging

For more information on logging in SUNDIALS, see Status and Error Logging.

SUNDIALS_LOGGING_LEVEL

The maximum logging level. The options are:

• 0 – no logging

• 1 – log errors

• 2 – log errors + warnings

• 3 – log errors + warnings + informational output

• 4 – log errors + warnings + informational output + debug output

• 5 – log all of the above and even more (e.g. vector valued variables may be logged)

Default: 2

Warning

Logging will impact performance, but can be helpful for debugging or understanding algorithm performance.
The higher the logging level, the more output that may be logged, and the more performance may degrade.

11.3.13 Monitoring

SUNDIALS_BUILD_WITH_MONITORING

Build SUNDIALS with capabilities for fine-grained monitoring of solver progress and statistics. This is primarily
useful for debugging.

Default: OFF

Warning

Building with monitoring may result in minor performance degradation even if monitoring is not utilized.
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11.3.14 Profiling

For more information on profiling in SUNDIALS, see Performance Profiling.

SUNDIALS_BUILD_WITH_PROFILING

Build SUNDIALS with capabilities for fine-grained profiling. This requires POSIX timers, the Windows
profileapi.h timers, or enabling Caliper with ENABLE_CALIPER .

Default: OFF

Warning

Profiling will impact performance, and should be enabled judiciously.

11.3.15 Building with Adiak

Adiak is a library for recording meta-data about HPC simulations. Adiak is developed by Lawrence Livermore National
Laboratory and can be obtained from the Adiak GitHub repository.

ENABLE_ADIAK

Enable Adiak support

Default: OFF

adiak_DIR

Path to the root of an Adiak installation

Default: None

11.3.16 Building with Caliper

Caliper is a performance analysis library providing a code instrumentation and performance measurement framework
for HPC applications. Caliper is developed by Lawrence Livermore National Laboratory and can be obtained from the
Caliper GitHub repository.

When profiling and Caliper are both enabled, SUNDIALS will utilize Caliper for performance profiling.

To enable Caliper support, set the ENABLE_CALIPER to ON and set CALIPER_DIR to the root path of the Caliper
installation. For example, the following command will configure SUNDIALS with profiling and Caliper support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D SUNDIALS_BUILD_WITH_PROFILING=ON \
-D ENABLE_CALIPER=ON \
-D CALIPER_DIR=/path/to/caliper/installation

ENABLE_CALIPER

Enable CALIPER support

Default: OFF
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Note

Using Caliper requires setting SUNDIALS_BUILD_WITH_PROFILING to ON.

CALIPER_DIR

Path to the root of a Caliper installation

Default: None

11.3.17 Building with CUDA

The NVIDIA CUDA Toolkit provides a development environment for GPU-accelerated computing with NVIDIA
GPUs. The CUDA Toolkit and compatible NVIDIA drivers are available from the NVIDIA developer website. SUN-
DIALS has been tested with the CUDA toolkit versions 10, 11, and 12.

When CUDA support is enabled, the CUDA NVector, the cuSPARSE SUNMatrix, and the cuSPARSE batched QR
SUNLinearSolver will be built (see sections §11.7.3.11, §11.7.4.2, and §11.7.5.2, respectively, for the corresponding
header files and libraries). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated
Computing.

To enable CUDA support, set ENABLE_CUDA to ON. If CUDA is installed in a nonstandard location, you may need
to set CUDA_TOOLKIT_ROOT_DIR to your CUDA Toolkit installation path. You will also need to set CMAKE_CUDA_-
ARCHITECTURES to the CUDA architecture for your system. For example, the following command will configure
SUNDIALS with CUDA support for a system with an Ampere GPU:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_CUDA

Enable CUDA support

Default: OFF

CUDA_TOOLKIT_ROOT_DIR

Path to the CUDA Toolkit installation

Default: CMake will attempt to automatically locate an installed CUDA Toolkit

CMAKE_CUDA_ARCHITECTURES

Specifies the CUDA architecture to compile for i.e., 60 for Pascal, 70 for Volta, 80 for Ampere, 90 for Hopper,
etc. See the GPU compute capability tables on the NVIDIA webpage and the GPU Compilation section of the
CUDA documentation for more information.

Default: Determined automatically by CMake. Users are encouraged to override this value with the architecture
for their system as the default varies across compilers and compiler versions.

Changed in version 7.2.0: In prior versions CMAKE_CUDA_ARCHITECTURES defaulted to 70.
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11.3.18 Building with Ginkgo

Ginkgo is a high-performance linear algebra library with a focus on solving sparse linear systems. It is implemented
using modern C++ (you will need at least a C++14 compliant compiler to build it), with GPU kernels implemented
in CUDA (for NVIDIA devices), HIP (for AMD devices), and SYCL/DPC++ (for Intel devices and other supported
hardware). Ginkgo can be obtained from the Ginkgo GitHub repository. SUNDIALS is regularly tested with the latest
versions of Ginkgo, specifically up to version 1.8.0.

When Ginkgo support is enabled, the Ginkgo SUNMatrix and the Ginkgo SUNLinearSolver header files will be installed
(see sections §11.7.4.4 and §11.7.5.4, respectively, for the corresponding header files). For more information on using
SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable Ginkgo support, set ENABLE_GINKGO to ON and set Ginkgo_DIR to the root path of the Ginkgo installation.
Additionally, set SUNDIALS_GINKGO_BACKENDS to a semicolon-separated list of Ginkgo target architectures/executors.
For example, the following command will configure SUNDIALS with Ginkgo support using the reference, OpenMP,
and CUDA (targeting Ampere GPUs) backends:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_GINKGO=ON \
-D Ginkgo_DIR=/path/to/ginkgo/installation \
-D SUNDIALS_GINKGO_BACKENDS="REF;OMP;CUDA" \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80" \
-D ENABLE_OPENMP=ON

Note

The SUNDIALS interfaces to Ginkgo are not compatible with extended precision (i.e., when SUNDIALS_PRECI-
SION is set to extended).

ENABLE_GINKGO

Enable Ginkgo support

Default: OFF

Ginkgo_DIR

Path to the Ginkgo installation

Default: None

SUNDIALS_GINKGO_BACKENDS

Semi-colon separated list of Ginkgo target architectures/executors to build for. Options currently supported are
REF (the Ginkgo reference executor), OMP (OpenMP), CUDA, HIP, and SYCL.

Default: "REF;OMP"

Changed in version 7.1.0: The DPCPP option was changed to SYCL to align with Ginkgo’s naming convention.
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11.3.19 Building with HIP

The Heterogeneous-compute Interface for Portability (HIP) allows developers to create portable applications for AMD
and NVIDIA GPUs. HIP can be obtained from the HIP GitHub repository. SUNDIALS has been tested with HIP
versions between 5.0.0 to 5.4.3.

When HIP support is enabled, the HIP NVector will be built (see section §11.7.3.12 for the corresponding header file
and library). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable HIP support, set ENABLE_HIP to ON and set AMDGPU_TARGETS to the desired target (e.g., gfx705). In
addition, set CMAKE_C_COMPILER and CMAKE_CXX_COMPILER to a HIP compatible compiler e.g., hipcc. For example,
the following command will configure SUNDIALS with HIP support for a system with an MI250X GPU:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D CMAKE_C_COMPILER=hipcc \
-D CMAKE_CXX_COMPILER=hipcc \
-D ENABLE_HIP=ON \
-D AMDGPU_TARGETS="gfx90a"

ENABLE_HIP

Enable HIP Support

Default: OFF

AMDGPU_TARGETS

Specify which AMD GPUs to target

Default: None

11.3.20 Building with hypre

hypre is a library of high performance preconditioners and solvers featuring multigrid methods for the solution of large,
sparse linear systems of equations on massively parallel computers. The library is developed by Lawrence Livermore
National Laboratory and is available from the hypre GitHub repository. SUNDIALS is regularly tested with the latest
versions of hypre, specifically up to version 2.26.0.

When hypre support is enabled, the ParHyp NVector will be built (see section §11.7.3.9 for the corresponding header
file and library).

To enable hypre support, set ENABLE_MPI to ON, set ENABLE_HYPRE to ON, and set HYPRE_DIR to the root path of the
hypre installation. For example, the following command will configure SUNDIALS with hypre support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON \
-D ENABLE_HYPRE=ON \
-D HYPRE_DIR=/path/to/hypre/installation
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Note

SUNDIALS must be configured so that SUNDIALS_INDEX_SIZE is compatible with HYPRE_BigInt in the hypre
installation.

ENABLE_HYPRE

Enable hypre support

Default: OFF

HYPRE_DIR

Path to the hypre installation

Default: none

11.3.21 Building with KLU

KLU is a software package for the direct solution of sparse nonsymmetric linear systems of equations that arise in
circuit simulation and is part of SuiteSparse, a suite of sparse matrix software. The library is developed by Texas A&M
University and is available from the SuiteSparse GitHub repository. SUNDIALS is regularly tested with the latest
versions of KLU, specifically up to SuiteSparse version 7.7.0.

When KLU support is enabled, the KLU SUNLinearSolver will be built (see section §11.7.5.5 for the corresponding
header file and library).

To enable KLU support, set ENABLE_KLU to ON. For SuiteSparse 7.4.0 and newer, set KLU_ROOT to the root of the
SuiteSparse installation. Alternatively, set KLU_INCLUDE_DIR and KLU_LIBRARY_DIR to the path to the header and
library files, respectively, of the SuiteSparse installation. For example, the following command will configure SUNDI-
ALS with KLU support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KLU=ON \
-D KLU_ROOT=/path/to/suitesparse/installation

ENABLE_KLU

Enable KLU support

Default: OFF

KLU_ROOT

Path to the SuiteSparse installation

Default: OFF

KLU_INCLUDE_DIR

Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR

Path to SuiteSparse installed library files

Default: none
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11.3.22 Building with Kokkos

Kokkos is a modern C++ (requires at least C++14) programming model for witting performance portable code for
multicore CPU and GPU-based systems including NVIDIA, AMD, and Intel GPUs. Kokkos is developed by Sandia
National Laboratory and can be obtained from the Kokkos GitHub repository. The minimum supported version of
Kokkos 3.7.00. SUNDIALS is regularly tested with the latest versions of Kokkos, specifically up to version 4.3.01.

When Kokkos support is enabled, the Kokkos NVector header file will be installed (see section §11.7.3.16 for the
corresponding header file). For more information on using SUNDIALS with GPUs, see Features for GPU Accelerated
Computing.

To enable Kokkos support, set the ENABLE_KOKKOS to ON and set Kokkos_DIR to root path of the Kokkos installation.
For example, the following command will configure SUNDIALS with Kokkos support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KOKKOS=ON \
-D Kokkos_DIR=/path/to/kokkos/installation

ENABLE_KOKKOS

Enable Kokkos support

Default: OFF

Kokkos_DIR

Path to the Kokkos installation.

Default: None

11.3.23 Building with KokkosKernels

The KokkosKernels library is built on Kokkos and provides common linear algebra computational kernels. KokkosKer-
nels is developed by Sandia National Laboratory and can be obtained from the KokkosKernels GitHub repository.
The minimum supported version of KokkosKernels 3.7.00. SUNDIALS is regularly tested with the latest versions of
KokkosKernels, specifically up to version 4.3.01.

When KokkosKernels support is enabled, the KokkosKernels SUNMatrix and KokkosKernels SUNLinearSolver header
files will be installed (see sections §11.7.4.5 and §11.7.5.6, respectively, for the corresponding header files). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable KokkosKernels support, set ENABLE_KOKKOS and ENABLE_KOKKOS_KERNELS to ON and set Kokkos_DIR
and KokkosKernels_DIR to the root paths for the Kokkos and KokkosKernels installations, respectively. For example,
the following command will configure SUNDIALS with Kokkos and KokkosKernels support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_KOKKOS=ON \
-D Kokkos_DIR=/path/to/kokkos/installation \
-D ENABLE_KOKKOS_KERNELS=ON \
-D KokkosKernels_DIR=/path/to/kokkoskernels/installation
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ENABLE_KOKKOS_KERNELS

Enable KokkosKernels support

Default: OFF

KokkosKernels_DIR

Path to the KokkosKernels installation.

Default: None

11.3.24 Building with LAPACK

The Linear Algebra PACKage (LAPACK) library interface defines functions for solving systems of linear equations.
Several LAPACK implementations are available e.g., the Netlib reference implementation, the Intel oneAPI Math
Kernel Library, or OpenBLAS (among others). SUNDIALS is regularly tested with the latest versions of OpenBLAS,
specifically up to version 0.3.27.

When LAPACK support is enabled, the LAPACK banded SUNLinearSolver and LAPACK dense SUNLinearSolver will
be built (see sections §11.7.5.7 and §11.7.5.8, respectively, for the corresponding header files and libraries).

To enable LAPACK support, set ENABLE_LAPACK to ON. CMake will attempt to find BLAS and LAPACK installations
on the system and set the variables BLAS_LIBRARIES, BLAS_LINKER_FLAGS, LAPACK_LIBRARIES, and LAPACK_-
LINKER_FLAGS. To explicitly specify the LAPACK library to build with, manually set the aforementioned variables to
the desired values when configuring the build. For example, the following command will configure SUNDIALS with
LAPACK support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_LAPACK=ON \
-D BLAS_LIBRARIES=/path/to/lapack/installation/lib/libblas.so \
-D LAPACK_LIBRARIES=/path/to/lapack/installation/lib/liblapack.so

Note

If a working Fortran compiler is not available to infer the name-mangling scheme for LAPACK functions, the
options SUNDIALS_LAPACK_CASE and SUNDIALS_LAPACK_UNDERSCORES must be set to bypass the check for a
Fortran compiler and define the name-mangling scheme. The defaults for these options in earlier versions of SUN-
DIALS were lower and one, respectively.

ENABLE_LAPACK

Enable LAPACK support

Default: OFF

BLAS_LIBRARIES

BLAS libraries

Default: none (CMake will try to find a BLAS installation)

BLAS_LINKER_FLAGS

BLAS required linker flags

Default: none (CMake will try to determine the necessary flags)
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LAPACK_LIBRARIES

LAPACK libraries

Default: none (CMake will try to find a LAPACK installation)

LAPACK_LINKER_FLAGS

LAPACK required linker flags

Default: none (CMake will try to determine the necessary flags)

SUNDIALS_LAPACK_CASE

Specify the case to use in the Fortran name-mangling scheme, options are: lower or upper

Default:

Note

The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler. This
option should only be used if a Fortran compiler is not available or to override the inferred or default (lower)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_UNDERSCORES must also be set.

SUNDIALS_LAPACK_UNDERSCORES

Specify the number of underscores to append in the Fortran name-mangling scheme, options are: none, one, or
two

Default:

Note

The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler. This
option should only be used if a Fortran compiler is not available or to override the inferred or default (one)
scheme if one can not be determined. If used, SUNDIALS_LAPACK_CASE must also be set.

11.3.25 Building with MAGMA

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) project provides a dense linear algebra library
similar to LAPACK but targeting heterogeneous architectures. The library is developed by the University of Tennessee
and is available from the MAGMA GitHub repository. SUNDIALS is regularly tested with the latest versions of
MAGMA, specifically up to version 2.8.0.

When MAGMA support is enabled, the MAGMA dense SUNMatrix and MAGMA dense SUNLinearSolver will be
built (see sections §11.7.4.6 and §11.7.5.9, respectively, for the corresponding header files and libraries). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable MAGMA support, set ENABLE_MAGMA to ON, MAGMA_DIR to the root path of MAGMA installation, and
SUNDIALS_MAGMA_BACKENDS to the desired MAGMA backend to use. For example, the following command will
configure SUNDIALS with MAGMA support with the CUDA backend (targeting Ampere GPUs):

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MAGMA=ON \
-D MAGMA_DIR=/path/to/magma/installation \

(continues on next page)
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-D SUNDIALS_MAGMA_BACKEND="CUDA" \
-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_MAGMA

Enable MAGMA support

Default: OFF

MAGMA_DIR

Path to the MAGMA installation

Default: none

SUNDIALS_MAGMA_BACKENDS

Which MAGMA backend to use under the SUNDIALS MAGMA interface: CUDA or HIP

Default: CUDA

11.3.26 Building with MPI

The Message Passing Interface (MPI) is a standard for communication on parallel computing systems. Several MPI
implementations are available e.g., OpenMPI, MPICH, MVAPICH, Cray MPICH, Intel MPI, or IBM Spectrum MPI
(among others). SUNDIALS is regularly tested with the latest versions of OpenMPI, specifically up to version 5.0.5.

When MPI support is enabled, the parallel NVector, MPI ManyVector NVector, and MPI+X NVector will be built (see
sections §11.7.3.3, §11.7.3.4, and §11.7.3.5, respectively, for the corresponding header files and libraries).

Attention

Changed in version 7.0.0: When MPI is enabled, all SUNDIALS libraries will include MPI symbols and applica-
tions will need to include the path for MPI headers and link against the corresponding MPI library.

To enable MPI support, set ENABLE_MPI to ON. If CMake is unable to locate an MPI installation, set the relevant MPI_-
<language>_COMPILER options to the desired MPI compilers. For example, the following command will configure
SUNDIALS with MPI support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON

ENABLE_MPI

Enable MPI support

Default: OFF

MPI_C_COMPILER

The MPI C compiler e.g., mpicc

Default: CMake will attempt to locate an MPI C compiler
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MPI_CXX_COMPILER

The MPI C++ compiler e.g., mpicxx

Default: CMake will attempt to locate an MPI C++ compiler

Note

This option is only needed if MPI is enabled (ENABLE_MPI is ON) and C++ examples are enabled (EXAM-
PLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by without
setting any additional configuration options other than ENABLE_MPI.

MPI_Fortran_COMPILER

The MPI Fortran compiler e.g., mpif90

Default: CMake will attempt to locate an MPI Fortran compiler

Note

This option is triggered only needed if MPI is enabled (ENABLE_MPI is ON) and the Fortran interfaces are
enabled (BUILD_FORTRAN_MODULE_INTERFACE is ON).

MPIEXEC_EXECUTABLE

Specify the executable for running MPI programs e.g., mpiexec

Default: CMake will attempt to locate the MPI executable

MPIEXEC_PREFLAGS

Specifies flags that come directly after MPIEXEC_EXECUTABLE and before MPIEXEC_NUMPROC_FLAG and
MPIEXEC_MAX_NUMPROCS.

Default: none

MPIEXEC_POSTFLAGS

Specifies flags that come after the executable to run but before any other program arguments.

Default: none

11.3.27 Building with oneMKL

The Intel oneAPI Math Kernel Library (oneMKL) includes CPU and SYCL/DPC++ interfaces for LAPACK dense
linear algebra routines. The SUNDIALS oneMKL interface targets the SYCL/DPC++ routines, to utilize the CPU
routine see section §11.3.24. SUNDIALS has been tested with oneMKL version 2021.4.

When oneMKL support is enabled, the oneMLK dense SUNMatrix and the oneMKL dense SUNLinearSolver will be
built (see sections §11.7.4.7 and §11.7.5.10, respectively, for the corresponding header files and libraries). For more
information on using SUNDIALS with GPUs, see Features for GPU Accelerated Computing.

To enable the SUNDIALS oneMKL interface set ENABLE_ONEMKL to ON and ONEMKL_DIR to the root path of oneMKL
installation. For example, the following command will configure SUNDIALS with oneMKL support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \

(continues on next page)
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-D ENABLE_ONEMKL=ON \
-D ONEMKL_DIR=/path/to/onemkl/installation \

ENABLE_ONEMKL

Enable oneMKL support

Default: OFF

ONEMKL_DIR

Path to oneMKL installation.

Default: none

SUNDIALS_ONEMKL_USE_GETRF_LOOP

This advanced debugging option replaces the batched LU factorization with a loop over each system in the batch
and a non-batched LU factorization.

Default: OFF

SUNDIALS_ONEMKL_USE_GETRS_LOOP

This advanced debugging option replaces the batched LU solve with a loop over each system in the batch and a
non-batched solve.

Default: OFF

11.3.28 Building with OpenMP

The OpenMP API defines a directive-based approach for portable parallel programming across architectures.

When OpenMP support is enabled, the OpenMP NVector will be built (see section §11.7.3.6 for the corresponding
header file and library).

To enable OpenMP support, set the ENABLE_OPENMP to ON. For example, the following command will configure SUN-
DIALS with OpenMP support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_OPENMP=ON

ENABLE_OPENMP

Enable OpenMP support

Default: OFF
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11.3.29 Building with OpenMP Device Offloading

The OpenMP 4.0 specification added support for offloading computations to devices (i.e., GPUs). SUNDIALS requires
OpenMP 4.5 for GPU offloading support.

When OpenMP offloading support is enabled, the OpenMPDEV NVector will be built (see section §11.7.3.7 for the
corresponding header file and library).

To enable OpenMP device offloading support, set the ENABLE_OPENMP_DEVICE to ON. For example, the following
command will configure SUNDIALS with OpenMP device offloading support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_OPENMP_DEVICE=ON

ENABLE_OPENMP_DEVICE

Enable OpenMP device offloading support

Default: OFF

11.3.30 Building with PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines for simu-
lating applications modeled by partial differential equations. The library is developed by Argonne National Laboratory
and is available from the PETSc GitLab repository. SUNDIALS requires PETSc 3.5.0 or newer and is regularly tested
with the latest versions of PETSc, specifically up to version 3.21.4.

When PETSc support is enabled, the PETSc NVector and PETSc SNES SUNNonlinearSolver will be built (see sections
§11.7.3.10 and §11.7.6.3, respectively, for the corresponding header files and libraries).

To enable PETSc support, set ENABLE_MPI to ON, set ENABLE_PETSC to ON, and set PETSC_DIR to the path of the
PETSc installation. Alternatively, a user can provide a list of include paths in PETSC_INCLUDES and a list of complete
paths to the PETSc libraries in PETSC_LIBRARIES. For example, the following command will configure SUNDIALS
with PETSc support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_MPI=ON \
-D ENABLE_PETSC=ON \
-D PETSC_DIR=/path/to/petsc/installation

ENABLE_PETSC

Enable PETSc support

Default: OFF

PETSC_DIR

Path to PETSc installation

Default: none
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PETSC_LIBRARIES

Semi-colon separated list of PETSc link libraries. Unless provided by the user, this is autopopulated based on
the PETSc installation found in PETSC_DIR .

Default: none

PETSC_INCLUDES

Semi-colon separated list of PETSc include directories. Unless provided by the user, this is autopopulated based
on the PETSc installation found in PETSC_DIR .

Default: none

11.3.31 Building with PThreads

POSIX Threads (PThreads) is an API for shared memory programming defined by the Institute of Electrical and Elec-
tronics Engineers (IEEE) standard POSIX.1c.

When PThreads support is enabled, the PThreads NVector will be built (see section §11.7.3.8 for the corresponding
header file and library).

To enable PThreads support, set ENABLE_PTHREAD to ON. For example, the following command will configure SUN-
DIALS with PThreads support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_PTHREAD=ON

ENABLE_PTHREAD

Enable PThreads support

Default: OFF

11.3.32 Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from the RAJA GitHub repository. SUNDIALS is regularly tested with the latest versions of RAJA, specifically up to
version 2024.02.2.

When RAJA support is enabled, the RAJA NVector will be built (see section §11.7.3.13 for the corresponding header
files and libraries).

To enable RAJA support, set ENABLE_RAJA to ON, set RAJA_DIR to the path of the RAJA installation, set SUNDIALS_-
RAJA_BACKENDS to the desired backend (CUDA, HIP, or SYCL), and set ENABLE_CUDA , ENABLE_HIP, or ENABLE_SYCL
to ON depending on the selected backend. For example, the following command will configure SUNDIALS with RAJA
support using the CUDA backend (targeting Ampere GPUs):

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_RAJA=ON \
-D RAJA_DIR=/path/to/raja/installation \
-D SUNDIALS_RAJA_BACKENDS="CUDA" \

(continues on next page)
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-D ENABLE_CUDA=ON \
-D CMAKE_CUDA_ARCHITECTURES="80"

ENABLE_RAJA

Enable RAJA support

Default: OFF

RAJA_DIR

Path to the RAJA installation

Default: none

SUNDIALS_RAJA_BACKENDS

If building SUNDIALS with RAJA support, this sets the RAJA backend to target. Values supported are CUDA,
HIP, or SYCL.

Default: CUDA

11.3.33 Building with SuperLU_DIST

SuperLU_DIST is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations in a distributed memory setting. The library is developed by Lawrence Berkeley National Laboratory and is
available from the SuperLU_DIST GitHub repository. SuperLU_DIST version 7.0.0 or newer is required. SUNDIALS
is regularly tested with the latest versions of SuperLU_DIST, specifically up to version 8.2.1.

When SuperLU_DIST support is enabled, the SuperLU_DIST (SLUNRloc) SUNMatrix and SuperLU_DIST SUNLin-
earSolver will be built (see sections §11.7.4.9 and §11.7.5.16 for the corresponding header files and libraries).

To enable SuperLU_DIST support, set ENABLE_MPI to ON, set ENABLE_SUPERLUDIST to ON, and set SUPERLUDIST_-
DIR to the path where SuperLU_DIST is installed. If SuperLU_DIST was built with OpenMP enabled, set SUPER-
LUDIST_OpenMP and ENABLE_OPENMP to ON. For example, the following command will configure SUNDIALS with
SuperLU_DIST support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_SUPERLUDIST=ON \
-D SUPERLUDIST_DIR=/path/to/superludist/installation

ENABLE_SUPERLUDIST

Enable SuperLU_DIST support

Default: OFF

SUPERLUDIST_DIR

Path to SuperLU_DIST installation.

Default: none

SUPERLUDIST_OpenMP

Enable SUNDIALS support for SuperLU_DIST built with OpenMP

Default: none
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Note

SuperLU_DIST must be built with OpenMP support for this option to function. Additionally the environment
variable OMP_NUM_THREADS must be set to the desired number of threads.

SUPERLUDIST_INCLUDE_DIRS

List of include paths for SuperLU_DIST (under a typical SuperLU_DIST install, this is typically the SuperLU_-
DIST SRC directory)

Default: none

Note

This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_DIST

Default: none

Note

This is an advanced option. Prefer to use SUPERLUDIST_DIR .

SUPERLUDIST_INCLUDE_DIR

Path to SuperLU_DIST header files (under a typical SuperLU_DIST install, this is typically the SuperLU_DIST
SRC directory)

Default: none

Note

This is an advanced option. This option is deprecated. Use SUPERLUDIST_INCLUDE_DIRS.

SUPERLUDIST_LIBRARY_DIR

Path to SuperLU_DIST installed library files

Default: none

Note

This option is deprecated. Use SUPERLUDIST_DIR .
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11.3.34 Building with SuperLU_MT

SuperLU_MT is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear
equations on shared memory parallel machines. The library is developed by Lawrence Berkeley National Laboratory
and is available from the SuperLU_MT GitHub repository. SUNDIALS is regularly tested with the latest versions of
SuperLU_MT, specifically up to version 4.0.1.

When SuperLU_MT support is enabled, the SuperLU_MT SUNLinearSolver will be built (see section §11.7.5.17 for
the corresponding header file and library).

To enable SuperLU_MT support, set ENABLE_SUPERLUMT to ON, set SUPERLUMT_INCLUDE_DIR and SUPERLUMT_-
LIBRARY_DIR to the location of the header and library files, respectively, of the SuperLU_MT installation. Depending
on the SuperLU_MT installation, it may also be necessary to set SUPERLUMT_LIBRARIES to a semi-colon separated
list of other libraries SuperLU_MT depends on. For example, if SuperLU_MT was build with an external blas library,
then include the full path to the blas library in this list. Additionally, the variable SUPERLUMT_THREAD_TYPE must be
set to either Pthread or OpenMP. For example, the following command will configure SUNDIALS with SuperLU_MT
support using PThreads:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_SUPERLUMT=ON \
-D SUPERLUMT_INCLUDE_DIR=/path/to/superlumt/installation/include/dir \
-D SUPERLUMT_LIBRARY_DIR=/path/to/superlumt/installation/library/dir \
-D SUPERLUMT_THREAD_TYPE="Pthread"

Warning

Do not mix thread types when using SUNDIALS packages. For example, if using the OpenMP or PThreads NVector
then the SuperLU_MT installation should use the same threading type.

ENABLE_SUPERLUMT

Enable SuperLU_MT support

Default: OFF

SUPERLUMT_INCLUDE_DIR

Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is typically the SuperLU_MT SRC
directory)

Default: none

SUPERLUMT_LIBRARY_DIR

Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_LIBRARIES

Semi-colon separated list of libraries needed for SuperLU_MT

Default: none

SUPERLUMT_THREAD_TYPE

Must be set to Pthread or OpenMP, depending on how SuperLU_MT was compiled.

Default: Pthread
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11.3.35 Building with SYCL

SYCL is an abstraction layer for programming heterogeneous parallel computing based on C++17.

When SYCL support is enabled, the SYCL NVector will be built (see section §11.7.3.14 for the corresponding header
file and library).

To enable SYCL support, set the ENABLE_SYCL to ON. For example, the following command will configure SUNDIALS
with SYCL support using Intel compilers:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D CMAKE_C_COMPILER=icx \
-D CMAKE_CXX_COMPILER=icpx \
-D CMAKE_CXX_FLAGS="-fsycl" \
-D ENABLE_SYCL=ON

ENABLE_SYCL

Enable SYCL support

Default: OFF

Note

Building with SYCL enabled requires a compiler that supports a subset of the of SYCL 2020 specification
(specifically sycl/sycl.hpp must be available).

CMake does not currently support autodetection of SYCL compilers and CMAKE_CXX_COMPILER must be
set to a valid SYCL compiler. At present the only supported SYCL compilers are the Intel oneAPI compilers
i.e., dpcpp and icpx. When using icpx the -fsycl flag and any ahead of time compilation flags must be
added to CMAKE_CXX_FLAGS.

SUNDIALS_SYCL_2020_UNSUPPORTED

This advanced option disables the use of some features from the SYCL 2020 standard in SUNDIALS libraries
and examples. This can be used to work around some cases of incomplete compiler support for SYCL 2020.

Default: OFF

11.3.36 Building with Trilinos

Trilinos is a collection of C++ libraries of linear solvers, non-linear solvers, optimization solvers, etc. developed by
Sandia National Laboratory and available from the Trilinos GitHub repository. SUNDIALS is regularly tested with
the latest versions of Trilinos, specifically up to version 16.0.0.

When Trilinos support is enabled, the Trilinos Tpetra NVector will be built (see section §11.7.3.15 for the corresponding
header file and library).

To enable Trilinos support, set the ENABLE_TRILINOS to ON and set Trilinos_DIR to root path of the Trilinos instal-
lation. For example, the following command will configure SUNDIALS with Trilinos support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \

(continues on next page)
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(continued from previous page)

-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D ENABLE_TRILONOS=ON \
-D TRILINOS_DIR=/path/to/trilinos/installation

ENABLE_TRILINOS

Enable Trilinos support

Default: OFF

Trilinos_DIR

Path to the Trilinos installation

Default: None

11.3.37 Building with XBraid

XBraid is parallel-in-time library implementing an optimal-scaling multigrid reduction in time (MGRIT) solver. The
library is developed by Lawrence Livermore National Laboratory and is available from the XBraid GitHub repository.
SUNDIALS is regularly tested with the latest versions of XBraid, specifically up to version 3.0.0.

To enable XBraid support, set ENABLE_MPI to ON, set ENABLE_XBRAID to ON, set XBRAID_DIR to the root path of the
XBraid installation. For example, the following command will configure SUNDIALS with XBraid support:

cmake \
-S SOLVER_DIR \
-B BUILD_DIR \
-D CMAKE_INSTALL_PREFIX=INSTALL_DIR \
-D SUNDIALS_INDEX_SIZE="32" \
-D ENABLE_MPI=ON \
-D ENABLE_XBRAID=ON \
-D XBRAID_DIR=/path/to/xbraid/installation

Note

At this time the XBraid types braid_Int and braid_Real are hard-coded to int and double respectively. As
such SUNDIALS must be configured with SUNDIALS_INDEX_SIZE set to 32 and SUNDIALS_PRECISION set to
double. Additionally, SUNDIALS must be configured with ENABLE_MPI set to ON.

ENABLE_XBRAID

Enable or disable the ARKStep + XBraid interface.

Default: OFF

XBRAID_DIR

The root directory of the XBraid installation.

Default: OFF

XBRAID_INCLUDES

Semi-colon separated list of XBraid include directories. Unless provided by the user, this is autopopulated based
on the XBraid installation found in XBRAID_DIR .

Default: none
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XBRAID_LIBRARIES

Semi-colon separated list of XBraid link libraries. Unless provided by the user, this is autopopulated based on
the XBraid installation found in XBRAID_DIR .

Default: none

11.3.38 Building with xSDK Defaults

The Extreme-scale Scientific Software Development Kit (xSDK) is a community of HPC libraries and applications
developing best practices and standards for scientific software.

USE_XSDK_DEFAULTS

Enable xSDK default configuration settings. This sets the default value for CMAKE_BUILD_TYPE to Debug,
SUNDIALS_INDEX_SIZE to 32, and SUNDIALS_PRECISION to double.

Default: OFF

11.3.39 Building with External Addons

SUNDIALS “addons” are community developed code additions for SUNDIALS that can be subsumed by the SUN-
DIALS build system so that they have full access to all internal SUNDIALS symbols. The intent is for SUNDIALS
addons to function as if they are part of the SUNDIALS library, while allowing them to potentially have different li-
censes (although we encourage BSD-3-Clause still), code style (although we encourage them to follow the SUNDIALS
style outlined here).

Warning

SUNDIALS addons are not maintained by the SUNDIALS team and may come with different licenses. Use them
at your own risk.

To build with SUNDIALS addons,

1. Clone/copy the addon(s) into SOLVER_DIR/external/

2. Copy the sundials-addon-example block in the SOLVER_DIR/external/CMakeLists.txt, paste it below
the example block, and modify the path listed for your own external addon(s).

3. When building SUNDIALS, set the CMake option SUNDIALS_ENABLE_EXTERNAL_ADDONS to ON

4. Build SUNDIALS as usual.

SUNDIALS_ENABLE_EXTERNAL_ADDONS

Build SUNDIALS with any external addons that you have put in SOLVER_DIR/external.

Default: OFF
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11.4 Testing the Build and Installation

If SUNDIALS was configured with any EXAMPLES_ENABLE_<language> options set to ON, then a set of regression
tests can be run after building with the command:

make test

Additionally, if EXAMPLES_INSTALL is set to ON, then a set of smoke tests can be run after installing with the command:

make test_install

11.5 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and install
the examples, set at least one of the EXAMPLES_ENABLE_<language> options to ON, and set EXAMPLES_INSTALL to
ON. Along side the example sources and outputs, automatically generated CMakeLists.txt configuration files (and
Makefile files if on Linux/Unix systems) are installed referencing the installed SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefilemay be used to build the examples and serve as a template
for building user developed problems. To use the supplied Makefile simply run make to compile and generate the
executables. To use CMake from within the installed example directory, run cmake (or ccmake or cmake-gui to use
the GUI) followed by make to compile the example code. Note that if CMake is used, it will overwrite the traditional
Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

Note

There will potentially be differences in the output due to machine architecture, compiler versions, use of third party
libraries, etc.

11.6 Using SUNDIALS In Your Project

After installing SUNDIALS, building your application with SUNDIALS involves two steps: including the right header
files and linking to the right libraries. Depending on what features of SUNDIALS that your application uses, the
header files and libraries needed will vary. For example, if you want to use CVODE for serial computations you need
the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_serial.h>

and must link to libsundials_cvode and libsundials_nvecserial. If you wanted to use CVODE with the GM-
RES linear solver and the CUDA NVector, you need the following includes:

#include <cvode/cvode.h>
#include <nvector/nvector_cuda.h>
#include <sunlinsol/sunlinsol_spgmr.h>

and must link to libsundials_cvode, libsundials_nveccuda, and libsundials_sunlinsolspgmr.
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Attention

Added in version 7.0.0: All applications must also link to libsundials_core. For projects using SUNDIALS
CMake targets (see section §11.6.1), this dependency is automatically included.

Refer to section §11.7 below or the documentations sections for the individual SUNDIALS packages and modules of
interest for the proper includes and libraries to link against.

11.6.1 CMake Projects

For projects that use CMake, the SUNDIALS CMake package configuration file provides CMake targets for the con-
suming project. Use the CMake find_package command to search for the configuration file, SUNDIALSConfig.
cmake, which is installed alongside a package version file, SUNDIALSConfigVersion.cmake, under the INSTALL_-
DIR/SUNDIALS_INSTALL_CMAKEDIR directory. The SUNDIALS CMake targets follow the same naming convention
as the generated library binaries with the libsundials_ prefix replaced by SUNDIALS::. For example, the exported
target for libsundials_cvode is SUNDIALS::cvode. See section §11.7 for a complete list of CMake targets. The
CMake code snippit below shows how a consuming project might leverage the SUNDIALS package configuration file
to build against SUNDIALS in their own CMake project.

project(MyProject)

# Set the variable SUNDIALS_DIR to the SUNDIALS instdir.
# When using the cmake CLI command, this can be done like so:
# cmake -D SUNDIALS_DIR=/path/to/sundials/installation

# Find any SUNDIALS version...
find_package(SUNDIALS REQUIRED)

# ... or find any version newer than some minimum...
find_package(SUNDIALS 7.1.0 REQUIRED)

# ... or find a version in a range
find_package(SUNDIALS 7.0.0...7.1.0 REQUIRED)

# To check if specific components are available in the SUNDIALS installation,
# use the COMPONENTS option followed by the desired target names
find_package(SUNDIALS REQUIRED COMPONENTS cvode nvecpetsc)

add_executable(myexec main.c)

# Link to SUNDIALS libraries through the exported targets.
# This is just an example, users should link to the targets appropriate
# for their use case.
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nvecpetsc)

Note

Changed in version 7.1.0: A single version provided to find_package denotes the minimum version of SUN-
DIALS to look for, and any version equal or newer than what is specified will match. In prior versions
SUNDIALSConfig.cmake required the version found to have the same major version number as the single ver-
sion provided to find_package.
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To accommodate installing both static and shared libraries simultaneously, targets are created with _static and _-
shared suffixes, respectively, and the un-suffixed target is an alias to the _shared version. For example, SUNDI-
ALS::cvode is an alias to SUNDIALS::cvode_shared in this case. Projects that wish to use static libraries should
use the _static version of the target when both library types are installed. When only static or shared libraries
(not both) are installed the un-suffixed alias corresponds to the library type chosen at configuration time (see section
§11.3.4).

11.7 Libraries and Header Files

As noted above, the SUNDIALS the header files and libraries are installed under the CMAKE_INSTALL_PREFIX path in
the include and CMAKE_INSTALL_LIBDIR subdirectories, respectively. The public header files are further organized
into subdirectories under the include directory. The installed public header files and libraries are listed for reference
in the sections below. Additionally, the exported CMake targets are also listed for projects using CMake (see section
§11.6.1). The file extension .LIB used below is typically .so, .dll, or .dylib for shared libraries and .a or .lib
for static libraries.

Warning

SUNDIALS installs some header files to CMAKE_INSTALL_PREFIX/include/sundials/priv. All of the header
files in this directory are private and should not be included in user code. The private headers are subject to change
without any notice and relying on them may break your code.

11.7.1 SUNDIALS Core

The core library contains the shared infrastructure utilized by SUNDIALS packages. All applications using SUNDI-
ALS must link against the core library. For codes using the SUNDIALS CMake targets, the core target is automatically
included as needed by other targets.

Table 11.1: The SUNDIALS core library, header, and CMake target

Libraries libsundials_core.LIB
Headers sundials/sundials_core.h
CMake target SUNDIALS::core

The core header file is a convenient way to include all the header files that make up the SUNDIALS core infrastructure.
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Table 11.2: Header files included by sundials_core.h

Headers sundials/sundials_adaptcontroller.h
sundials/sundials_adjointstepper.h
sundials/sundials_adjointcheckpointscheme.h
sundials/sundials_config.h
sundials/sundials_context.h
sundials/sundials_errors.h
sundials/sundials_iterative.h
sundials/sundials_linearsolver.h
sundials/sundials_logger.h
sundials/sundials_math.h
sundials/sundials_matrix.h
sundials/sundials_memory.h
sundials/sundials_nonlinearsolver.h
sundials/sundials_nvector.h
sundials/sundials_profiler.h
sundials/sundials_types.h
sundials/sundials_version.h

For C++ applications, several convenience classes are provided for interacting with SUNDIALS objects. These can be
accessed by including the C++ core header file.

Table 11.3: The SUNDIALS C++ core header file

Headers sundials/sundials_core.hpp

Like the C core header file, the C++ core header file is a convenient way to include all the header files for the core C++
classes.

Warning

Features in the sundials::experimental namespace are not yet part of the public API and are subject to change
or removal without notice.

Table 11.4: Header files included by sundials_core.hpp

Headers sundials/sundials_context.hpp
sundials/sundials_core.h
sundials/sundials_linearsolver.hpp
sundials/sundials_matrix.hpp
sundials/sundials_memory.hpp
sundials/sundials_nonlinearsolver.hpp
sundials/sundials_nvector.hpp
sundials/sundials_profiler.hpp

When MPI support is enabled (ENABLE_MPI is ON), the following header file provides aliases between MPI data types
and SUNDIALS types. The alias MPI_SUNREALTYPE is one of MPI_FLOAT, MPI_DOUBLE, or MPI_LONG_DOUBLE
depending on the value of SUNDIALS_PRECISION. The alias MPI_SUNINDEXTYPE is either MPI_INT32_T or MPI_-
INT64_T depending on the value of SUNDIALS_INDEX_SIZE.
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Table 11.5: Header file defining aliases between SUNDIALS and MPI
data types

Headers sundials/sundials_mpi_types.h

When XBraid support is enabled (ENABLE_XBRAID is ON), the following header file defines types and functions for
interfacing SUNDIALS with XBraid.

Table 11.6: SUNDIALS header for interfacing with XBraid

Headers sundials/sundials_xbraid.h

11.7.2 SUNDIALS Packages

11.7.2.1 CVODE

To use the CVODE package, include the header file and link to the library given below.

Table 11.7: CVODE library, header file, and CMake target

Libraries libsundials_cvode.LIB
Headers cvode/cvode.h
CMake target SUNDIALS::cvode

The CVODE header file includes the files below which define functions, types, and constants for the CVODE linear
solver interface and using projection methods with CVODE.

Table 11.8: Additional header files included by cvode.h

Headers cvode/cvode_ls.h
cvode/cvode_proj.h

CVODE provides a specialized linear solver module for diagonal linear systems. Include the header file below to access
the related functions.

Table 11.9: CVODE diagonal linear solver

Headers cvode/cvode_diag.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative lin-
ear solvers, CVODE provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. Include
the header files below to access the related functions.

Table 11.10: CVODE preconditioner modules

Headers cvode/cvode_bandpre.h
cvode/cvode_bbdpre.h
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11.7.2.2 CVODES

To use the CVODES package, include the header file and link to the library given below.

Warning

CVODES is a superset of CVODE and defines the same functions as provided by CVODE. As such, applications
should not link to both CVODES and CVODE.

Table 11.11: CVODES library, header file, and CMake target

Libraries libsundials_cvodes.LIB
Headers cvodes/cvodes.h
CMake target SUNDIALS::cvodes

The CVODES header file includes the files below which define functions, types, and constants for the CVODES linear
solver interface and using projection methods with CVODES.

Table 11.12: Additional header files included by cvodes.h

Headers cvodes/cvodes_ls.h
cvodes/cvodes_proj.h

CVODES provides a specialized linear solver module for diagonal linear systems. Include the header file below to
access the related functions.

Table 11.13: CVODES diagonal linear solver

Headers cvodes/cvodes_diag.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative lin-
ear solvers, CVODES provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. Include
the header files below to access the related functions.

Table 11.14: CVODES preconditioner modules

Headers cvodes/cvodes_bandpre.h
cvodes/cvodes_bbdpre.h

11.7.2.3 ARKODE

To use the ARKODE package, link to the library below and include the header file for the desired module.
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Table 11.15: ARKODE library, header files, and CMake target

Libraries libsundials_arkode.LIB
Headers arkode/arkode_arkstep.h

arkode/arkode_erkstep.h
arkode/arkode_forcingstep.h
arkode/arkode_lsrkstep.h
arkode/arkode_mristep.h
arkode/arkode_splittingstep.h
arkode/arkode_sprkstep.h

CMake target SUNDIALS::arkode

The ARKODE module header files include the header file for the shared ARKODE interface functions, constants, and
types (arkode.h). As appropriate, the module header files also include the ARKODE linear solver interface as well
as the header files defining method coefficients.

Table 11.16: Additional header files included by arkode_*step.h
header files

Headers arkode/arkode.h
arkode/arkode_butcher.h
arkode/arkode_butcher_dirk.h
arkode/arkode_butcher_erk.h
arkode/arkode_ls.h
arkode/arkode_sprk.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, ARKODE provides banded (bandpre) and band-block-diagonal (bbdpre) preconditioner modules. In-
clude the header files below to access the related functions.

Table 11.17: ARKODE preconditioner modules

Headers arkode/arkode_bandpre.h
arkode/arkode_bbdpre.h

When XBraid support is enabled (ENABLE_XBRAID is ON), include the ARKODE-XBraid interface header file and link
to the interface library given below to use ARKODE and XBraid together.

Table 11.18: ARKODE library, header, and CMake target for interfacing
with XBraid

Libraries libsundials_arkode_xbraid.LIB
Headers arkode/arkode_xbraid.h
CMake target SUNDIALS::arkode_xbraid
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11.7.2.4 IDA

To use the IDA package, include the header file and link to the library given below.

Table 11.19: IDA library, header file, and CMake target

Libraries libsundials_ida.LIB
Headers ida/ida.h
CMake target SUNDIALS::ida

The IDA header file includes the header file below which defines functions, types, and constants for the IDA linear
solver interface.

Table 11.20: Additional header files included by ida.h

Headers ida/ida_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, IDA provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below to
access the related functions.

Table 11.21: IDA preconditioner modules

Headers ida/ida_bbdpre.h

11.7.2.5 IDAS

To use the IDAS package, include the header file and link to the library given below.

Warning

IDAS is a superset of IDA and defines the same functions as provided by IDA. As such, applications should not
link to both IDAS and IDA.

Table 11.22: IDAS library, header file, and CMake target

Libraries libsundials_idas.LIB
Headers idas/idas.h
CMake target SUNDIALS::idas

The IDAS header file includes the header file below which defines functions, types, and constants for the IDAS linear
solver interface.

Table 11.23: Additional header files included by idas.h

Headers idas/idas_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, IDAS provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below
to access the related functions.
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Table 11.24: IDAS preconditioner modules

Headers idas/idas_bbdpre.h

11.7.2.6 KINSOL

To use the KINSOL package, include the header file and link to the library given below.

Table 11.25: KINSOL library, header file, and CMake target

Libraries libsundials_kinsol.LIB
Headers kinsol/kinsol.h
CMake target SUNDIALS::kinsol

The KINSOL header file includes the header file below which defines functions, types, and constants for the KINSOL
linear solver interface.

Table 11.26: Additional header files included by kinsol.h

Headers kinsol/kinsol_ls.h

For problems in which the user cannot define a more effective, problem-specific preconditioner for Krylov iterative
linear solvers, KINSOL provides a band-block-diagonal (bbdpre) preconditioner module. Include the header file below
to access the related functions.

Table 11.27: KINSOL preconditioner modules

Headers kinsol/kinsol_bbdpre.h

11.7.3 Vectors

11.7.3.1 Serial

To use the serial NVector, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the serial NVector is bundled with the
package library and it is not necessary to link to the library below when using those packages.

Table 11.28: The serial NVector library, header file, and CMake target

Libraries libsundials_nvecserial.LIB
Headers nvector/nvector_serial.h
CMake target SUNDIALS::nvecserial
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11.7.3.2 ManyVector

To use the ManyVector NVector, include the header file and link to the library given below.

Table 11.29: The ManyVector NVector library, header file, and CMake
target

Libraries libsundials_nvecmanyvector.LIB
Headers nvector/nvector_manyvector.h
CMake target SUNDIALS::nvecmanyvector

11.7.3.3 Parallel (MPI)

To use the parallel (MPI) NVector, include the header file and link to the library given below.

Table 11.30: The parallel (MPI) NVector library, header file, and CMake
target

Libraries libsundials_nvecparallel.LIB
Headers nvector/nvector_parallel.h
CMake target SUNDIALS::nvecparallel

11.7.3.4 MPI ManyVector

To use the MPI ManyVector NVector, include the header file and link to the library given below.

Table 11.31: The MPI ManyVector NVector library, header file, and
CMake target

Libraries libsundials_nvecmpimanyvector.LIB
Headers nvector/nvector_mpimanyvector.h
CMake target SUNDIALS::nvecmpimanyvector

11.7.3.5 MPI+X

To use the MPI+X NVector, include the header file and link to the library given below.

Table 11.32: The MPI+X NVector library, header file, and CMake target

Libraries libsundials_nvecmpiplusx.LIB
Headers nvector/nvector_mpiplusx.h
CMake target SUNDIALS::nvecmpiplusx
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11.7.3.6 OpenMP

To use the OpenMP NVector, include the header file and link to the library given below.

Table 11.33: The OpenMP NVector library, header file, and CMake target

Libraries libsundials_nvecopenmp.LIB
Headers nvector/nvector_openmp.h
CMake target SUNDIALS::nvecopenmp

11.7.3.7 OpenMPDEV

To use the OpenMP device offload NVector, include the header file and link to the library given below.

Table 11.34: The OpenMP device offload NVector library, header file,
and CMake target

Libraries libsundials_nvecopenmpdev.LIB
Headers nvector/nvector_openmpdev.h
CMake target SUNDIALS::nvecopenmpdev

11.7.3.8 PThreads

To use the POSIX Threads NVector, include the header file and link to the library given below.

Table 11.35: The POSIX Threads NVector library, header file, and
CMake target

Libraries libsundials_nvecpthreads.LIB
Headers nvector/nvector_pthreads.h
CMake target SUNDIALS::nvecpthreads

11.7.3.9 hypre (ParHyp)

To use the hypre (ParHyp) NVector, include the header file and link to the library given below.

Table 11.36: The hypre (ParHyp) NVector library, header file, and CMake
target

Libraries libsundials_nvecparhyp.LIB
Headers nvector/nvector_parhyp.h
CMake target SUNDIALS::nvecparhyp
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11.7.3.10 PETSc

To use the PETSc NVector, include the header file and link to the library given below.

Table 11.37: The PETSc NVector library, header file, and CMake target

Libraries libsundials_nvecpetsc.LIB
Headers nvector/nvector_petsc.h
CMake target SUNDIALS::nvecpetsc

11.7.3.11 CUDA

To use the CUDA NVector, include the header file and link to the library given below.

Table 11.38: The CUDA NVector library, header file, and CMake target

Libraries libsundials_nveccuda.LIB
Headers nvector/nvector_cuda.h
CMake target SUNDIALS::nveccuda

11.7.3.12 HIP

To use the HIP NVector, include the header file and link to the library given below.

Table 11.39: The HIP NVector library, header file, and CMake target

Libraries libsundials_nvechip.LIB
Headers nvector/nvector_hip.h
CMake target SUNDIALS::nvechip

11.7.3.13 RAJA

To use the RAJA NVector, include the header file and link to the library given below for the desired backend.

Table 11.40: The RAJA NVector libraries, header file, and CMake targets

Libraries libsundials_nveccudaraja.LIB
libsundials_nvechipraja.LIB
libsundials_nvecsyclraja.LIB

Headers nvector/nvector_raja.h
CMake target SUNDIALS::nveccudaraja

SUNDIALS::nvechipraja
SUNDIALS::nvecsyclraja
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11.7.3.14 SYCL

To use the SYCL NVector, include the header file and link to the library given below.

Table 11.41: The SYCL NVector library, header file, and CMake target

Libraries libsundials_nvecsycl.LIB
Headers nvector/nvector_sycl.h
CMake target SUNDIALS::nvecsycl

11.7.3.15 Trilinos (Tpetra)

To use the Trilinos (Tpetra) NVector, include the header file and link to the library given below.

Table 11.42: The Trilinos (Tpetra) NVector library, header file, and
CMake target

Libraries libsundials_nvectrilinos.LIB
Headers nvector/nvector_trilinos.h
CMake target SUNDIALS::nvectrilinos

11.7.3.16 Kokkos

To use the Kokkos NVector, include the header file and link to the library given below.

Table 11.43: The Kokkos NVector library, header file, and CMake target

Headers nvector/nvector_kokkos.hpp
CMake target SUNDIALS::nveckokkos

11.7.4 Matrices

11.7.4.1 Banded

To use the banded SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the banded SUNMatrix is bundled with
the package library and it is not necessary to link to the library below when using those packages.

Table 11.44: The banded SUNMatrix library, header file, and CMake
target

Libraries libsundials_sunmatrixband.LIB
Headers sunmatrix/sunmatrix_band.h
CMake target SUNDIALS::sunmatrixband
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11.7.4.2 cuSPARSE

To use the cuSPARSE SUNMatrix, include the header file and link to the library given below.

Table 11.45: The cuSPARSE SUNMatrix library, header file, and CMake
target

Libraries libsundials_sunmatrixcusparse.LIB
Headers sunmatrix/sunmatrix_cusparse.h
CMake target SUNDIALS::sunmatrixcusparse

11.7.4.3 Dense

To use the dense SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the dense SUNMatrix is bundled with the
package library and it is not necessary to link to the library below when using those packages.

Table 11.46: The dense SUNMatrix library, header file, and CMake target

Libraries libsundials_sunmatrixdense.LIB
Headers sunmatrix/sunmatrix_dense.h
CMake target SUNDIALS::sunmatrixdense

11.7.4.4 Ginkgo

To use the Ginkgo SUNMatrix, include the header file given below.

Table 11.47: The Ginkgo SUNMatrix library, header file, and CMake
target

Headers sunmatrix/sunmatrix_ginkgo.hpp
CMake target SUNDIALS::sunmatrixginkgo

11.7.4.5 KokkosKernels Dense

To use the KokkosKernels dense SUNMatrix, include the header file given below.

Table 11.48: The dense KokkosKernels SUNMatrix library, header file,
and CMake target

Headers sunmatrix/sunmatrix_kokkosdense.hpp
CMake target SUNDIALS::sunmatrixkokkosdense
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11.7.4.6 MAGMA Dense

To use the MAGMA dense SUNMatrix, include the header file and link to the library given below.

Table 11.49: The dense MAGMA SUNMatrix library, header file, and
CMake target

Libraries libsundials_sunmatrixmagmadense.LIB
Headers sunmatrix/sunmatrix_magmadense.h
CMake target SUNDIALS::sunmatrixmagmadense

11.7.4.7 oneMKL Dense

To use the oneMKL dense SUNMatrix, include the header file and link to the library given below.

Table 11.50: The dense oneMKL SUNMatrix library, header file, and
CMake target

Libraries libsundials_sunmatrixonemkldense.LIB
Headers sunmatrix/sunmatrix_onemkldense.h
CMake target SUNDIALS::sunmatrixonemkldense

11.7.4.8 Sparse

To use the sparse SUNMatrix, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the sparse SUNMatrix is bundled with
the package library and it is not necessary to link to the library below when using those packages.

Table 11.51: The sparse SUNMatrix library, header file, and CMake tar-
get

Libraries libsundials_sunmatrixsparse.LIB
Headers sunmatrix/sunmatrix_sparse.h
CMake target SUNDIALS::sunmatrixsparse

11.7.4.9 SuperLU_DIST (SLUNRloc)

To use the SuperLU_DIST (SLUNRloc) SUNMatrix, include the header file and link to the library given below.

Table 11.52: The SuperLU_DIST (SLUNRloc) SUNMatrix library,
header file, and CMake target

Libraries libsundials_sunmatrixslunrloc.LIB
Headers sunmatrix/sunmatrix_slunrloc.h
CMake target SUNDIALS::sunmatrixslunrloc
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11.7.5 Linear Solvers

11.7.5.1 Banded

To use the banded SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the banded SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 11.53: The banded SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolband.LIB
Headers sunlinsol/sunlinsol_band.h
CMake target SUNDIALS::sunlinsolband

11.7.5.2 cuSPARSE Batched QR

To use the cuSPARSE batched QR SUNLinearSolver, include the header file and link to the library given below.

Table 11.54: The cuSPARSE batched QR SUNLinearSolver library,
header file, and CMake target

Libraries libsundials_sunlinsolcusolversp.LIB
Headers sunlinsol/sunlinsol_cusolversp_batchqr.h
CMake target SUNDIALS::sunlinsolcusolversp

11.7.5.3 Dense

To use the dense SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the dense SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 11.55: The dense SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsoldense.LIB
Headers sunlinsol/sunlinsol_dense.h
CMake target SUNDIALS::sunlinsoldense

11.7.5.4 Ginkgo

To use the Ginkgo SUNLinearSolver, include the header file given below.

Table 11.56: The Ginkgo SUNLinearSolver header file and CMake target

Headers sunlinsol/sunlinsol_ginkgo.hpp
CMake target SUNDIALS::sunlinsolginkgo
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11.7.5.5 KLU

To use the KLU SUNLinearSolver, include the header file and link to the library given below.

Table 11.57: The KLU SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsolklu.LIB
Headers sunlinsol/sunlinsol_klu.h
CMake target SUNDIALS::sunlinsolklu

11.7.5.6 KokkosKernels Dense

To use the KokkosKernels dense SUNLinearSolver, include the header file given below.

Table 11.58: The KokkosKernels dense SUNLinearSolver header file and
CMake target

Headers sunlinsol/sunlinsol_kokkosdense.hpp
CMake target SUNDIALS::sunlinsolkokkosdense

11.7.5.7 LAPACK Banded

To use the LAPACK banded SUNLinearSolver, include the header file and link to the library given below.

Table 11.59: The LAPACK banded SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsollapackband.LIB
Headers sunlinsol/sunlinsol_lapackband.h
CMake target SUNDIALS::sunlinsollapackband

11.7.5.8 LAPACK Dense

To use the LAPACK dense SUNLinearSolver, include the header file and link to the library given below.

Table 11.60: The LAPACK dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsollapackdense.LIB
Headers sunlinsol/sunlinsol_lapackdense.h
CMake target SUNDIALS::sunlinsollapackdense
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11.7.5.9 MAGMA Dense

To use the MAGMA dense SUNLinearSolver, include the header file and link to the library given below.

Table 11.61: The MAGMA dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolmagmadense.LIB
Headers sunlinsol/sunlinsol_magmadense.h
CMake target SUNDIALS::sunlinsolmagmadense

11.7.5.10 oneMKL Dense

To use the oneMKL dense SUNLinearSolver, include the header file and link to the library given below.

Table 11.62: The oneMKL dense SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolonemkldense.LIB
Headers sunlinsol/sunlinsol_onemkldense.h
CMake target SUNDIALS::sunlinsolonemkldense

11.7.5.11 Preconditioned Conjugate Gradient (PCG)

To use the PCG SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the PCG SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 11.63: The PCG SUNLinearSolver library, header file, and CMake
target

Libraries libsundials_sunlinsolpcg.LIB
Headers sunlinsol/sunlinsol_pcg.h
CMake target SUNDIALS::sunlinsolpcg

11.7.5.12 Scaled, Preconditioned Bi-Conjugate Gradient, Stabilized (SPBCGS)

To use the SPBCGS SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPBCGS SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 11.64: The SPBCGS SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspbcgs.LIB
Headers sunlinsol/sunlinsol_spbcgs.h
CMake target SUNDIALS::sunlinsolspbcgs
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11.7.5.13 Scaled, Preconditioned, Flexible, Generalized Minimum Residual (SPFGMR)

To use the SPFGMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPFGMR SUNLinearSolver is bun-
dled with the package library and it is not necessary to link to the library below when using those packages.

Table 11.65: The SPFGMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspfgmr.LIB
Headers sunlinsol/sunlinsol_spfgmr.h
CMake target SUNDIALS::sunlinsolspfgmr

11.7.5.14 Scaled, Preconditioned, Generalized Minimum Residual (SPGMR)

To use the SPGMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPGMR SUNLinearSolver is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 11.66: The SPGMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolspgmr.LIB
Headers sunlinsol/sunlinsol_spgmr.h
CMake target SUNDIALS::sunlinsolspgmr

11.7.5.15 Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual (SPTFQMR)

To use the SPTFQMR SUNLinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages or the KINSOL package, the SPTFQMR SUNLinearSolver is bun-
dled with the package library and it is not necessary to link to the library below when using those packages.

Table 11.67: The SPTFQMR SUNLinearSolver library, header file, and
CMake target

Libraries libsundials_sunlinsolsptfqmr.LIB
Headers sunlinsol/sunlinsol_sptfqmr.h
CMake target SUNDIALS::sunlinsolsptfqmr

11.7.5.16 SuperLU_DIST

To use the SuperLU_DIST SUNLinearSolver, include the header file and link to the library given below.

Table 11.68: The SuperLU_DIST SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolsuperludist.LIB
Headers sunlinsol/sunlinsol_superludist.h
CMake target SUNDIALS::sunlinsolsuperludist
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11.7.5.17 SuperLU_MT

To use the SuperLU_MT SUNLinearSolver, include the header file and link to the library given below.

Table 11.69: The SuperLU_MT SUNLinearSolver library, header file,
and CMake target

Libraries libsundials_sunlinsolsuperlumt.LIB
Headers sunlinsol/sunlinsol_superlumt.h
CMake target SUNDIALS::sunlinsolsuperlumt

11.7.6 Nonlinear Solvers

11.7.6.1 Newton

To use the Newton SUNNonlinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages, the Newton SUNNonlinearSolver is bundled with the package
library and it is not necessary to link to the library below when using those packages.

Table 11.70: The Newton SUNNonlinearSolver library, header file, and
CMake target

Libraries libsundials_sunnonlinsolnewton.LIB
Headers sunnonlinsol/sunnonlinsol_newton.h
CMake target SUNDIALS::sunnonlinsolnewton

11.7.6.2 Fixed-point

To use the fixed-point SUNNonlinearSolver, include the header file and link to the library given below.

When using SUNDIALS time integration packages, the fixed-point SUNNonlinearSolver is bundled with the package
library and it is not necessary to link to the library below when using those packages.

Table 11.71: The Fixed-point SUNNonlinearSolver library, header file,
and CMake target

Libraries libsundials_sunnonlinsolfixedpoint.LIB
Headers sunnonlinsol/sunnonlinsol_fixedpoint.h
CMake target SUNDIALS::sunnonlinsolfixedpoint

11.7.6.3 PETSc SNES

To use the PETSc SNES SUNNonlinearSolver, include the header file and link to the library given below.

Table 11.72: The PETSc SNES SUNNonlinearSolver library, header file,
and CMake target

Libraries libsundials_sunnonlinsolpetscsnes.LIB
Headers sunnonlinsol/sunnonlinsol_petscsnes.h
CMake target SUNDIALS::sunnonlinsolpetscsnes
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11.7.7 Memory Helpers

11.7.7.1 System

When using SUNDIALS time integration packages or the KINSOL package, the system SUNMemoryHelper is bundled
with the package library and it is not necessary to link to the library below when using those packages.

Table 11.73: SUNDIALS system memory helper header file

Headers sunmemory/sunmemory_system.h

11.7.7.2 CUDA

To use the CUDA SUNMemoryHelper, include the header file given below when using a CUDA-enabled NVector or
SUNMatrix.

Table 11.74: SUNDIALS CUDA memory helper header file

Headers sunmemory/sunmemory_cuda.h

11.7.7.3 HIP

To use the HIP SUNMemoryHelper, include the header file given below when using a HIP-enabled NVector or SUN-
Matrix.

Table 11.75: SUNDIALS HIP memory helper header file

Headers sunmemory/sunmemory_hip.h

11.7.7.4 SYCL

To use the SYCL SUNMemoryHelper, include the header file given below when using a SYCL-enabled NVector or
SUNMatrix.

Table 11.76: SUNDIALS SYCL memory helper header file

Headers sunmemory/sunmemory_sycl.h

11.7.8 Execution Policies

11.7.8.1 CUDA

When using a CUDA-enabled NVector or SUNMatrix, include the header file below to access the CUDA execution
policy C++ classes.

Table 11.77: SUNDIALS CUDA execution policies header file

Headers sundials/sundials_cuda_policies.hpp
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11.7.8.2 HIP

When using a HIP-enabled NVector or SUNMatrix, include the header file below to access the HIP execution policy
C++ classes.

Table 11.78: SUNDIALS HIP execution policies header file

Headers sundials/sundials_hip_policies.hpp

11.7.8.3 SYCL

When using a SYCL-enabled NVector or SUNMatrix, include the header file below to access the SYCL execution
policy C++ classes.

Table 11.79: SUNDIALS SYCL execution policies header file

Headers sundials/sundials_sycl_policies.hpp

11.7.9 Adjoint Sensitivity Checkpointing

11.7.9.1 Fixed ASA checkpointing

For fixed-interval adjoint checkpointing, include the header file below:

Table 11.80: SUNDIALS fixed adjoint checkpointing header files

Headers sunadjointcheckpointscheme/sunadjointcheckpointscheme_fixed.h
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IDAS Constants

Below we list all input and output constants used by the main solver and linear solver modules, together with their
numerical values and a short description of their meaning.

12.1 IDAS input constants

Table 12.1: IDAS Input Constants

IDAS main solver module

IDA_NORMAL 1 Solver returns at specified output time.
IDA_ONE_STEP 2 Solver returns after each successful step.
IDA_SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
IDA_STAGGERED 2 Staggered corrector forward sensitivity method.
IDA_CENTERED 1 Central difference quotient approximation (2nd order) of the sensitivity RHS.
IDA_FORWARD 2 Forward difference quotient approximation (1st order) of the sensitivity RHS.
IDA_YA_YDP_INIT 1 Compute ya and ẏd, given yd.
IDA_Y_INIT 2 Compute y, given ẏ.

IDAS adjoint solver module

IDA_HERMITE 1 Use Hermite interpolation.
IDA_POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver module

SUN_PREC_NONE 0 No preconditioning
SUN_PREC_LEFT 1 Preconditioning on the left.
SUN_MODIFIED_GS 1 Use modified Gram-Schmidt procedure.
SUN_CLASSICAL_GS 2 Use classical Gram-Schmidt procedure.
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12.2 IDAS output constants

Table 12.2: IDAS Output Constants

IDAS main solver module

IDA_SUCCESS 0 Successful function return.
IDA_TSTOP_RETURN 1 IDASolve succeeded by reaching the specified stopping point.
IDA_ROOT_RETURN 2 IDASolve succeeded and found one or more roots.
IDA_WARNING 99 IDASolve succeeded but an unusual situation occurred.
IDA_TOO_MUCH_WORK -1 The solver took mxstep internal steps but could not reach tout.
IDA_TOO_MUCH_ACC -2 The solver could not satisfy the accuracy demanded by the user for

some internal step.
IDA_ERR_FAIL -3 Error test failures occurred too many times during one internal time

step or minimum step size was reached.
IDA_CONV_FAIL -4 Convergence test failures occurred too many times during one inter-

nal time step or minimum step size was reached.
IDA_LINIT_FAIL -5 The linear solver’s initialization function failed.
IDA_LSETUP_FAIL -6 The linear solver’s setup function failed in an unrecoverable manner.
IDA_LSOLVE_FAIL -7 The linear solver’s solve function failed in an unrecoverable manner.
IDA_RES_FAIL -8 The user-provided residual function failed in an unrecoverable man-

ner.
IDA_REP_RES_FAIL -9 The user-provided residual function repeatedly returned a recover-

able error flag, but the solver was unable to recover.
IDA_RTFUNC_FAIL -10 The rootfinding function failed in an unrecoverable manner.
IDA_CONSTR_FAIL -11 The inequality constraints were violated and the solver was unable

to recover.
IDA_FIRST_RES_FAIL -12 The user-provided residual function failed recoverably on the first

call.
IDA_LINESEARCH_FAIL -13 The line search failed.
IDA_NO_RECOVERY -14 The residual function, linear solver setup function, or linear solver

solve function had a recoverable failure, but IDACalcIC could not
recover.

IDA_NLS_INIT_FAIL -15 The nonlinear solver’s init routine failed.
IDA_NLS_SETUP_FAIL -16 The nonlinear solver’s setup routine failed.
IDA_MEM_NULL -20 The ida_mem argument was NULL.
IDA_MEM_FAIL -21 A memory allocation failed.
IDA_ILL_INPUT -22 One of the function inputs is illegal.
IDA_NO_MALLOC -23 The IDAS memory was not allocated by a call to IDAInit.
IDA_BAD_EWT -24 Zero value of some error weight component.
IDA_BAD_K -25 The k-th derivative is not available.
IDA_BAD_T -26 The time t is outside the last step taken.
IDA_BAD_DKY -27 The vector argument where derivative should be stored is NULL.
IDA_NO_QUAD -30 Quadratures were not initialized.
IDA_QRHS_FAIL -31 The user-provided right-hand side function for quadratures failed in

an unrecoverable manner.
IDA_FIRST_QRHS_ERR -32 The user-provided right-hand side function for quadratures failed in

an unrecoverable manner on the first call.
IDA_REP_QRHS_ERR -33 The user-provided right-hand side repeatedly returned a recoverable

error flag, but the solver was unable to recover.
IDA_NO_SENS -40 Sensitivities were not initialized.

continues on next page
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Table 12.2 – continued from previous page
IDAS main solver module
IDA_SRES_FAIL -41 The user-provided sensitivity residual function failed in an unrecov-

erable manner.
IDA_REP_SRES_ERR -42 The user-provided sensitivity residual function repeatedly returned

a recoverable error flag, but the solver was unable to recover.
IDA_BAD_IS -43 The sensitivity identifier is not valid.
IDA_NO_QUADSENS -50 Sensitivity-dependent quadratures were not initialized.
IDA_QSRHS_FAIL -51 The user-provided sensitivity-dependent quadrature right-hand side

function failed in an unrecoverable manner.
IDA_FIRST_QSRHS_ERR -52 The user-provided sensitivity-dependent quadrature right-hand side

function failed in an unrecoverable manner on the first call.

IDA_REP_QSRHS_ERR -53 The user-provided sensitivity-dependent quadrature right-hand side
repeatedly returned a recoverable error flag, but the solver was un-
able to recover.

IDAS adjoint solver module

IDA_NO_ADJ -101 The combined forward-backward problem has not been initialized.
IDA_NO_FWD -102 IDASolveF has not been previously called.
IDA_NO_BCK -103 No backward problem was specified.
IDA_BAD_TB0 -104 The desired output for backward problem is outside the interval over

which the forward problem was solved.
IDA_REIFWD_FAIL -105 No checkpoint is available for this hot start.
IDA_FWD_FAIL -106 IDASolveB failed because IDASolve was unable to store data be-

tween two consecutive checkpoints.
IDA_GETY_BADT -107 Wrong time in interpolation function.

IDALS linear solver interface

IDALS_SUCCESS 0 Successful function return.
IDALS_MEM_NULL -1 The ida_mem argument was NULL.
IDALS_LMEM_NULL -2 The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT -3 The IDALS solver is not compatible with the current N_Vector

module, or an input value was illegal.
IDALS_MEM_FAIL -4 A memory allocation request failed.
IDALS_PMEM_NULL -5 The preconditioner module has not been initialized.
IDALS_JACFUNC_UNRECVR -6 The Jacobian function failed in an unrecoverable manner.
IDALS_JACFUNC_RECVR -7 The Jacobian function had a recoverable error.
IDALS_SUNMAT_FAIL -8 An error occurred with the current SUNMatrix module.
IDALS_SUNLS_FAIL -9 An error occurred with the current SUNLinearSolver module.
IDALS_NO_ADJ -101 The combined forward-backward problem has not been initialized.
IDALS_LMEMB_NULL -102 The linear solver was not initialized for the backward phase.
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Release History

Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL
Apr 2025 7.3.0 6.3.0 7.3.0 7.3.0 7.3.0 6.3.0 7.3.0
Dec 2024 7.2.1 6.2.1 7.2.1 7.2.1 7.2.1 6.2.1 7.2.1
Dec 2024 7.2.0 6.2.0 7.2.0 7.2.0 7.2.0 6.2.0 7.2.0
Jun 2024 7.1.1 6.1.1 7.1.1 7.1.1 7.1.1 6.1.1 7.1.1
Jun 2024 7.1.0 6.1.0 7.1.0 7.1.0 7.1.0 6.1.0 7.1.0
Feb 2024 7.0.0 6.0.0 7.0.0 7.0.0 7.0.0 6.0.0 7.0.0
Dec 2023 6.7.0 5.7.0 6.7.0 6.7.0 6.7.0 5.7.0 6.7.0
Nov 2023 6.6.2 5.6.2 6.6.2 6.6.2 6.6.2 5.6.2 6.6.2
Sep 2023 6.6.1 5.6.1 6.6.1 6.6.1 6.6.1 5.6.1 6.6.1
Jul 2023 6.6.0 5.6.0 6.6.0 6.6.0 6.6.0 5.6.0 6.6.0
Mar 2023 6.5.1 5.5.1 6.5.1 6.5.1 6.5.1 5.5.1 6.5.1
Dec 2022 6.5.0 5.5.0 6.5.0 6.5.0 6.5.0 5.5.0 6.5.0
Oct 2022 6.4.1 5.4.1 6.4.1 6.4.1 6.4.1 5.4.1 6.4.1
Oct 2022 6.4.0 5.4.0 6.4.0 6.4.0 6.4.0 5.4.0 6.4.0
Aug 2022 6.3.0 5.3.0 6.3.0 6.3.0 6.3.0 5.3.0 6.3.0
Apr 2022 6.2.0 5.2.0 6.2.0 6.2.0 6.2.0 5.2.0 6.2.0
Feb 2022 6.1.1 5.1.1 6.1.1 6.1.1 6.1.1 5.1.1 6.1.1
Jan 2022 6.1.0 5.1.0 6.1.0 6.1.0 6.1.0 5.1.0 6.1.0
Dec 2021 6.0.0 5.0.0 6.0.0 6.0.0 6.0.0 5.0.0 6.0.0
Sep 2021 5.8.0 4.8.0 5.8.0 5.8.0 5.8.0 4.8.0 5.8.0
Jan 2021 5.7.0 4.7.0 5.7.0 5.7.0 5.7.0 4.7.0 5.7.0
Dec 2020 5.6.1 4.6.1 5.6.1 5.6.1 5.6.1 4.6.1 5.6.1
Dec 2020 5.6.0 4.6.0 5.6.0 5.6.0 5.6.0 4.6.0 5.6.0
Oct 2020 5.5.0 4.5.0 5.5.0 5.5.0 5.5.0 4.5.0 5.5.0
Sep 2020 5.4.0 4.4.0 5.4.0 5.4.0 5.4.0 4.4.0 5.4.0
May 2020 5.3.0 4.3.0 5.3.0 5.3.0 5.3.0 4.3.0 5.3.0
Mar 2020 5.2.0 4.2.0 5.2.0 5.2.0 5.2.0 4.2.0 5.2.0
Jan 2020 5.1.0 4.1.0 5.1.0 5.1.0 5.1.0 4.1.0 5.1.0
Oct 2019 5.0.0 4.0.0 5.0.0 5.0.0 5.0.0 4.0.0 5.0.0
Feb 2019 4.1.0 3.1.0 4.1.0 4.1.0 4.1.0 3.1.0 4.1.0
Jan 2019 4.0.2 3.0.2 4.0.2 4.0.2 4.0.2 3.0.2 4.0.2
Dec 2018 4.0.1 3.0.1 4.0.1 4.0.1 4.0.1 3.0.1 4.0.1
Dec 2018 4.0.0 3.0.0 4.0.0 4.0.0 4.0.0 3.0.0 4.0.0
Oct 2018 3.2.1 2.2.1 3.2.1 3.2.1 3.2.1 2.2.1 3.2.1
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Table 13.1 – continued from previous page
Date SUNDIALS ARKODE CVODE CVODES IDA IDAS KINSOL
Sep 2018 3.2.0 2.2.0 3.2.0 3.2.0 3.2.0 2.2.0 3.2.0
Jul 2018 3.1.2 2.1.2 3.1.2 3.1.2 3.1.2 2.1.2 3.1.2
May 2018 3.1.1 2.1.1 3.1.1 3.1.1 3.1.1 2.1.1 3.1.1
Nov 2017 3.1.0 2.1.0 3.1.0 3.1.0 3.1.0 2.1.0 3.1.0
Sep 2017 3.0.0 2.0.0 3.0.0 3.0.0 3.0.0 2.0.0 3.0.0
Sep 2016 2.7.0 1.1.0 2.9.0 2.9.0 2.9.0 1.3.0 2.9.0
Aug 2015 2.6.2 1.0.2 2.8.2 2.8.2 2.8.2 1.2.2 2.8.2
Mar 2015 2.6.1 1.0.1 2.8.1 2.8.1 2.8.1 1.2.1 2.8.1
Mar 2015 2.6.0 1.0.0 2.8.0 2.8.0 2.8.0 1.2.0 2.8.0
Mar 2012 2.5.0 – 2.7.0 2.7.0 2.7.0 1.1.0 2.7.0
May 2009 2.4.0 – 2.6.0 2.6.0 2.6.0 1.0.0 2.6.0
Nov 2006 2.3.0 – 2.5.0 2.5.0 2.5.0 – 2.5.0
Mar 2006 2.2.0 – 2.4.0 2.4.0 2.4.0 – 2.4.0
May 2005 2.1.1 – 2.3.0 2.3.0 2.3.0 – 2.3.0
Apr 2005 2.1.0 – 2.3.0 2.2.0 2.3.0 – 2.3.0
Mar 2005 2.0.2 – 2.2.2 2.1.2 2.2.2 – 2.2.2
Jan 2005 2.0.1 – 2.2.1 2.1.1 2.2.1 – 2.2.1
Dec 2004 2.0.0 – 2.2.0 2.1.0 2.2.0 – 2.2.0
Jul 2002 1.0.0 – 2.0.0 1.0.0 2.0.0 – 2.0.0
Mar 2002 – – 1.0.0 3 – – – –
Feb 1999 – – – – 1.0.0 4 – –
Aug 1998 – – – – – – 1.0.0 5

Jul 1997 – – 1.0.0 2 – – – –
Sep 1994 – – 1.0.0 1 – – – –

1. CVODE written

2. PVODE written

3. CVODE and PVODE combined

4. IDA written

5. KINSOL written
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Chapter 14

Changelog

14.1 Changes to SUNDIALS in release 7.3.0

Major Features

A new discrete adjoint capability for explicit Runge–Kutta methods has been added to the ARKODE ERKStep
and ARKStep stepper modules. This is based on a new set of shared classes, SUNAdjointStepper and SUNAd-
jointCheckpointScheme. A new example demonstrating this capability can be found in examples/arkode/C_-
serial/ark_lotka_volterra_ASA.c. See the Adjoint Sensitivity Analysis section of the ARKODE user guide for
details.

New Features and Enhancements

ARKODE

The following changes have been made to the default ERK, DIRK, and ARK methods in ARKODE to utilize more
efficient methods:
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Type Old Default New Default
2nd Order
Explicit

ARKODE_HEUN_EULER_2_1_2 ARKODE_RALSTON_3_1_2

4th Order
Explicit

ARKODE_ZONNEVELD_5_3_4 ARKODE_SOFRONIOU_SPALETTA_5_3_4

5th Order
Explicit

ARKODE_CASH_KARP_6_4_5 ARKODE_TSITOURAS_7_4_5

6th Order
Explicit

ARKODE_VERNER_8_5_6 ARKODE_VERNER_9_5_6

8th Order
Explicit

ARKODE_FEHLBERG_13_7_8 ARKODE_VERNER_13_7_8

2nd Order
Implicit

ARKODE_SDIRK_2_1_2 ARKODE_ARK2_DIRK_3_1_2

3rd Order
Implicit

ARKODE_ARK324L2SA_DIRK_4_2_3 ARKODE_ESDIRK325L2SA_5_2_3

4th Order
Implicit

ARKODE_SDIRK_5_3_4 ARKODE_ESDIRK436L2SA_6_3_4

5th Order
Implicit

ARKODE_ARK548L2SA_DIRK_8_4_5 ARKODE_ESDIRK547L2SA2_7_4_5

4th Order
ARK

ARKODE_ARK436L2SA_ERK_6_3_4 and
ARKODE_ARK436L2SA_DIRK_6_3_4

ARKODE_ARK437L2SA_ERK_7_3_4 and
ARKODE_ARK437L2SA_DIRK_7_3_4

5th Order
ARK

ARKODE_ARK548L2SA_ERK_8_4_5 and
ARKODE_ARK548L2SA_DIRK_8_4_5

ARKODE_ARK548L2SAb_ERK_8_4_5 and
ARKODE_ARK548L2SAb_DIRK_8_4_5

The old default methods can be loaded using the functions ERKStepSetTableName() or ERKStepSetTableNum()
with ERKStep and ARKStepSetTableName() or ARKStepSetTableNum() with ARKStep and passing the desired
method name string or constant, respectively. For example, the following call can be used to load the old default fourth
order method with ERKStep:

/* Load the old 4th order ERK method using the table name */
ierr = ERKStepSetTableName(arkode_mem, "ARKODE_ZONNEVELD_5_3_4");

Similarly with ARKStep, the following calls can be used for ERK, DIRK, or ARK methods, respectively:

/* Load the old 4th order ERK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_DIRK_NONE",

"ARKODE_ZONNEVELD_5_3_4");

/* Load the old 4th order DIRK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_SDIRK_5_3_4",

"ARKODE_ERK_NONE");

/* Load the old 4th order ARK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_ARK436L2SA_DIRK_6_3_4",

"ARKODE_ARK436L2SA_ERK_6_3_4");

Additionally, the following changes have been made to the default time step adaptivity parameters in ARKODE:
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Parameter Old Default New Default
Controller PID (PI for ERKStep) I
Safety Factor 0.96 0.9
Bias 1.5 (1.2 for ERKStep) 1.0
Fixed Step Bounds [1.0, 1.5] [1.0, 1.0]
Adaptivity Adjustment -1 0

The following calls can be used to restore the old defaults for ERKStep:

SUNAdaptController controller = SUNAdaptController_Soderlind(ctx);
SUNAdaptController_SetParams_PI(controller, 0.8, -0.31);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.2);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

The following calls can be used to restore the old defaults for other ARKODE integrators:

SUNAdaptController controller = SUNAdaptController_PID(ctx);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.5);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment(arkode_mem, -1);

In both cases above, destroy the controller at the end of the run with SUNAdaptController_Destroy(controller);
.

The Soderlind time step adaptivity controller now starts with an I controller until there is sufficient history of past time
steps and errors.

Added ARKodeSetAdaptControllerByName() to set a time step adaptivity controller with a string. There are
also four new controllers: SUNAdaptController_H0211(), SUNAdaptController_H0321(), SUNAdaptCon-
troller_H211(), and SUNAdaptController_H312().

Added the ARKODE_RALSTON_3_1_2 and ARKODE_TSITOURAS_7_4_5 explicit Runge-Kutta Butcher tables.

Improved the precision of the coefficients for ARKODE_ARK324L2SA_ERK_4_2_3, ARKODE_VERNER_9_5_6, ARKODE_-
VERNER_10_6_7, ARKODE_VERNER_13_7_8, ARKODE_ARK324L2SA_DIRK_4_2_3, and ARKODE_ESDIRK324L2SA_-
4_2_3.

CVODE / CVODES

Added support for resizing CVODE and CVODES when solving initial value problems where the number of equations
and unknowns changes over time. Resizing requires a user supplied history of solution and right-hand side values at
the new problem size, see CVodeResizeHistory() for more information.

KINSOL

Added support in KINSOL for setting user-supplied functions to compute the damping factor and, when using An-
derson acceleration, the depth in fixed-point or Picard iterations. See KINSetDampingFn() and KINSetDepthFn(),
respectively, for more information.

SUNDIALS Types

14.1. Changes to SUNDIALS in release 7.3.0 467

https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeSetAdaptControllerByName
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H0211
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H0321
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H211
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H211
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H312
https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeResizeHistory
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDepthFn


User Documentation for IDAS, v6.3.0

A new type, suncountertype, was added for the integer type used for counter variables. It is currently an alias for
long int.

Bug Fixes

ARKODE

Fixed bug in ARKodeResize() which caused it return an error for MRI methods.

Removed error floors from the SUNAdaptController implementations which could unnecessarily limit the time size
growth, particularly after the first step.

Fixed bug in ARKodeSetFixedStep() where it could return ARK_SUCCESS despite an error occurring.

Fixed bug in the ARKODE SPRKStep SPRKStepReInit() function and ARKodeReset() function with SPRKStep
that could cause a segmentation fault when compensated summation is not used.

KINSOL

Fixed a bug in KINSOL where an incorrect damping parameter is applied on the initial iteration with Anderson ac-
celeration unless KINSetDamping() and KINSetDampingAA() are both called with the same value when enabling
damping.

Fixed a bug in KINSOL where errors that occurred when computing Anderson acceleration were not captured.

Added missing return values to KINGetReturnFlagName().

CMake

Fixed the behavior of SUNDIALS_ENABLE_ERROR_CHECKS so additional runtime error checks are disabled by default
with all release build types. Previously, MinSizeRel builds enabled additional error checking by default.

Deprecation Notices

All work space functions, e.g., CVodeGetWorkSpace and ARKodeGetLinWorkSpace, have been deprecated and will
be removed in version 8.0.0.

14.2 Changes to SUNDIALS in release 7.2.1

New Features and Enhancements

Unit tests were separated from examples. To that end, the following directories were moved out of the examples/
directory to the test/unit_tests directory: nvector, sunmatrix, sunlinsol, and sunnonlinsol.

Bug Fixes

Fixed a bug in ARKStep where an extra right-hand side evaluation would occur each time step when enabling the
ARKodeSetAutonomous() option and using an IMEX method where the DIRK table has an implicit first stage and is
not stiffly accurate.

14.3 Changes to SUNDIALS in release 7.2.0

Major Features

Added a time-stepping module to ARKODE for low storage Runge–Kutta methods, LSRKStep. This currently supports
five explicit low-storage methods: the second-order Runge–Kutta–Chebyshev and Runge–Kutta–Legendre methods,
and the second- through fourth-order optimal strong stability preserving Runge–Kutta methods. All methods include
embeddings for temporal adaptivity.
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Added an operator splitting module, SplittingStep, and forcing method module, ForcingStep, to ARKODE. These
modules support a broad range of operator-split time integration methods for multiphysics applications.

Added support for multirate time step adaptivity controllers, based on the recently introduced SUNAdaptController
base class, to ARKODE’s MRIStep module. As a part of this, we added embeddings for existing MRI-GARK methods,
as well as support for embedded MERK and IMEX-MRI-SR methods. Added new default MRI methods for temporally
adaptive versus fixed-step runs.

New Features and Enhancements

Logging

The information level logging output in ARKODE, CVODE(S), and IDA(S) has been updated to be more uniform
across the packages and a new tools directory has been added with a Python module, suntools, containing utilities
for parsing logging output. The Python utilities for parsing CSV output have been relocated from the scripts directory
to the Python module.

SUNStepper

Added the SUNStepper base class to represent a generic solution procedure for IVPs. This is used by the SplittingStep
and ForcingStep modules of ARKODE. A SUNStepper can be created from an ARKODE memory block with the
new function ARKodeCreateSUNStepper(). To enable interoperability with MRIStepInnerStepper, the function
MRIStepInnerStepper_CreateFromSUNStepper() was added.

ARKODE

Added functionality to ARKODE to accumulate a temporal error estimate over multiple time steps. See the rou-
tines ARKodeSetAccumulatedErrorType(), ARKodeResetAccumulatedError(), and ARKodeGetAccumulat-
edError() for details.

Added the ARKodeSetStepDirection() and ARKodeGetStepDirection() functions to change and query the di-
rection of integration.

Added the function MRIStepGetNumInnerStepperFails() to retrieve the number of recoverable failures reported
by the MRIStepInnerStepper.

Added a utility routine to wrap any valid ARKODE integrator for use as an MRIStep inner stepper object, ARKode-
CreateMRIStepInnerStepper().

The following DIRK schemes now have coefficients accurate to quad precision:

• ARKODE_BILLINGTON_3_3_2

• ARKODE_KVAERNO_4_2_3

• ARKODE_CASH_5_2_4

• ARKODE_CASH_5_3_4

• ARKODE_KVAERNO_5_3_4

• ARKODE_KVAERNO_7_4_5

CMake

The default value of CMAKE_CUDA_ARCHITECTURES is no longer set to 70 and is now determined automatically by
CMake. The previous default was only valid for Volta GPUs while the automatically selected value will vary across
compilers and compiler versions. As such, users are encouraged to override this value with the architecture for their
system.

The build system has been updated to utilize the CMake LAPACK imported target which should ease building SUN-
DIALS with LAPACK libraries that require setting specific linker flags e.g., MKL.

Third Party Libraries

14.3. Changes to SUNDIALS in release 7.2.0 469

https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/SplittingStep/index.html#arkode-usage-splittingstep
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/ForcingStep/index.html#arkode-usage-forcingstep
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController
https://sundials.readthedocs.io/en/v7.3.0/sunstepper/SUNStepper_links.html#c.SUNStepper
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/SplittingStep/index.html#arkode-usage-splittingstep
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/ForcingStep/index.html#arkode-usage-forcingstep
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeCreateSUNStepper
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerStepper
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/MRIStep/Custom_Inner_Stepper/Description.html#c.MRIStepInnerStepper_CreateFromSUNStepper
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeSetAccumulatedErrorType
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeResetAccumulatedError
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeGetAccumulatedError
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeGetAccumulatedError
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeSetStepDirection
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeGetStepDirection
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/MRIStep/User_callable.html#c.MRIStepGetNumInnerStepperFails
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeCreateMRIStepInnerStepper
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeCreateMRIStepInnerStepper


User Documentation for IDAS, v6.3.0

The Trilinos Tpetra NVector interface has been updated to utilize CMake imported targets added in Trilinos 14 to
improve support for different Kokkos backends with Trilinos. As such, Trilinos 14 or newer is required and the Trili-
nos_INTERFACE_* CMake options have been removed.

Example programs using hypre have been updated to support v2.20 and newer.

Bug Fixes

CMake

Fixed a CMake bug regarding usage of missing “print_warning” macro that was only triggered when the deprecated
CUDA_ARCH option was used.

Fixed a CMake configuration issue related to aliasing an ALIAS target when using ENABLE_KLU=ON in combination
with a static-only build of SuiteSparse.

Fixed a CMake issue which caused third-party CMake variables to be unset. Users may see more options in the CMake
GUI now as a result of the fix. See details in GitHub Issue #538.

NVector

Fixed a build failure with the SYCL NVector when using Intel oneAPI 2025.0 compilers. See GitHub Issue #596.

Fixed compilation errors when building the Trilinos Teptra NVector with CUDA support.

SUNMatrix

Fixed a bug in the sparse matrix implementation of SUNMatScaleAddI() which caused out of bounds writes unless
indexvals were in ascending order for each row/column.

SUNLinearSolver

Fixed a bug in the SPTFQMR linear solver where recoverable preconditioner errors were reported as unrecoverable.

ARKODE

Fixed ARKodeResize() not using the default hscale when an argument of 0 was provided.

Fixed a memory leak that could occur if ARKodeSetDefaults() is called repeatedly.

Fixed the loading of ARKStep’s default first order explicit method.

Fixed loading the default IMEX-MRI method if ARKodeSetOrder() is used to specify a third or fourth order method.
Previously, the default second order method was loaded in both cases.

Fixed potential memory leaks and out of bounds array accesses that could occur in the ARKODE Lagrange interpolation
module when changing the method order or polynomial degree after re-initializing an integrator.

Fixed a bug in ARKODE when enabling rootfinding with fixed step sizes and the initial value of the rootfinding function
is zero. In this case, uninitialized right-hand side data was used to compute a state value near the initial condition to
determine if any rootfinding functions are initially active.

Fixed a bug in MRIStep where the data supplied to the Hermite interpolation module did not include contributions from
the fast right-hand side function. With this fix, users will see one additional fast right-hand side function evaluation
per slow step with the Hermite interpolation option.

Fixed a bug in SPRKStep when using compensated summations where the error vector was not initialized to zero.

CVODE(S)

Fixed a bug where CVodeSetProjFailEta() would ignore the eta parameter.

Fortran Interfaces

Fixed a bug in the 32-bit sunindextype Fortran interfaces to N_VGetSubvectorArrayPointer_ManyVector(),
N_VGetSubvectorArrayPointer_MPIManyVector(), SUNBandMatrix_Column() and SUNDenseMatrix_Col-
umn() where 64-bit sunindextype interface functions were used.
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Deprecation Notices

Deprecated the ARKStep-specific utility routine for wrapping an ARKStep instance as an MRIStep inner stepper object,
ARKStepCreateMRIStepInnerStepper(). Use ARKodeCreateMRIStepInnerStepper() instead.

The ARKODE stepper specific functions to retrieve the number of right-hand side function evaluations have been
deprecated. Use ARKodeGetNumRhsEvals() instead.

14.4 Changes to SUNDIALS in release 7.1.1

Bug Fixes

Fixed a bug in v7.1.0 with the SYCL N_Vector N_VSpace function.

14.5 Changes to SUNDIALS in release 7.1.0

Major Features

Created shared user interface functions for ARKODE to allow more uniform control over time-stepping algorithms,
improved extensibility, and simplified code maintenance. The corresponding stepper-specific user-callable functions
are now deprecated and will be removed in a future major release.

Added CMake infrastructure that enables externally maintained addons/plugins to be optionally built with SUNDIALS.
See Contributing for details.

New Features and Enhancements

Added support for Kokkos Kernels v4.

Added the following Runge-Kutta Butcher tables

• ARKODE_FORWARD_EULER_1_1

• ARKODE_RALSTON_EULER_2_1_2

• ARKODE_EXPLICIT_MIDPOINT_EULER_2_1_2

• ARKODE_BACKWARD_EULER_1_1

• ARKODE_IMPLICIT_MIDPOINT_1_2

• ARKODE_IMPLICIT_TRAPEZOIDAL_2_2

Added the following MRI coupling tables

• ARKODE_MRI_GARK_FORWARD_EULER

• ARKODE_MRI_GARK_RALSTON2

• ARKODE_MRI_GARK_RALSTON3

• ARKODE_MRI_GARK_BACKWARD_EULER

• ARKODE_MRI_GARK_IMPLICIT_MIDPOINT

• ARKODE_IMEX_MRI_GARK_EULER

• ARKODE_IMEX_MRI_GARK_TRAPEZOIDAL

• ARKODE_IMEX_MRI_GARK_MIDPOINT
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Added ARKodeButcherTable_ERKIDToName() and ARKodeButcherTable_DIRKIDToName() to convert a Butcher
table ID to a string representation.

Added the function ARKodeSetAutonomous() in ARKODE to indicate that the implicit right-hand side function does
not explicitly depend on time. When using the trivial predictor, an autonomous problem may reuse implicit function
evaluations across stage solves to reduce the total number of function evaluations.

Users may now disable interpolated output in ARKODE by passing ARK_INTERP_NONE to ARKodeSetInterpolant-
Type(). When interpolation is disabled, rootfinding is not supported, implicit methods must use the trivial predictor
(the default option), and interpolation at stop times cannot be used (interpolating at stop times is disabled by default).
With interpolation disabled, calling ARKodeEvolve() in ARK_NORMALmode will return at or past the requested output
time (setting a stop time may still be used to halt the integrator at a specific time). Disabling interpolation will reduce
the memory footprint of an integrator by two or more state vectors (depending on the interpolant type and degree) which
can be beneficial when interpolation is not needed e.g., when integrating to a final time without output in between or
using an explicit fast time scale integrator with an MRI method.

Added “Resize” capability to ARKODE’s SPRKStep time-stepping module.

Enabled the Fortran interfaces to build with 32-bit sunindextype.

Bug Fixes

Updated the CMake variable HIP_PLATFORM default to amd as the previous default, hcc, is no longer recognized in
ROCm 5.7.0 or newer. The new default is also valid in older version of ROCm (at least back to version 4.3.1).

Renamed the DPCPP value for the SUNDIALS_GINKGO_BACKENDS CMake option to SYCL to match Ginkgo’s updated
naming convention.

Changed the CMake version compatibility mode for SUNDIALS to AnyNewerVersion instead of SameMajorVer-
sion. This fixes the issue seen here.

Fixed a CMake bug that caused an MPI linking error for our C++ examples in some instances. Fixes GitHub Issue
#464.

Fixed the runtime library installation path for windows systems. This fix changes the default library installation path
from CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_BINDIR.

Fixed conflicting .lib files between shared and static libs when using MSVC on Windows

Fixed invalid SUNDIALS_EXPORT generated macro when building both shared and static libs.

Fixed a bug in some Fortran examples where c_null_ptr was passed as an argument to a function pointer instead of
c_null_funptr. This caused compilation issues with the Cray Fortran compiler.

Fixed a bug in the HIP execution policies where WARP_SIZE would not be set with ROCm 6.0.0 or newer.

Fixed a bug that caused error messages to be cut off in some cases. Fixes GitHub Issue #461.

Fixed a memory leak when an error handler was added to a SUNContext. Fixes GitHub Issue #466.

Fixed a bug where MRIStepEvolve() would not handle a recoverable error produced from evolving the inner stepper.

Added missing SetRootDirection and SetNoInactiveRootWarn functions to ARKODE’s SPRKStep time-
stepping module.

Fixed a bug in ARKodeSPRKTable_Create() where the coefficient arrays were not allocated.

Fix bug on LLP64 platforms (like Windows 64-bit) where KLU_INDEXTYPE could be 32 bits wide even if SUNDIALS_-
INT64_T is defined.

Check if size of SuiteSparse_long is 8 if the size of sunindextype is 8 when using KLU.

Fixed several build errors with the Fortran interfaces on Windows systems.

Deprecation Notices
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Numerous ARKODE stepper-specific functions are now deprecated in favor of ARKODE-wide functions.

Deprecated the ARKStepSetOptimalParams function. Since this function does not have an ARKODE-wide equivalent,
instructions have been added to the user guide for how to retain the current functionality using other user-callable
functions.

The unsupported implementations of N_VGetArrayPointer and N_VSetArrayPointer for the hypre and PETSc
vectors are now deprecated. Users should access the underlying wrapped external library vector objects instead with
N_VGetVector_ParHyp and N_VGetVector_Petsc, respectively.

14.6 Changes to SUNDIALS in release 7.0.0

Major Feature

SUNDIALS now has more robust and uniform error handling. Non-release builds will be built with additional error
checking by default. See §4.3 for details.

Breaking Changes

Minimum C Standard

SUNDIALS now requires using a compiler that supports a subset of the C99 standard. Note with the Microsoft C/C++
compiler the subset of C99 features utilized by SUNDIALS are available starting with Visual Studio 2015.

Minimum CMake Version

CMake 3.18 or newer is now required when building SUNDIALS.

Deprecated Types and Functions Removed

The previously deprecated types realtype and booleantype were removed from sundials_types.h and replaced
with sunrealtype and sunbooleantype. The deprecated names for these types can be used by including the header
file sundials_types_deprecated.h but will be fully removed in the next major release. Functions, types and header
files that were previously deprecated have also been removed.

Error Handling Changes

With the addition of the new error handling capability, the *SetErrHandlerFn and *SetErrFile functions in
CVODE(S), IDA(S), ARKODE, and KINSOL have been removed. Users of these functions can use the functions
SUNContext_PushErrHandler(), and SUNLogger_SetErrorFilename() instead. For further details see Sections
§4.3 and §4.4.

In addition the following names/symbols were replaced by SUN_ERR_* codes:
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Removed Replaced with SUNErrCode
SUNLS_SUCCESS SUN_SUCCESS
SUNLS_UNRECOV_FAILURE no replacement (value was unused)
SUNLS_MEM_NULL SUN_ERR_ARG_CORRUPT
SUNLS_ILL_INPUT SUN_ERR_ARG_*
SUNLS_MEM_FAIL SUN_ERR_MEM_FAIL
SUNLS_PACKAGE_FAIL_UNREC SUN_ERR_EXT_FAIL
SUNLS_VECTOROP_ERR SUN_ERR_OP_FAIL
SUN_NLS_SUCCESS SUN_SUCCESS
SUN_NLS_MEM_NULL SUN_ERR_ARG_CORRUPT
SUN_NLS_MEM_FAIL SUN_ERR_MEM_FAIL
SUN_NLS_ILL_INPUT SUN_ERR_ARG_*
SUN_NLS_VECTOROP_ERR SUN_ERR_OP_FAIL
SUN_NLS_EXT_FAIL SUN_ERR_EXT_FAIL
SUNMAT_SUCCESS SUN_SUCCESS
SUNMAT_ILL_INPUT SUN_ERR_ARG_*
SUNMAT_MEM_FAIL SUN_ERR_MEM_FAIL
SUNMAT_OPERATION_FAIL SUN_ERR_OP_FAIL
SUNMAT_MATVEC_SETUP_REQUIRED SUN_ERR_OP_FAIL

The following functions have had their signature updated to ensure they can leverage the new SUNDIALS error handling
capabilities.

• From sundials_futils.h

– SUNDIALSFileOpen()

– SUNDIALSFileClose()

• From sundials_memory.h

– SUNMemoryNewEmpty()

– SUNMemoryHelper_Alias()

– SUNMemoryHelper_Wrap()

• From sundials_nvector.h

– N_VNewVectorArray()

SUNComm Type Added

We have replaced the use of a type-erased (i.e., void*) pointer to a communicator in place of MPI_Comm throughout the
SUNDIALS API with a SUNComm , which is just a typedef to an int in builds without MPI and a typedef to a MPI_Comm
in builds with MPI. As a result:

• When MPI is enabled, all SUNDIALS libraries will include MPI symbols and applications will need to include
the path for MPI headers and link against the corresponding MPI library.

• All users will need to update their codes because the call to SUNContext_Create() now takes a SUNComm in-
stead of type-erased pointer to a communicator. For non-MPI codes, pass SUN_COMM_NULL to the comm argument
instead of NULL. For MPI codes, pass the MPI_Comm directly.

• The same change must be made for calls to SUNLogger_Create() or SUNProfiler_Create().

• Some users will need to update their calls to N_VGetCommunicator(), and update any custom N_Vector im-
plementations that provide N_VGetCommunicator(), since it now returns a SUNComm .
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The change away from type-erased pointers for SUNComm fixes problems like the one described in GitHub Issue #275.

The SUNLogger is now always MPI-aware if MPI is enabled in SUNDIALS and the SUNDIALS_LOGGING_ENABLE_-
MPI CMake option and macro definition were removed accordingly.

SUNDIALS Core Library

Users now need to link to sundials_core in addition to the libraries already linked to. This will be picked up au-
tomatically in projects that use the SUNDIALS CMake target. The library sundials_generic has been superseded
by sundials_core and is no longer available. This fixes some duplicate symbol errors on Windows when linking to
multiple SUNDIALS libraries.

Fortran Interface Modules Streamlined

We have streamlined the Fortran modules that need to be included by users by combining the SUNDIALS core into one
Fortran module, fsundials_core_mod. Modules for implementations of the core APIs still exist (e.g., for the Dense
linear solver there is fsunlinsol_dense_mod) as do the modules for the SUNDIALS packages (e.g., fcvode_mod).
The following modules are the ones that have been consolidated into fsundials_core_mod:

fsundials_adaptcontroller_mod
fsundials_context_mod
fsundials_futils_mod
fsundials_linearsolver_mod
fsundials_logger_mod
fsundials_matrix_mod
fsundials_nonlinearsolver_mod
fsundials_nvector_mod
fsundials_profiler_mod
fsundials_types_mod

Minor Changes

The CMAKE_BUILD_TYPE defaults to RelWithDebInfo mode now i.e., SUNDIALS will be built with optimizations
and debugging symbols enabled by default. Previously the build type was unset by default so no optimization or
debugging flags were set.

The advanced CMake options to override the inferred LAPACK name-mangling scheme have been updated from SUN-
DIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES to SUNDIALS_LAPACK_CASE and SUNDIALS_LA-
PACK_UNDERSCORES, respectively.

As a subset of C99 is now required the CMake option USE_GENERIC_MATH as been removed.

The C++ convenience classes (e.g., sundials::Context) have been moved to from SUNDIALS .h headers to corre-
sponding .hpp headers (e.g., sundials/sundials_context.hpp) so C++ codes do not need to compile with C++14
support when using the C API.

Converted most previous Fortran 77 and 90 examples to use SUNDIALS’ Fortran 2003 interface.

Bug Fixes

Fixed GitHub Issue #329 so that C++20 aggregate initialization can be used.

Fixed integer overflow in the internal SUNDIALS hashmap. This resolves GitHub Issues #409 and #249.

Deprecation Notice

The functions in sundials_math.h will be deprecated in the next release.

sunrealtype SUNRpowerI(sunrealtype base, int exponent);
sunrealtype SUNRpowerR(sunrealtype base, sunrealtype exponent);
sunbooleantype SUNRCompare(sunrealtype a, sunrealtype b);

(continues on next page)
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(continued from previous page)

sunbooleantype SUNRCompareTol(sunrealtype a, sunrealtype b, sunrealtype tol);
sunrealtype SUNStrToReal(const char* str);

Additionally, the following header files (and everything in them) will be deprecated – users who rely on these are
recommended to transition to the corresponding SUNMatrix and SUNLinearSolver modules:

sundials_direct.h
sundials_dense.h
sundials_band.h

14.7 Changes to SUNDIALS in release 6.7.0

Major Feature

Added the SUNAdaptController base class, ported ARKODE’s internal implementations of time step controllers
to implementations of this class, and updated ARKODE to use these objects instead of its own implementations.
Added ARKStepSetAdaptController() and ERKStepSetAdaptController() routines so that users can modify
controller parameters, or even provide custom implementations.

New Features

Improved the computational complexity of the sparse matrix ScaleAddI function from O(M ∗N) to O(NNZ).

Added Fortran support for the LAPACK dense linear solver implementation.

Added the routines ARKStepSetAdaptivityAdjustment() and ERKStepSetAdaptivityAdjustment(), that al-
low users to adjust the value for the method order supplied to the temporal adaptivity controllers. The ARKODE default
for this adjustment has been−1 since its initial release, but for some applications a value of 0 is more appropriate. Users
who notice that their simulations encounter a large number of temporal error test failures may want to experiment with
adjusting this value.

Added the third order ERK method ARKODE_SHU_OSHER_3_2_3, the fourth order ERK method ARKODE_SOFRONIOU_-
SPALETTA_5_3_4, the sixth order ERK method ARKODE_VERNER_9_5_6, the seventh order ERK method ARKODE_-
VERNER_10_6_7, the eighth order ERK method ARKODE_VERNER_13_7_8, and the ninth order ERK method ARKODE_-
VERNER_16_8_9.

ARKStep, ERKStep, MRIStep, and SPRKStep were updated to remove a potentially unnecessary right-hand side eval-
uation at the end of an integration. ARKStep was additionally updated to remove extra right-hand side evaluations
when using an explicit method or an implicit method with an explicit first stage.

The MRIStepInnerStepper class in MRIStep was updated to make supplying an MRIStepInnerFullRhsFn optional.

Bug Fixes

Changed the SUNProfiler so that it does not rely on MPI_WTime in any case. This fixes GitHub Issue #312.

Fixed scaling bug in SUNMatScaleAddI_Sparse for non-square matrices.

Fixed a regression introduced by the stop time bug fix in v6.6.1 where ARKODE, CVODE, CVODES, IDA, and IDAS
would return at the stop time rather than the requested output time if the stop time was reached in the same step in
which the output time was passed.

Fixed a bug in ERKStep where methods with cs = 1 but as,j 6= bj were incorrectly treated as having the first same as
last (FSAL) property.

Fixed a bug in ARKODE where ARKStepSetInterpolateStopTime() would return an interpolated solution at the
stop time in some cases when interpolation was disabled.
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Fixed a bug in ARKStepSetTableNum() wherein it did not recognize ARKODE_ARK2_ERK_3_1_2 and ARKODE_-
ARK2_DIRK_3_1_2 as a valid additive Runge–Kutta Butcher table pair.

Fixed a bug in MRIStepCoupling_Write() where explicit coupling tables were not written to the output file pointer.

Fixed missing soversions in some SUNLinearSolver and SUNNonlinearSolver CMake targets.

Renamed some internal types in CVODES and IDAS to allow both packages to be built together in the same binary.

14.8 Changes to SUNDIALS in release 6.6.2

Fixed the build system support for MAGMA when using a NVIDIA HPC SDK installation of CUDA and fixed the
targets used for rocBLAS and rocSPARSE.

14.9 Changes to SUNDIALS in release 6.6.1

New Features

Updated the Trilinos Tpetra N_Vector interface to support Trilinos 14.

Bug Fixes

Fixed a memory leak when destroying a CUDA, HIP, SYCL, or system SUNMemoryHelper object.

Fixed a bug in ARKODE, CVODE, CVODES, IDA, and IDAS where the stop time may not be cleared when using
normal mode if the requested output time is the same as the stop time. Additionally, with ARKODE, CVODE, and
CVODES this fix removes an unnecessary interpolation of the solution at the stop time that could occur in this case.

14.10 Changes to SUNDIALS in release 6.6.0

Major Features

A new time-stepping module, SPRKStep, was added to ARKODE. This time-stepper provides explicit symplectic
partitioned Runge-Kutta methods up to order 10 for separable Hamiltonian systems.

Added support for relaxation Runge-Kutta methods in ERKStep and ARKStep, see Relaxation Methods, Relaxation
Methods, and Relaxation Methods for more information.

New Features

Updated the default ARKODE, CVODE, and CVODES behavior when returning the solution when the internal time
has reached a user-specified stop time. Previously, the output solution was interpolated to the value of tstop;
the default is now to copy the internal solution vector. Users who wish to revert to interpolation may call a
new routine CVodeSetInterpolateStopTime(), ARKStepSetInterpolateStopTime(), ERKStepSetInterpo-
lateStopTime(), or MRIStepSetInterpolateStopTime().

Added the second order IMEX method from [36] as the default second order IMEX method in ARKStep. The explicit
table is given by ARKODE_ARK2_ERK_3_1_2 and the implicit table by ARKODE_ARK2_DIRK_3_1_2.

Updated the F2003 utility routines SUNDIALSFileOpen() and SUNDIALSFileClose() to support user specification
of stdout and stderr strings for the output file names.

Bug Fixes

A potential bug was fixed when using inequality constraint handling and calling ARKStepGetEstLocalErrors() or
ERKStepGetEstLocalErrors() after a failed step in which an inequality constraint violation occurred. In this case,
the values returned by ARKStepGetEstLocalErrors() or ERKStepGetEstLocalErrors() may have been invalid.
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14.11 Changes to SUNDIALS in release 6.5.1

New Features

Added the following functions to disable a previously set stop time:

• ARKStepClearStopTime()

• ERKStepClearStopTime()

• MRIStepClearStopTime()

• CVodeClearStopTime()

• IDAClearStopTime()

The default interpolant in ARKODE when using a first order method has been updated to a linear interpolant to en-
sure values obtained by the integrator are returned at the ends of the time interval. To restore the previous behavior
of using a constant interpolant call ARKStepSetInterpolantDegree(), ERKStepSetInterpolantDegree(), or
MRIStepSetInterpolantDegree() and set the interpolant degree to zero before evolving the problem.

Bug Fixes

Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

14.12 Changes to SUNDIALS in release 6.5.0

New Features

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats() function. See §10.1 for
more details.

Added the following functions to assist in debugging simulations utilizing matrix-based linear solvers:

• ARKStepGetJac()

• ARKStepGetJacTime()

• ARKStepGetJacNumSteps()

• MRIStepGetJac()

• MRIStepGetJacTime()

• MRIStepGetJacNumSteps()

• CVodeGetJac()

• CVodeGetJacTime()

• CVodeGetJacNumSteps()

• IDAGetJac()

• IDAGetJacCj()

• IDAGetJacTime()

• IDAGetJacNumSteps()

• KINGetJac()
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• KINGetJacNumIters()

Added support for CUDA 12.

Added support for the SYCL backend with RAJA 2022.x.y.

Bug Fixes

Fixed an underflow bug during root finding in ARKODE, CVODE, CVODES, IDA and IDAS. This fixes GitHub Issue
#57.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsycl flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by the Fortran interfaces to N_VGetArrayPointer(), SUNDenseMatrix_-
Data(), SUNBandMatrix_Data(), SUNSparseMatrix_Data(), SUNSparseMatrix_IndexValues(), and SUN-
SparseMatrix_IndexPointers(). Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

Fixed an implicit conversion error in the Butcher table for ESDIRK5(4)7L[2]SA2.

14.13 Changes to SUNDIALS in release 6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel oneAPI 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the LAPACK band and dense linear solvers which would cause the tests to fail on some platforms.

14.14 Changes to SUNDIALS in release 6.4.0

New Requirements

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, Ginkgo, and Kokkos.

Major Features

Added support for the Ginkgo linear algebra library. This support includes new SUNDIALS matrix and linear solver
implementations, see the sections §7.10 and §8.18.

Added new SUNDIALS vector, dense matrix, and dense linear solver implementations utilizing the Kokkos Ecosystem
for performance portability, see sections §6.14, §7.11, and §8.19 for more information.

New Features

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added the functions following functions to load a Butcher table from a string:

• ARKStepSetTableName()

• ERKStepSetTableName()

• MRIStepCoupling_LoadTableByName()

• ARKodeButcherTable_LoadDIRKByName()
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• ARKodeButcherTable_LoadERKByName()

Bug Fixes

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed memory leaks/out of bounds memory accesses in the ARKODE MRIStep module that could occur when attaching
a coupling table after reinitialization with a different number of stages than originally selected.

Fixed a memory leak where the projection memory would not be deallocated when calling CVodeFree().

14.15 Changes to SUNDIALS in release 6.3.0

New Features

Added the following functions to retrieve the user data pointer provided with SetUserData functions:

• ARKStepGetUserData()

• ERKStepGetUserData()

• MRIStepGetUserData()

• CVodeGetUserData()

• IDAGetUserData()

• KINGetUserData()

Added a variety of embedded DIRK methods from [49] and [50].

Updated MRIStepReset() to call the corresponding MRIStepInnerResetFn with the same tR and yR arguments for
the MRIStepInnerStepper object that is used to evolve the MRI “fast” time scale subproblems.

Added a new example (examples/cvode/serial/cvRocket_dns.c) which demonstrates using CVODE with a dis-
continuous right-hand-side function and rootfinding.

Bug Fixes

Fixed a bug in ERKStepReset(), ERKStepReInit(), ARKStepReset(), ARKStepReInit(), MRIStepReset(),
and MRIStepReInit() where a previously-set value of tstop (from a call to ERKStepSetStopTime(), ARK-
StepSetStopTime(), or MRIStepSetStopTime(), respectively) would not be cleared.

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY .

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be OFF. This fixes GitHub Issue #177.
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14.16 Changes to SUNDIALS in release 6.2.0

Major Features

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Added support to CVODES for integrating IVPs with constraints using BDF methods and projecting the solution onto
the constraint manifold with a user defined projection function. This implementation is accompanied by additions to
the CVODES user documentation and examples.

New Features

Added the function SUNProfiler_Reset() to reset the region timings and counters to zero.

Added the following functions to output all of the integrator, nonlinear solver, linear solver, and other statistics in one
call:

• ARKStepPrintAllStats()

• ERKStepPrintAllStats()

• MRIStepPrintAllStats()

• CVodePrintAllStats()

• IDAPrintAllStats()

• KINPrintAllStats()

The file scripts/sundials_csv.py contains functions for parsing the comma-separated value (CSV) output files
when using the CSV output format.

Added functions to CVODE, CVODES, IDA, and IDAS to change the default step size adaptivity parameters. For more
information see the documentation for:

• CVodeSetEtaFixedStepBounds()

• CVodeSetEtaMaxFirstStep()

• CVodeSetEtaMaxEarlyStep()

• CVodeSetNumStepsEtaMaxEarlyStep()

• CVodeSetEtaMax()

• CVodeSetEtaMin()

• CVodeSetEtaMinErrFail()

• CVodeSetEtaMaxErrFail()

• CVodeSetNumFailsEtaMaxErrFail()

• CVodeSetEtaConvFail()

• IDASetEtaFixedStepBounds()

• IDASetEtaMax()

• IDASetEtaMin()

• IDASetEtaLow()

• IDASetEtaMinErrFail()

• IDASetEtaConvFail()
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Added the functions ARKStepSetDeduceImplicitRhs() and MRIStepSetDeduceImplicitRhs() to optionally re-
move an evaluation of the implicit right-hand side function after nonlinear solves. See Nonlinear solver methods, for
considerations on using this optimization.

Added the function MRIStepSetOrder() to select the default MRI method of a given order.

Added the functions CVodeSetDeltaGammaMaxLSetup() and CVodeSetDeltaGammaMaxBadJac() in CVODE and
CVODES to adjust the γ change thresholds to require a linear solver setup or Jacobian/precondition update, respectively.

Added the function IDASetDeltaCjLSetup() in IDA and IDAS to adjust the parameter that determines when a change
in cj requires calling the linear solver setup function.

Added the function IDASetMinStep() to set a minimum step size.

Bug Fixes

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the ManyVector and MPI-
ManyVector vector implementations in the same simulation.

A bug was fixed in the ARKODE, CVODE(S), and IDA(S) functions to retrieve the number of nonlinear solver failures.
The failure count returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed
with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure
was not included in the nonlinear solver failure count. The following functions have been updated to return the total
number of nonlinear solver failures:

• ARKStepGetNumNonlinSolvConvFails()

• ARKStepGetNonlinSolvStats()

• MRIStepGetNumNonlinSolvConvFails()

• MRIStepGetNonlinSolvStats()

• CVodeGetNumNonlinSolvConvFails()

• CVodeGetNonlinSolvStats()

• CVodeGetSensNumNonlinSolvConvFails()

• CVodeGetSensNonlinSolvStats()

• CVodeGetStgrSensNumNonlinSolvConvFails()

• CVodeGetStgrSensNonlinSolvStats()

• IDAGetNumNonlinSolvConvFails()

• IDAGetNonlinSolvStats()

• IDAGetSensNumNonlinSolvConvFails()

• IDAGetSensNonlinSolvStats()

As a result of this change users may see an increase in the number of failures reported from the above functions. The
following functions have been added to retrieve the number of failed steps due to a nonlinear solver failure i.e., the
counts previously returned by the above functions:

• ARKStepGetNumStepSolveFails()
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• MRIStepGetNumStepSolveFails()

• CVodeGetNumStepSolveFails()

• CVodeGetNumStepSensSolveFails()

• CVodeGetNumStepStgrSensSolveFails()

• IDAGetNumStepSolveFails()

• IDAGetNumStepSensSolveFails()

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

Deprecation Notice

Deprecated the following functions, it is recommended to use the SUNLogger API instead.

• ARKStepSetDiagnostics

• ERKStepSetDiagnostics

• MRIStepSetDiagnostics

• KINSetInfoFile

• SUNNonlinSolSetPrintLevel_Newton

• SUNNonlinSolSetInfoFile_Newton

• SUNNonlinSolSetPrintLevel_FixedPoint

• SUNNonlinSolSetInfoFile_FixedPoint

• SUNLinSolSetInfoFile_PCG

• SUNLinSolSetPrintLevel_PCG

• SUNLinSolSetInfoFile_SPGMR

• SUNLinSolSetPrintLevel_SPGMR

• SUNLinSolSetInfoFile_SPFGMR

• SUNLinSolSetPrintLevel_SPFGMR

• SUNLinSolSetInfoFile_SPTFQM

• SUNLinSolSetPrintLevel_SPTFQMR

• SUNLinSolSetInfoFile_SPBCGS

• SUNLinSolSetPrintLevel_SPBCGS

The SUNLinSolSetInfoFile_* and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting
the CMake option SUNDIALS_LOGGING_LEVEL to a value >= 3.
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14.17 Changes to SUNDIALS in release 6.1.1

New Feature

Added new Fortran example program, examples/arkode/F2003_serial/ark_kpr_mri_f2003.f90 demonstrat-
ing MRI capabilities.

Bug Fixes

Fixed exported SUNDIALSConfig.cmake.

Fixed Fortran interface to MRIStepInnerStepper and MRIStepCoupling structures and functions.

14.18 Changes to SUNDIALS in release 6.1.0

New Features

Added new reduction implementations for the CUDA and HIP vectors that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS::<lib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.

Bug Fixes

Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.

Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SuperLU_MT linear solver interface.

14.19 Changes to SUNDIALS in release 6.0.0

Breaking Changes

SUNContext Object Added

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the §4.2 for more details.

The script scripts/upgrade-to-sundials-6-from-5.sh has been provided with this release (and obtainable from
the GitHub release page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER
argument to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update
deprecated SUNDIALS constants/types to the new names. It can be run like this:

./upgrade-to-sundials-6-from-5.sh <files to update>
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Updated SUNMemoryHelper Function Signatures

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy() have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

Deprecated Functions Removed

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewWithMemHelp_Cuda() and N_VSetKernelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

The following previously deprecated SUNLinearSolver functions have been removed:

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()
SUNKLU SUNLinSol_KLU()
SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMaxl SUNLinSol_PCGSetMaxl()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMaxl SUNLinSol_SPBCGSSetMaxl()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()
SUNSPFGMRSetMaxRestarts SUNLinSol_SPFGMRSetMaxRestarts()
SUNSPGMR SUNLinSol_SPGMR()
SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMaxl SUNLinSol_SPTFQMRSetMaxl()
SUNSuperLUMT SUNLinSol_SuperLUMT()
SUNSuperLUMTSetOrdering SUNLinSol_SuperLUMTSetOrdering()

The deprecated functions MRIStepGetCurrentButcherTables and MRIStepWriteButcher and the utility func-
tions MRIStepSetTable and MRIStepSetTableNum have been removed. Users wishing to create an MRI-GARK
method from a Butcher table should use MRIStepCoupling_MIStoMRI() to create the corresponding MRI coupling
table and attach it with MRIStepSetCoupling().

The previously deprecated functions ARKStepSetMaxStepsBetweenLSet and ARKStepSetMaxStepsBetweenJac
have been removed and replaced with ARKStepSetLSetupFrequency() and ARKStepSetJacEvalFrequency()
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respectively.

The previously deprecated function CVodeSetMaxStepsBetweenJac has been removed and replaced with CVode-
SetJacEvalFrequency().

The ARKODE, CVODE, IDA, and KINSOL Fortran 77 interfaces has been removed. See §4.7 and the F2003 example
programs for more details using the SUNDIALS Fortran 2003 module interfaces.

Namespace Changes

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials::sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra N_Vector implementation has been replaced with the sundi-
als::trilinos::nvector_tpetra namespace.

Major Features

Profiling Capability

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING . A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER . See the documentation section on profiling for more details.

Warning

Profiling will impact performance, and should be enabled judiciously.

IMEX MRI Methods and MRIStepInnerStepper Object

The MRIStep module has been extended to support implicit-explicit (ImEx) multirate infinitesimal generalized ad-
ditive Runge–Kutta (MRI-GARK) methods. As such, MRIStepCreate() has been updated to include arguments
for the slow explicit and slow implicit ODE right-hand side functions. MRIStepCreate() has also been updated to
require attaching an MRIStepInnerStepper for evolving the fast time scale. MRIStepReInit() has been similarly up-
dated to take explicit and implicit right-hand side functions as input. Codes using explicit or implicit MRI methods
will need to update MRIStepCreate() and MRIStepReInit() calls to pass NULL for either the explicit or implicit
right-hand side function as appropriate. If ARKStep is used as the fast time scale integrator, codes will need to call
ARKStepCreateMRIStepInnerStepper() to wrap the ARKStep memory as an MRIStepInnerStepper object. Ad-
ditionally, MRIStepGetNumRhsEvals() has been updated to return the number of slow implicit and explicit function
evaluations. The coupling table, MRIStepCoupling, and the functions MRIStepCoupling_Alloc() and MRIStep-
Coupling_Create() have also been updated to support IMEX-MRI-GARK methods.

New Features

Two new optional vector operations, N_VDotProdMultiLocal() and N_VDotProdMultiAllReduce(), have been
added to support low-synchronization methods for Anderson acceleration.

The implementation of solve-decoupled implicit MRI-GARK methods has been updated to remove extraneous slow
implicit function calls and reduce the memory requirements.

Added a new function CVodeGetLinSolveStats() to get the CVODES linear solver statistics as a group.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODES after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODES statistics throughout
the simulation.

New orthogonalization methods were added for use within the KINSOL Anderson acceleration routine. See Anderson
Acceleration QR Factorization and KINSetOrthAA() for more details.

Deprecation Notice
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The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_* have been deprecated. The generic N_VCloneVectorArray() and N_VDe-
stroyVectorArray() functions should be used instead.

Many constants, types, and functions have been renamed so that they are properly namespaced. The old names have
been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH
MODIFIED_GS SUN_MODIFIED_GS
CLASSICAL_GS SUN_CLASSICAL_GS
ATimesFn SUNATimesFn
PSetupFn SUNPSetupFn
PSolveFn SUNPSolveFn
DlsMat SUNDlsMat
DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM
SDIRK_2_1_2 ARKODE_SDIRK_2_1_2
BILLINGTON_3_3_2 ARKODE_BILLINGTON_3_3_2
TRBDF2_3_3_2 ARKODE_TRBDF2_3_3_2
KVAERNO_4_2_3 ARKODE_KVAERNO_4_2_3
ARK324L2SA_DIRK_4_2_3 ARKODE_ARK324L2SA_DIRK_4_2_3
CASH_5_2_4 ARKODE_CASH_5_2_4
CASH_5_3_4 ARKODE_CASH_5_3_4
SDIRK_5_3_4 ARKODE_SDIRK_5_3_4
KVAERNO_5_3_4 ARKODE_KVAERNO_5_3_4
ARK436L2SA_DIRK_6_3_4 ARKODE_ARK436L2SA_DIRK_6_3_4
KVAERNO_7_4_5 ARKODE_KVAERNO_7_4_5
ARK548L2SA_DIRK_8_4_5 ARKODE_ARK548L2SA_DIRK_8_4_5
ARK437L2SA_DIRK_7_3_4 ARKODE_ARK437L2SA_DIRK_7_3_4
ARK548L2SAb_DIRK_8_4_5 ARKODE_ARK548L2SAb_DIRK_8_4_5
MIN_DIRK_NUM ARKODE_MIN_DIRK_NUM
MAX_DIRK_NUM ARKODE_MAX_DIRK_NUM
MIS_KW3 ARKODE_MIS_KW3
MRI_GARK_ERK33a ARKODE_MRI_GARK_ERK33a
MRI_GARK_ERK45a ARKODE_MRI_GARK_ERK45a
MRI_GARK_IRK21a ARKODE_MRI_GARK_IRK21a
MRI_GARK_ESDIRK34a ARKODE_MRI_GARK_ESDIRK34a
MRI_GARK_ESDIRK46a ARKODE_MRI_GARK_ESDIRK46a

continues on next page
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Table 14.1 – continued from previous page
Deprecated Name New Name
IMEX_MRI_GARK3a ARKODE_IMEX_MRI_GARK3a
IMEX_MRI_GARK3b ARKODE_IMEX_MRI_GARK3b
IMEX_MRI_GARK4 ARKODE_IMEX_MRI_GARK4
MIN_MRI_NUM ARKODE_MIN_MRI_NUM
MAX_MRI_NUM ARKODE_MAX_MRI_NUM
DEFAULT_MRI_TABLE_3 MRISTEP_DEFAULT_TABLE_3
DEFAULT_EXPL_MRI_TABLE_3 MRISTEP_DEFAULT_EXPL_TABLE_3
DEFAULT_EXPL_MRI_TABLE_4 MRISTEP_DEFAULT_EXPL_TABLE_4
DEFAULT_IMPL_SD_TABLE_2 MRISTEP_DEFAULT_IMPL_SD_TABLE_2
DEFAULT_IMPL_SD_TABLE_3 MRISTEP_DEFAULT_IMPL_SD_TABLE_3
DEFAULT_IMPL_SD_TABLE_4 MRISTEP_DEFAULT_IMPL_SD_TABLE_4
DEFAULT_IMEX_SD_TABLE_3 MRISTEP_DEFAULT_IMEX_SD_TABLE_3
DEFAULT_IMEX_SD_TABLE_4 MRISTEP_DEFAULT_IMEX_SD_TABLE_4
HEUN_EULER_2_1_2 ARKODE_HEUN_EULER_2_1_2
BOGACKI_SHAMPINE_4_2_3 ARKODE_BOGACKI_SHAMPINE_4_2_3
ARK324L2SA_ERK_4_2_3 ARKODE_ARK324L2SA_ERK_4_2_3
ZONNEVELD_5_3_4 ARKODE_ZONNEVELD_5_3_4
ARK436L2SA_ERK_6_3_4 ARKODE_ARK436L2SA_ERK_6_3_4
SAYFY_ABURUB_6_3_4 ARKODE_SAYFY_ABURUB_6_3_4
CASH_KARP_6_4_5 ARKODE_CASH_KARP_6_4_5
FEHLBERG_6_4_5 ARKODE_FEHLBERG_6_4_5
DORMAND_PRINCE_7_4_5 ARKODE_DORMAND_PRINCE_7_4_5
ARK548L2SA_ERK_8_4_5 ARKODE_ARK548L2SA_ERK_8_4_5
VERNER_8_5_6 ARKODE_VERNER_8_5_6
FEHLBERG_13_7_8 ARKODE_FEHLBERG_13_7_8
KNOTH_WOLKE_3_3 ARKODE_KNOTH_WOLKE_3_3
ARK437L2SA_ERK_7_3_4 ARKODE_ARK437L2SA_ERK_7_3_4
ARK548L2SAb_ERK_8_4_5 ARKODE_ARK548L2SAb_ERK_8_4_5
MIN_ERK_NUM ARKODE_MIN_ERK_NUM
MAX_ERK_NUM ARKODE_MAX_ERK_NUM
DEFAULT_ERK_2 ARKSTEP_DEFAULT_ERK_2
DEFAULT_ERK_3 ARKSTEP_DEFAULT_ERK_3
DEFAULT_ERK_4 ARKSTEP_DEFAULT_ERK_4
DEFAULT_ERK_5 ARKSTEP_DEFAULT_ERK_5
DEFAULT_ERK_6 ARKSTEP_DEFAULT_ERK_6
DEFAULT_ERK_8 ARKSTEP_DEFAULT_ERK_8
DEFAULT_DIRK_2 ARKSTEP_DEFAULT_DIRK_2
DEFAULT_DIRK_3 ARKSTEP_DEFAULT_DIRK_3
DEFAULT_DIRK_4 ARKSTEP_DEFAULT_DIRK_4
DEFAULT_DIRK_5 ARKSTEP_DEFAULT_DIRK_5
DEFAULT_ARK_ETABLE_3 ARKSTEP_DEFAULT_ARK_ETABLE_3
DEFAULT_ARK_ETABLE_4 ARKSTEP_DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ETABLE_5 ARKSTEP_DEFAULT_ARK_ETABLE_4
DEFAULT_ARK_ITABLE_3 ARKSTEP_DEFAULT_ARK_ITABLE_3
DEFAULT_ARK_ITABLE_4 ARKSTEP_DEFAULT_ARK_ITABLE_4
DEFAULT_ARK_ITABLE_5 ARKSTEP_DEFAULT_ARK_ITABLE_5
DEFAULT_ERK_2 ERKSTEP_DEFAULT_2
DEFAULT_ERK_3 ERKSTEP_DEFAULT_3
DEFAULT_ERK_4 ERKSTEP_DEFAULT_4
DEFAULT_ERK_5 ERKSTEP_DEFAULT_5

continues on next page

488 Chapter 14. Changelog



User Documentation for IDAS, v6.3.0

Table 14.1 – continued from previous page
Deprecated Name New Name
DEFAULT_ERK_6 ERKSTEP_DEFAULT_6
DEFAULT_ERK_8 ERKSTEP_DEFAULT_8

In addition, the following functions are now deprecated (compile-time warnings will be printed if supported by the
compiler):

Deprecated Name New Name
DenseGETRF SUNDlsMat_DenseGETRF
DenseGETRS SUNDlsMat_DenseGETRS
denseGETRF SUNDlsMat_denseGETRF
denseGETRS SUNDlsMat_denseGETRS
DensePOTRF SUNDlsMat_DensePOTRF
DensePOTRS SUNDlsMat_DensePOTRS
densePOTRF SUNDlsMat_densePOTRF
densePOTRS SUNDlsMat_densePOTRS
DenseGEQRF SUNDlsMat_DenseGEQRF
DenseORMQR SUNDlsMat_DenseORMQR
denseGEQRF SUNDlsMat_denseGEQRF
denseORMQR SUNDlsMat_denseORMQR
DenseCopy SUNDlsMat_DenseCopy
denseCopy SUNDlsMat_denseCopy
DenseScale SUNDlsMat_DenseScale
denseScale SUNDlsMat_denseScale
denseAddIdentity SUNDlsMat_denseAddIdentity
DenseMatvec SUNDlsMat_DenseMatvec
denseMatvec SUNDlsMat_denseMatvec
BandGBTRF SUNDlsMat_BandGBTRF
bandGBTRF SUNDlsMat_bandGBTRF
BandGBTRS SUNDlsMat_BandGBTRS
bandGBTRS SUNDlsMat_bandGBTRS
BandCopy SUNDlsMat_BandCopy
bandCopy SUNDlsMat_bandCopy
BandScale SUNDlsMat_BandScale
bandScale SUNDlsMat_bandScale
bandAddIdentity SUNDlsMat_bandAddIdentity
BandMatvec SUNDlsMat_BandMatvec
bandMatvec SUNDlsMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS
QRfact SUNQRFact
QRsol SUNQRsol
DlsMat_NewDenseMat SUNDlsMat_NewDenseMat
DlsMat_NewBandMat SUNDlsMat_NewBandMat
DestroyMat SUNDlsMat_DestroyMat
NewIntArray SUNDlsMat_NewIntArray
NewIndexArray SUNDlsMat_NewIndexArray
NewRealArray SUNDlsMat_NewRealArray
DestroyArray SUNDlsMat_DestroyArray
AddIdentity SUNDlsMat_AddIdentity

continues on next page
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Table 14.2 – continued from previous page
Deprecated Name New Name
SetToZero SUNDlsMat_SetToZero
PrintMat SUNDlsMat_PrintMat
newDenseMat SUNDlsMat_newDenseMat
newBandMat SUNDlsMat_newBandMat
destroyMat SUNDlsMat_destroyMat
newIntArray SUNDlsMat_newIntArray
newIndexArray SUNDlsMat_newIndexArray
newRealArray SUNDlsMat_newRealArray
destroyArray SUNDlsMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

Deprecated “bootstrap” and “minimum correction” predictors in ARKStep (options 4 and 5 to ARKStepSetPredic-
torMethod()) and the “bootstrap” predictor in MRIStep (option 4 to MRIStepSetPredictorMethod()). These
functions will output a deprecation warning message and will be removed in a future release.

14.20 Changes to SUNDIALS in release 5.8.0

New Features

The RAJA vector implementation has been updated to support the SYCL backend in addition to the CUDA and HIP
backend. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS
CMake variable. This vector remains experimental and is subject to change from version to version.

New SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §8.9 for more details. This matrix is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess(), to indicate that the next
call to SUNLinSolSolve() will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty() constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

The time integrator packages (ARKODE, CVODE(S), and IDA(S)) all now support a new “matrix-embedded” SUN-
LinearSolver type. This type supports user-supplied SUNLinearSolver implementations that set up and solve the
specified linear system at each linear solve call. Any matrix-related data structures are held internally to the linear
solver itself, and are not provided by the SUNDIALS package.

Added functions to ARKODE and CVODE(S) for supplying an alternative right-hand side function and to IDA(S) for
supplying an alternative residual for use within nonlinear system function evaluations:

• ARKStepSetNlsRhsFn()

• MRIStepSetNlsRhsFn()

• CVodeSetNlsRhsFn()

• IDASetNlsResFn()

Support for user-defined inner (fast) integrators has been to the MRIStep module. See MRIStep Custom Inner Steppers
for more information on providing a user-defined integration method.
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Added specialized fused HIP kernels to CVODE which may offer better performance on smaller problems when using
CVODE with the HIP vector. See the optional input function CVodeSetUseIntegratorFusedKernels() for more
information. As with other SUNDIALS HIP features, this capability is considered experimental and may change from
version to version.

New KINSOL options have been added to apply a constant damping factor in the fixed point and Picard iterations
(see KINSetDamping()), to delay the start of Anderson acceleration with the fixed point and Picard iterations (see
KINSetDelayAA()), and to return the newest solution with the fixed point iteration (see KINSetReturnNewest()).

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

Bug Fixes

A bug was fixed in SUNMatCopyOps() where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

A bug was fixed in the ARKODE stepper modules where the stop time may be passed after resetting the integrator.

A bug was fixed in IDASetJacTimesResFn() in IDAS where the supplied function was used in the dense finite
difference Jacobian computation rather than the finite difference Jacobian-vector product approximation.

A bug was fixed in the KINSOL Picard iteration where the value of KINSetMaxSetupCalls() would be ignored.

14.21 Changes to SUNDIALS in release 5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §6.12 for more details. This vector is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §8.8 for more details.

14.22 Changes to SUNDIALS in release 5.6.1

Fixed a CMake bug which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_RAJA_BACKENDS options
were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

14.23 Changes to SUNDIALS in release 5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This vector is considered experimental and is subject to change
from version to version.

The RAJA vector implementation has been updated to support the HIP backend in addition to the CUDA backend. Users
can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake variable. This
vector remains experimental and is subject to change from version to version.
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A new optional operation, N_VGetDeviceArrayPointer(), was added to the N_Vector API. This operation is useful
for vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNDIALS matrix and linear solver interfaces to the cuSparse matrix and cuSolver batched QR solver no longer
require using the CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer() operation, and that the pointer returned by N_VGetDeviceArrayPointer() is a valid CUDA device
pointer.

14.24 Changes to SUNDIALS in release 5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

14.25 Changes to SUNDIALS in release 5.4.0

Major Features

A new class, SUNMemoryHelper, was added to support GPU users who have complex memory management needs
such as using memory pools. This is paired with new constructors for the CUDA and RAJA vectors that accept a
SUNMemoryHelper object. Refer to §4.8, §10, §6.10 and §6.13 for more information.

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [1] has been added to
enable parallel-in-time integration. See the Multigrid Reduction in Time with XBraid section for more information
and the example codes in examples/arkode/CXX_xbraid. This interface required the addition of three new N_-
Vector operations to exchange vector data between computational nodes, see N_VBufSize(), N_VBufPack(), and
N_VBufUnpack(). These N_Vector operations are only used within the XBraid interface and need not be implemented
for any other context.

New Features

The RAJA vector has been updated to mirror the CUDA vector. Notably, the update adds managed memory support
to the RAJA vector. Users of the vector will need to update any calls to the N_VMake_Raja() function because that
signature was changed. This vector remains experimental and is subject to change from version to version.

The expected behavior of SUNNonlinSolGetNumIters() and SUNNonlinSolGetNumConvFails() in the SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations and failures may be
retrieved with the following functions:

• ARKStepGetNumNonlinSolvIters()

• ARKStepGetNumNonlinSolvConvFails()

• ARKStepGetNonlinSolvStats()

• MRIStepGetNumNonlinSolvIters()

• MRIStepGetNumNonlinSolvConvFails()

• MRIStepGetNonlinSolvStats()
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• CVodeGetNumNonlinSolvIters()

• CVodeGetNumNonlinSolvConvFails()

• CVodeGetNonlinSolvStats()

• IDAGetNumNonlinSolvIters()

• IDAGetNumNonlinSolvConvFails()

• IDAGetNonlinSolvStats()

Added the following the following functions that advanced users might find useful when providing a custom SUNNon-
linSolSysFn():

• ARKStepComputeState()

• ARKStepGetNonlinearSystemData()

• MRIStepComputeState()

• MRIStepGetNonlinearSystemData()

• CVodeComputeState()

• CVodeGetNonlinearSystemData()

• IDAGetNonlinearSystemData()

Added new functions to CVODE(S), ARKODE, and IDA(S) to to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS:

• ARKStepSetLSNormFactor()

• ARKStepSetMassLSNormFactor()

• MRIStepSetLSNormFactor()

• CVodeSetLSNormFactor()

• IDASetLSNormFactor()

Added new reset functions ARKStepReset(), ERKStepReset(), and MRIStepReset() to reset the stepper time
and state vector to user-provided values for continuing the integration from that point while retaining the integration
history. These function complement the reinitialization functions ARKStepReInit(), ERKStepReInit(), and MRIS-
tepReInit() which reinitialize the stepper so that the problem integration should resume as if started from scratch.

Updated the MRIStep time-stepping module in ARKODE to support higher-order MRI-GARK methods [61], including
methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

The function CVodeSetLSetupFrequency() has been added to CVODE(S) to set the frequency of calls to the linear
solver setup function.

The Trilinos Tpetra N_Vector interface has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA 11.

Bug Fixes

A minor inconsistency in CVODE(S) and a bug ARKODE when checking the Jacobian evaluation frequency has been
fixed. As a result codes using using a non-default Jacobian update frequency through a call to CVodeSetMaxSteps-
BetweenJac or ARKStepSetMaxStepsBetweenJac will need to increase the provided value by 1 to achieve the same
behavior as before.

In IDAS and CVODES, the functions for forward integration with checkpointing (IDASolveF(), CVodeF()) are now
subject to a restriction on the number of time steps allowed to reach the output time. This is the same restriction
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applied to IDASolve() and CVode(). The default maximum number of steps is 500, but this may be changed using
the CVodeSetMaxNumSteps() and IDASetMaxNumSteps() function. This change fixes a bug that could cause an
infinite loop in IDASolveF() and CVodeF(). This change may cause a runtime error in existing user code.

Fixed bug in using ERK method integration with static mass matrices.

Deprecation Notice

For greater clarity the following functions have been deprecated:

• CVodeSetMaxStepsBetweenJac

• ARKStepSetMaxStepsBetweenJac

• ARKStepSetMaxStepsBetweenLSet

The following functions should be used instead:

• CVodeSetJacEvalFrequency()

• ARKStepSetJacEvalFrequency()

• ARKStepSetLSetupFrequency()

14.26 Changes to SUNDIALS in release 5.3.0

Major Feature

Added support to CVODE for integrating IVPs with constraints using BDF methods and projecting the solution onto
the constraint manifold with a user defined projection function. This implementation is accompanied by additions to
user documentation and CVODE examples. See CVodeSetProjFn() for more information.

New Features

Added the ability to control the CUDA kernel launch parameters for the CUDA vector and spare matrix implementa-
tions. These implementations remain experimental and are subject to change from version to version. In addition, the
CUDA vector kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any performance changes that they notice.

Added new capabilities for monitoring the solve phase in the Newton and fixed-point SUNNonlinearSolver, and the
SUNDIALS iterative linear solvers. SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_-
MONITORING to use these capabilities.

Added specialized fused CUDA kernels to CVODE which may offer better performance on smaller problems when
using CVODE with the CUDA vector. See the optional input function CVodeSetUseIntegratorFusedKernels()
for more information. As with other SUNDIALS CUDA features, this is feature is experimental and may change from
version to version.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODE after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODE statistics throughout
the simulation.

Added a new function CVodeGetLinSolveStats() to get the CVODE linear solver statistics as a group.

Added the following optional functions to provide an alternative ODE right-hand side function (ARKODE and
CVODE(S)), DAE residual function (IDA(S)), or nonlinear system function (KINSOL) for use when computing
Jacobian-vector products with the internal difference quotient approximation:

• ARKStepSetJacTimesRhsFn()

• CVodeSetJacTimesRhsFn()
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• CVodeSetJacTimesRhsFnB()

• IDASetJacTimesResFn()

• IDASetJacTimesResFnB()

• KINSetJacTimesVecSysFn()

Bug Fixes

Fixed a bug in the iterative linear solvers where an error is not returned if the Atimes function is NULL or, if precondi-
tioning is enabled, the PSolve function is NULL.

Fixed a bug in ARKODE where the prototypes for ERKStepSetMinReduction() and ARKStepSetMinReduction()
were not included in arkode_erkstep.h and arkode_arkstep.h respectively.

Fixed a bug in ARKODE where inequality constraint checking would need to be disabled and then re-enabled to update
the inequality constraint values after resizing a problem. Resizing a problem will now disable constraints and a call
to ARKStepSetConstraints() or ERKStepSetConstraints() is required to re-enable constraint checking for the
new problem size.

14.27 Changes to SUNDIALS in release 5.2.0

New Features

The following functions were added to each of the time integration packages to enable or disable the scaling applied to
linear system solutions with matrix-based linear solvers to account for lagged matrix information:

• ARKStepSetLinearSolutionScaling()

• CVodeSetLinearSolutionScaling()

• CVodeSetLinearSolutionScalingB()

• IDASetLinearSolutionScaling()

• IDASetLinearSolutionScalingB()

When using a matrix-based linear solver with ARKODE, IDA(S), or BDF methods in CVODE(S) scaling is enabled
by default.

Added a new SUNMatrix implementation that interfaces to the sparse matrix implementation from the NVIDIA cuS-
PARSE library, see §7.7 for more details. In addition, the CUDA Sparse linear solver has been updated to use the new
matrix, as such, users of this matrix will need to update their code. This implementations are still considered to be
experimental, thus they are subject to breaking changes even in minor releases.

Added a new “stiff” interpolation module to ARKODE, based on Lagrange polynomial interpolation, that is acces-
sible to each of the ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide
increased interpolation accuracy when integrating stiff problems, as opposed to the ARKODE-standard Hermite in-
terpolation module that can suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite
module remains the default, the new Lagrange module may be enabled using one of the routines ARKStepSetInter-
polantType(), ERKStepSetInterpolantType(), or MRIStepSetInterpolantType(). The serial example prob-
lem ark_brusselator.c has been converted to use this Lagrange interpolation module. Created accompanying rou-
tines ARKStepSetInterpolantDegree(), ARKStepSetInterpolantDegree() and ARKStepSetInterpolant-
Degree() to provide user control over these interpolating polynomials.

Added two new functions, ARKStepSetMinReduction() and ERKStepSetMinReduction(), to change the mini-
mum allowed step size reduction factor after an error test failure.

Bug Fixes
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Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to f2003,
xlf2003, or xlf2003_r.

Fixed a bug in how ARKODE interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKODE
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Previ-
ously, ARKODE computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attribute missing on some SUN-
DIALS API functions.

Fixed a memory leak in CVODES and IDAS from not deallocating the atolSmin0 and atolQSmin0 arrays.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

Deprecation Notice

The routines ARKStepSetDenseOrder(), ARKStepSetDenseOrder() and ARKStepSetDenseOrder() have been
deprecated and will be removed in a future release. The new functions ARKStepSetInterpolantDegree(), ARK-
StepSetInterpolantDegree(), and ARKStepSetInterpolantDegree() should be used instead.

14.28 Changes to SUNDIALS in release 5.1.0

New Features

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called after any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStagePredictFn, and may be set
by calling ARKStepSetStagePredictFn().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData() to attach their user data pointer to the
inner integrator memory as MRIStepSetUserData() will not set the pointer for both the inner and outer integrators.
The MRIStep examples have been updated to reflect this change.

Added support for damping when using Anderson acceleration in KINSOL. See the Mathematical Considerations and
the description of the KINSetDampingAA() function for more details.

Added support for constant damping to the fixed-point SUNNonlinearSolver when using Anderson acceleration. See
SUNNonlinSol_FixedPoint description and the SUNNonlinSolSetDamping_FixedPoint() for more details.

Added two utility functions, SUNDIALSFileOpen() and SUNDIALSFileClose() for creating/destroying file pointers.
These are useful when using the Fortran 2003 interfaces.

Added a new build system option, CUDA_ARCH, to specify the CUDA architecture to target.

Bug Fixes

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR .

Fixed a bug in the Fortran 2003 interfaces to the ARKODE Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type(c_ptr) in Fortran.
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14.29 Changes to SUNDIALS in release 5.0.0

Build System

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as SUN-
DIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path to the BLAS
library should be included in the _LIBRARIES variable for the third party library e.g., SUPERLUDIST_LIBRARIES when
enabling SuperLU_DIST.

NVector

Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty() allocates
an “empty” generic N_Vector with the object’s content pointer and the function pointers in the operations structure
initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of any
new optional operations to the N_Vector API by ensuring only required operations need to be set. Additionally, the
function N_VCopyOps() has been added to copy the operation function pointers between vector objects. When used in
clone routines for custom vector objects these functions also will ease the introduction of any new optional operations
to the N_Vector API by ensuring all operations are copied when cloning objects.

Added new N_Vector implementations, ManyVector and MPIManyVector, to support flexible partitioning of solution
data among different processing elements (e.g., CPU + GPU) or for multi-physics problems that couple distinct MPI-
based simulations together (see the §6.17 and §6.18 for more details). This implementation is accompanied by additions
to user documentation and SUNDIALS examples.

Additionally, an MPIPlusX vector implementation has been created to support the MPI+X paradigm where X is a
type of on-node parallelism (e.g., OpenMP, CUDA, etc.). The implementation is accompanied by additions to user
documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the N_Vector API.
The new required operation, N_VGetLength(), returns the global vector length. The optional operations have been
added to support the new MPIManyVector implementation. The operation N_VGetCommunicator() must be imple-
mented by subvectors that are combined to create an MPIManyVector, but is not used outside of this context. The
remaining nine operations are optional local reduction operations intended to eliminate unnecessary latency when per-
forming vector reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vector
operations are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal, N_-
VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal. If an N_Vector
implementation defines any of the local operations as NULL, then the MPIManyVector will call standard N_Vector
operations to complete the computation.

The *_MPICuda and *_MPIRaja functions have been removed from the CUDA and RAJA vector implementations
respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, libsundials_nvecmpicuda.lib, and
libsundials_nvecmpicudaraja.lib files have been removed. Users should use the MPI+X vector in conjunction
with the CUDA and RAJA vectors to replace the functionality. The necessary changes are minimal and should require
few code modifications. See the example programs in examples/ida/mpicuda and examples/ida/mpiraja for
examples of how to use the MPI+X vector with the CUDA and RAJA vectors, respectively.

Made performance improvements to the CUDA vector. Users who utilize a non-default stream should no longer see
default stream synchronizations after memory transfers.

Added a new constructor to the CUDA vector that allows a user to provide custom allocate and free functions for the
vector data array and internal reduction buffer.

Added three new N_Vector utility functions, N_VGetVecAtIndexVectorArray(), N_VSetVecAtIndexVectorAr-
ray(), and N_VNewVectorArray(), for working with N_Vector arrays when using the Fortran 2003 interfaces.

SUNMatrix

14.29. Changes to SUNDIALS in release 5.0.0 497



User Documentation for IDAS, v6.3.0

Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMatNewEmpty()
allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of
any new optional operations to the SUNMatrix API by ensuring only required operations need to be set. Additionally,
the function SUNMatCopyOps() has been added to copy the operation function pointers between matrix objects. When
used in clone routines for custom matrix objects these functions also will ease the introduction of any new optional
operations to the SUNMatrix API by ensuring all operations are copied when cloning objects.

A new operation, SUNMatMatvecSetup(), was added to the SUNMatrix API to perform any setup necessary for
computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to prepare
the matrix itself, or communication structures before performing the matrix-vector product. Users who have imple-
mented a custom SUNMatrix will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

The generic SUNMatrix API now defines error codes to be returned by matrix operations. Operations which return an
integer flag indicating success/failure may return different values than previously.

A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_DIST
library with SUNDIALS.

SUNLinearSolver

A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-
NewEmpty() allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function point-
ers in the operations structure initialized to NULL. When used in the constructor for custom objects this function will ease
the introduction of any new optional operations to the SUNLinearSolver API by ensuring only required operations
need to be set.

The return type of the SUNLinSolLastFlag in the SUNLinearSolver has changed from long int to sunindextype
to be consistent with the type used to store row indices in dense and banded linear solver modules.

Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID(), that returns a SUNLinear-
Solver_ID for identifying the linear solver module.

The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_DIST
library with SUNDIALS.

Added a new SUNLinearSolver implementation, cuSolverSp_batchQR, which leverages the NVIDIA cuSOLVER
sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA GPUs.

Added three new accessor functions to the KLU linear solver to provide user access to the underlying KLU solver
structures: SUNLinSol_KLUGetSymbolic(), SUNLinSol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon().

SUNNonlinearSolver

A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUNNonlinSol-
NewEmpty() allocates an “empty” generic SUNNonlinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNNonlinearSolver API by ensuring only required
operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetConvTestFn()
function in the SUNNonlinearSolver API has been updated to take a void* data pointer as input. The supplied data
pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve() function in the SUNNonlinearSolver
have been changed to be the predicted state and the initial guess for the correction to that state. Additionally, the
definitions of SUNNonlinSolLSetupFn() and SUNNonlinSolLSolveFn() in the SUNNonlinearSolver API have
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been updated to remove unused input parameters. For more information on the nonlinear system formulation and the
API functions see Nonlinear Algebraic Solvers.

Added a new SUNNonlinearSolver implementation for interfacing with the PETSc SNES nonlinear solver.

New Features

A new linear solver interface functions, ARKLsLinSysFn and CVLsLinSysFn, as added as an alternative method for
evaluating the linear systems M − γJ or I − γJ .

Added the following functions to get the current state and gamma value to ARKStep, CVODE and CVODES that may
be useful to users who choose to provide their own nonlinear solver implementation:

• ARKStepGetCurrentState()

• ARKStepGetCurrentGamma()

• CVodeGetCurrentGamma()

• CVodeGetCurrentState()

• CVodeGetCurrentGamma()

• CVodeGetCurrentStateSens()

• CVodeGetCurrentSensSolveIndex()

• IDAGetCurrentCj()

• IDAGetCurrentY()

• IDAGetCurrentYp()

• IDAComputeY()

• IDAComputeYp()

Removed extraneous calls to N_VMin() for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario ARKODE, CVODE(S), and IDA(S)
steppers will remove at least one global reduction per time step.

The ARKODE, CVODE(S), IDA(S), and KINSOL linear solver interfaces have been updated to only zero the Jacobian
matrix before calling a user-supplied Jacobian evaluation function when the attached linear solver has type SUNLIN-
EARSOLVER_DIRECT.

Added new Fortran 2003 interfaces to all of the SUNDIALS packages (ARKODE, CVODE(S), IDA(S), and KINSOL
as well as most of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implementations. See
§4.7 section for more details. These new interfaces were generated with SWIG-Fortran and provide a user an idiomatic
Fortran 2003 interface to most of the SUNDIALS C API.

The MRIStep module has been updated to support explicit, implicit, or IMEX methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRIStepCreate() which now
takes an ARKStep memory structure for the fast integration as an input.

The reinitialization functions ERKStepReInit(), ARKStepReInit(), and MRIStepReInit() have been updated to
retain the minimum and maximum step size values from before reinitialization rather than resetting them to the default
values.

Added two new embedded ARK methods of orders 4 and 5 to ARKODE (from [51]).

Support for optional inequality constraints on individual components of the solution vector has been added the
ARKODE ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints() and ARKStepSet-
Constraints() for more details. Note that enabling constraint handling requires the N_Vector operations N_VMin-
Quotient(), N_VConstrMask(), and N_VCompare() that were not previously required by ARKODE.
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Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn() and MRIStepSetPostInnerFn(), for per-
forming communication or memory transfers needed before or after the inner integration.

Bug Fixes

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.

Fixed a memory leak in the PETSc N_Vector clone function.

Fixed a memory leak in the ARKODE, CVODE, and IDA F77 interfaces when not using the default nonlinear solver.

Fixed a bug in the ARKStep time-stepping module in ARKODE that would result in an infinite loop if the nonlinear
solver failed to converge more than the maximum allowed times during a single step.

Fixed a bug in ARKODE that would result in a “too much accuracy requested” error when using fixed time step sizes
with explicit methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a bug in the CVODE and CVODES constraint handling where the step size could be set below the minimum step
size.

Fixed a bug in the CVODE and CVODES nonlinear solver interfaces where the norm of the accumulated correction
was not updated when using a non-default convergence test function.

Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars for the fused vector
scale operation stopped one iteration early.

Fixed a bug in CVODES and IDAS where CVodeF() and IDASolveF() would return the wrong flag under certain
circumstances.

Fixed a bug in CVODES and IDAS where CVodeF() and IDASolveF()would not return a root in NORMAL_STEPmode
if the root occurred after the desired output time.

Fixed a bug in the IDA and IDAS linear solver interfaces where an incorrect Jacobian-vector product increment was
used with iterative solvers other than SPGMR and SPFGMR.

Fixed a bug the IDAS IDAQuadReInitB() function where an incorrect memory structure was passed to
IDAQuadReInit().

Fixed a bug in the KINSOL linear solver interface where the auxiliary scalar sJpnorm was not computed when neces-
sary with the Picard iteration and the auxiliary scalar sFdotJp was unnecessarily computed in some cases.

14.30 Changes to SUNDIALS in release 4.1.0

Removed Implementation Headers

The implementation header files (*_impl.h) are no longer installed. This means users who are directly accessing or
manipulating package memory structures will need to update their code to use the package’s public API.

New Features

An additional N_Vector implementation was added for interfacing with the Tpetra vector from Trilinos library to
facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user
documentation and SUNDIALS examples.

Bug Fixes

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if RAJA is enabled).
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Python is no longer required to run make test and make test_install.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

Fixed a bug in ARKodeButcherTable_Write() when printing a Butcher table without an embedding.

14.31 Changes to SUNDIALS in release 4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved the definitions of backwards compatibility functions for the prior direct linear solver (DLS) and scaled precon-
ditioned iterarive linear solvers (SPILS) to a source file. The symbols are now included in the appropriate package
library, e.g. libsundials_cvode.lib.

14.32 Changes to SUNDIALS in release 4.0.1

A bug in ARKODE where single precision builds would fail to compile has been fixed.

14.33 Changes to SUNDIALS in release 4.0.0

The direct and iterative linear solver interfaces in all SUNDIALS packages have been merged into a single unified linear
solver interface to support any valid SUNLinearSolver. This includes the DIRECT and ITERATIVE types as well as
the new MATRIX_ITERATIVE type. Details regarding how SUNDIALS packages utilize linear solvers of each type as
well as a discussion regarding the intended use cases for user-supplied linear solver implementations are included in
§8. All example programs have been updated to use the new unified linear solver interfaces.

The unified linear solver interface is very similar to the previous DLS (direct linear solver) and SPILS (scaled pre-
conditioned iterative linear solver) interface in each package. To minimize challenges in user migration to the unified
linear solver interfaces, the previous DLS and SPILS functions may still be used however, these are now deprecated
and will be removed in a future release. Additionally, that Fortran users will need to enlarge their array of optional
integer outputs, and update the indices that they query for certain linear solver related statistics.

The names of all SUNDIALS-provided SUNLinearSolver constructors have have been updated to follow the naming
convention SUNLinSol_* where * is the name of the linear solver. The new constructor names are:

• SUNLinSol_Band()

• SUNLinSol_Dense()

• SUNLinSol_KLU()

• SUNLinSol_LapackBand()

• SUNLinSol_LapackDense()

• SUNLinSol_PCG()

• SUNLinSol_SPBCGS()

• SUNLinSol_SPFGMR()

• SUNLinSol_SPGMR()

• SUNLinSol_SPTFQMR()

• SUNLinSol_SuperLUMT()
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Linear solver-specific “set” routine names have been similarly standardized. To minimize challenges in user migration
to the new names, the previous function names may still be used however, these are now deprecated and will be removed
in a future release. All example programs and the standalone linear solver examples have been updated to use the new
naming convention.

The SUNLinSol_Band() constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators (ARKODE, CVODE(S), and IDA(S)) have been updated to utilize generic nonlinear solvers
defined by the SUNNonlinearSolver API. This enables the addition of new nonlinear solver options and allows for
external or user-supplied nonlinear solvers. The nonlinear solver API and SUNDIALS provided implementations are
described in Nonlinear Algebraic Solvers and follow the same object oriented design used by the N_Vector, SUN-
Matrix, and SUNLinearSolver classes. Currently two nonlinear solver implementations are provided, Newton and
fixed-point. These replicate the previous integrator-specific implementations of Newton’s method and a fixed-point
iteration (previously referred to as a functional iteration), respectively. Note the new fixed-point implementation can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these nonlinear
solvers in a standalone manner have been added and all example programs have been updated accordingly.

The SUNDIALS integrators (ARKODE, CVODE(S), and IDA(S)) all now use the Newton SUNNonlinearSolver by
default. Users that wish to use the fixed-point SUNNonlinearSolver will need to create the corresponding nonlinear
solver object and attach it to the integrator with the appropriate set function:

• ARKStepSetNonlinearSolver()

• CVodeSetNonlinearSolver()

• IDASetNonlinearSolver()

Functions for setting the nonlinear solver options or getting nonlinear solver statistics remain unchanged and internally
call generic SUNNonlinearSolver functions as needed.

With the introduction of the SUNNonlinearSolver class, the input parameter iter to CVodeCreate() has been
removed along with the function CVodeSetIterType and the constants CV_NEWTON and CV_FUNCTIONAL. While
SUNDIALS includes a fixed-point nonlinear solver, it is not currently supported in IDA.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating a vector (see
§6.1 for more details). The new operations are intended to increase data reuse in vector operations, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
The fused operations are:

• N_VLinearCombination()

• N_VScaleAddMulti()

• N_VDotProdMulti()

and the vector array operations are:

• N_VLinearCombinationVectorArray()

• N_VScaleVectorArray()

• N_VConstVectorArray()

• N_VWrmsNormVectorArray()

• N_VWrmsNormMaskVectorArray()

• N_VScaleAddMultiVectorArray()

• N_VLinearCombinationVectorArray()

If an N_Vector implementation defines the implementation any of these operations as NULL, then standard vector
operations will automatically be called as necessary to complete the computation.
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A new N_Vector implementation, OpenMPDEV , leveraging OpenMP device offloading has been added.

Multiple updates to the CUDA vector were made:

• Changed the N_VMake_Cuda() function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

• Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Cuda to return the local vector length.

• Added N_VGetMPIComm_Cuda to return the MPI communicator used.

• Removed the accessor functions in the suncudavec namespace.

• Added the ability to set the cudaStream_t used for execution of the CUDA kernels. See the function N_-
VSetCudaStreams_Cuda.

• Added N_VNewManaged_Cuda(), N_VMakeManaged_Cuda(), and N_VIsManagedMemory_Cuda() functions
to accommodate using managed memory with the CUDA vector.

Multiple updates to the RAJA vector were made:

• Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Raja to return the local vector length.

• Added N_VGetMPIComm_Raja to return the MPI communicator used.

• Removed the accessor functions in the sunrajavec namespace.

Two changes were made in the ARKODE and CVODE(S) initial step size algorithm:

• Fixed an efficiency bug where an extra call to the RHS function was made.

• Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

Fortran 2003 interfaces to CVODE, the fixed-point and Newton nonlinear solvers, the dense, band, KLU, PCG, SP-
BCGS, SPFGMR, SPGMR, and SPTFQMR linear solvers, and the serial, PThreads, and OpenMP vectors have been
added.

The ARKODE library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality. To
support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping module.
Two new time-stepping modules have been added:

• The ERKStep module provides an optimized implementation for explicit Runge–Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

• The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing differ-
ent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines for
user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name of
time-stepping module (e.g., ARKStep or ERKStep) instead of ARKODE. Aside from affecting the names of these routines,
user-level changes have been kept to a minimum. However, we recommend that users consult both this documentation
and the ARKODE example programs for further details on the updated infrastructure.

As part of the ARKODE restructuring an ARKodeButcherTable structure has been added for storing Butcher tables.
Functions for creating new Butcher tables and checking their analytic order are provided along with other utility rou-
tines. For more details see the Butcher Table Data Structure section.
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ARKODE’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

14.34 Changes to SUNDIALS in release 3.2.1

Fixed a bug in the CUDA vector where the N_VInvTest() operation could write beyond the allocated vector data.

Fixed the library installation path for multiarch systems. This fix changes the default library installation path from
CMAKE_INSTALL_PREFIX/lib to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR. The default value library di-
rectory name is automatically set to lib, lib64, or lib/<multiarch-tuple> depending on the system, but maybe
be overridden by setting CMAKE_INSTALL_LIBDIR .

14.35 Changes to SUNDIALS in release 3.2.0

Library Name Change

Changed the name of the RAJA nvector library from libsundials_nvecraja.lib to libsundials_-
nveccudaraja.lib to better reflect that the RAJA vector only support the CUDA backend currently.

New Features

Added hybrid MPI+CUDA and MPI+RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Support for optional inequality constraints on individual components of the solution vector has been added to CVODE
and CVODES. For more details see the Mathematical Considerations and Optional input functions sections. Use
of CVodeSetConstraints() requires the N_Vector operations N_VMinQuotient(), N_VConstrMask(), and N_-
VCompare() that were not previously required by CVODE and CVODES.

CMake Updates

CMake 3.1.3 is now the minimum required CMake version.

Deprecated the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE CMake
option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_COM-
PILER can compile MPI programs before trying to locate and use an MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI programs have been have
been deprecated. The new options that align with those used in native CMake FindMPI module are MPI_C_COMPILER ,
MPI_CXX_COMPILER , MPI_Fortran_COMPILER , and MPIEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the scheme
from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs to be overridden,
the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually
set the name-mangling scheme and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

Bug Fixes

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that do not
define __STDC_VERSION__.

Fixed a thread-safety issue in CVODES and IDAS when using adjoint sensitivity analysis.
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Fixed a bug in IDAS where the saved residual value used in the nonlinear solve for consistent initial conditions was
passed as temporary workspace and could be overwritten.

14.36 Changes to SUNDIALS in release 3.1.2

CMake Updates

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

New Features

Added the function SUNSparseMatrix_Reallocate() to allow specification of the matrix nonzero storage.

Added named constants for the two reinitialization types for the KLU SUNLinearSolver.

Updated the SUNMatScaleAdd() and SUNMatScaleAddI() implementations in the sparse SUNMatrix to more op-
timally handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is still
more efficient if the user-supplied Jacobian routine allocates storage for the sum M + γJ or M + γJ manually (with
zero entries if needed).

The following examples from the usage notes page of the SUNDIALS website, and updated them to work with SUN-
DIALS 3.x:

• cvDisc_dns.c demonstrates using CVODE with discontinuous solutions or RHS.

• cvRoberts_dns_negsol.c illustrates the use of the RHS function return value to control unphysical negative
concentrations.

• cvRoberts_FSA_dns_Switch.c demonstrates switching on/off forward sensitivity computations. This exam-
ple came from the usage notes page of the SUNDIALS website.

Bug Fixes

Fixed a Windows specific problem where sunindextype was not correctly defined when using 64-bit integers. On
Windows sunindextype is now defined as the MSVC basic type __int64.

Fixed a bug in the full KLU SUNLinearSolver reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by CVSpilsSetJac-
TimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be removed in the next major release.

Changed LICENSE install path to instdir/include/sundials.

14.37 Changes to SUNDIALS in release 3.1.1

Bug Fixes

Fixed a minor bug in the CVODE and CVODES cvSLdet, where a return was missing in the error check for three
inconsistent roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers. If “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in ARKReInit, where a flag was incorrectly set to indicate that the problem had been resized (instead
of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.
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Updated the KLU SUNLinearSolver to use a typedef for the precision-specific solve functions to avoid compiler warn-
ings.

Added missing typecasts for some (void*) pointers to avoid compiler warnings.

Fixed bug in the sparse SUNMatrix where int was used instead of sunindextype in one location.

Fixed a minor bug in KINPrintInfowhere a case was missing for KIN_REPTD_SYSFUNC_ERR leading to an undefined
info message.

Added missing #include <stdio.h> in N_Vector and SUNMatrix header files.

Added missing prototypes for ARKSpilsGetNumMTSetups in ARKODE and IDASpilsGetNumJTSetupEvals in IDA
and IDAS.

Fixed an indexing bug in the CUDA vector implementation of N_VWrmsNormMask() and revised the RAJA vector
implementation of N_VWrmsNormMask() to work with mask arrays using values other than zero or one. Replaced
double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
e.g., iterative linear solvers, explicit methods in ARKODE, functional iteration in CVODE, etc.

14.38 Changes to SUNDIALS in release 3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial()).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

14.39 Changes to SUNDIALS in release 3.0.0

Major Feature

Added new linear solver and matrix interfaces for all SUNDIALS packages and updated the existing linear solver and
matrix implementations. The goal of the redesign is to provide greater encapsulation and ease interfacing custom linear
solvers with linear solver libraries. Specific changes include:

• Added a SUNMatrix interface with three provided implementations: dense, banded, and sparse. These replicate
previous SUNDIALS direct (Dls) and sparse (Sls) matrix structures.

• Added example problems demonstrating use of the matrices.

• Added a SUNLinearSolver interface with eleven provided implementations: dense, banded, LAPACK dense,
LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate previous
SUNDIALS generic linear solvers.

• Added example problems demonstrating use of the linear solvers.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize SUNMatrix and SUNLinearSolver objects.

• Removed package-specific, linear solver-specific, solver modules (e.g., CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLinear-
Solver / SUNMatrix classes. The exception is CVDIAG, a diagonal approximate Jacobian solver available to
CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new the new matrix and linear solver objects, along with
updated Dls and Spils linear solver interfaces.
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• Added Spils interface routines to ARKODE, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided JTSetup routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (JTimes) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Corresponding updates were made to all the example programs.

New Features

CUDA and RAJA N_Vector implementations to support GPU systems. These vectors are supplied to provide very basic
support for running on GPU architectures. Users are advised that these vectors both move all data to the GPU device
upon construction, and speedup will only be realized if the user also conducts the right-hand-side function evaluation
on the device. In addition, these vectors assume the problem fits on one GPU. For further information about RAJA,
users are referred to the RAJA web site.

Added the type sunindextype to support using 32-bit or 64-bit integer types for indexing arrays within all SUNDIALS
structures. sunindextype is defined to int32_t or int64_t when portable types are supported, otherwise it is
defined as int or long int. The Fortran interfaces continue to use long int for indices, except for the sparse matrix
interface that now uses sunindextype. Interfaces to PETSc, hypre, SuperLU_MT, and KLU have been updated with
32-bit or 64-bit capabilities depending how the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added support for many xSDK-compliant build system keys. For more information on on xSDK compliance the xSDK
policies. The xSDK is a movement in scientific software to provide a foundation for the rapid and efficient production
of high-quality, sustainable extreme-scale scientific applications. For more information visit the xSDK web site.

Added functions SUNDIALSGetVersion() and SUNDIALSGetVersionNumber() to get SUNDIALS release version
information at runtime.

Added comments to arkode_butcher.c regarding which methods should have coefficients accurate enough for use
in quad precision.

Build System

Renamed CMake options to enable/disable examples for greater clarity and added option to enable/disable Fortran 77
examples:

• Changed EXAMPLES_ENABLE to EXAMPLES_ENABLE_C

• Changed CXX_ENABLE to EXAMPLES_ENABLE_CXX

• Changed F90_ENABLE to EXAMPLES_ENABLE_F90

• Added EXAMPLES_ENABLE_F77 option

Added separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables.

Fixed minor CMake bugs and included additional error checking during CMake configuration.

Bug Fixes

ARKODE

Fixed RCONST usage in arkode_butcher.c.

Fixed bug in arkInitialSetup to ensure the mass matrix vector product is set up before the “msetup” routine is
called.
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Fixed ARKODE printf-related compiler warnings when building SUNDIALS with extended precision.

CVODE and CVODES

CVodeFree() now calls lfree unconditionally (if non-NULL).

IDA and IDAS

Added missing prototype for IDASetMaxBacksIC() in ida.h and idas.h.

KINSOL

Corrected KINSOL Fortran name translation for FKIN_SPFGMR.

Renamed KINLocalFn and KINCommFn to KINBBDLocalFn and KINBBDCommFn respectively in the BBD precondi-
tioner module for consistency with other SUNDIALS solvers.

14.40 Changes to SUNDIALS in release 2.7.0

New Features and Enhancements

Two additional N_Vector implementations were added – one for hypre parallel vectors and one for PETSc vectors.
These additions are accompanied by additions to various interface functions and to user documentation.

Added a new N_Vector function, N_VGetVectorID(), that returns an identifier for the vector.

The sparse matrix structure was enhanced to support both CSR and CSC matrix storage formats.

Various additions were made to the KLU and SuperLU_MT sparse linear solver interfaces, including support for the
CSR matrix format when using KLU.

In all packages, the linear solver and preconditioner free routines were updated to return an integer.

In all packages, example codes were updated to use N_VGetArrayPointer_* rather than the NV_DATA macro when
using the native vectors shipped with SUNDIALS.

Additional example programs were added throughout including new examples utilizing the OpenMP vector.

ARKODE

The ARKODE implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new predictor
approach was added, and the default choice was modified.

The handling of integer codes for specifying built-in ARKODE Butcher tables was enhanced. While a global numbering
system is still used, methods now have #defined names to simplify the user interface and to streamline incorporation
of new Butcher tables into ARKODE.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order methods,
and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge–Kutta method with different stage times
to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to support
Fortran applications with non-identity mass-matrices.

IDA and IDAS

The optional input function IDASetMaxBacksIC() was added to set the maximum number of linesearch backtracks
in the initial condition calculation.

Bug Fixes

Various minor fixes to installation-related files.

508 Chapter 14. Changelog

https://sundials.readthedocs.io/en/v7.3.0/cvode/Usage/index.html#c.CVodeFree
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINBBDLocalFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINBBDCommFn


User Documentation for IDAS, v6.3.0

Fixed some examples with respect to the change to use new macro/function names e.g., SUNRexp, etc.

In all packages, a memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner
interfaces.

Corrected name N_VCloneEmptyVectorArray to N_VCloneVectorArrayEmpty in all documentation files.

Various corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT.

For each linear solver, the various solver performance counters are now initialized to 0 in both the solver specification
function and in the solver linit function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

ARKODE

The missing ARKSpilsGetNumMtimesEvals function was added – this had been included in the previous documen-
tation but had not been implemented.

The choice of the method vs embedding the Billington and TRBDF2 explicit Runge–Kutta methods were swapped,
since in those the lower-order coefficients result in an A-stable method, while the higher-order coefficients do not. This
change results in significantly improved robustness when using those methods.

A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector Resize
functionality.

A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running with
either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the embedding
order was below 1.

CVODE

Corrections were made to three Fortran interface functions.

In FCVODE, fixed argument order bugs in the FCVKLU and FCVSUPERLUMT linear solver interfaces.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

CVODES

A bug was fixed in the interpolation functions used in solving backward problems for adjoint sensitivity analysis.

In the interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

Changed each the return type of *FreeB functions to int and added return(0) to each.

IDA

Corrections were made to three Fortran interface functions.

Corrected the output from the idaFoodWeb_bnd.c example, the wrong component was printed in PrintOutput.

IDAS

In the interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

Changed each the return type of *FreeB functions to int and added return(0) to each.

Corrections were made to three Fortran interface functions.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

KINSOL

The Picard iteration return was changed to always return the newest iterate upon success.
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A minor bug in the line search was fixed to prevent an infinite loop when the beta condition fails and lambda is below
the minimum size.

Corrections were made to three Fortran interface functions.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into two pieces. FKINMALLOC
remains for backward compatibility, but documentation for it has been removed.

Added missing Fortran interface routines for supplying a sparse Jacobian routine with sparse direct solvers.

Matlab Interfaces Removed

Removed the Matlab interface from distribution as it has not been updated since 2009.

14.41 Changes to SUNDIALS in release 2.6.2

New Features and Enhancements

Various minor fixes to installation-related files

In KINSOL and ARKODE, updated the Anderson acceleration implementation with QR updating.

In CVODES and IDAS, added ReInit and SetOrdering wrappers for backward problems.

In IDAS, fixed for-loop bugs in IDAAckpntAllocVectors that could lead to a memory leak.

Bug Fixes

Updated the BiCGStab linear solver to remove a redundant dot product call.

Fixed potential memory leak in KLU ReInit functions in all solvers.

In ARKODE, fixed a bug in the Cash-Karp Butcher table where the method and embedding coefficient were swapped.

In ARKODE, fixed error in arkDoErrorTest in recovery after failure.

In CVODES, added CVKLUB prototype and corrected CVSuperLUMTB prototype.

In the CVODES and IDAS header files, corrected documentation of backward integration functions, especially the
which argument.

In IDAS, added missing backward problem support functions IDALapackDenseB, IDALapackDenseFreeB, IDALa-
packBandB, and IDALapackBandFreeB.

In IDAS, made SuperLUMT call for backward problem consistent with CVODES.

In CVODE, IDA, and ARKODE, fixed Fortran interfaces to enable calls to GetErrWeights, GetEstLocalErrors,
and GetDky within a time step.

14.42 Changes to SUNDIALS in release 2.6.1

Fixed loop limit bug in SlsAddMat function.

In all six solver interfaces to KLU and SuperLUMT, added #include lines, and removed redundant KLU structure
allocations.

Minor bug fixes in ARKODE.
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14.43 Changes to SUNDIALS in release 2.6.0

Autotools Build Option Removed

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

New Package: ARKODE

Addition of ARKODE package of explicit, implicit, and additive Runge-Kutta methods for ODEs. This package API
is close to CVODE so switching between the two should be straightforward. Thanks go to Daniel Reynolds for the
addition of this package.

New Features and Enhancements

Added OpenMP and Pthreads N_Vector implementations for thread-parallel computing environments.

Two major additions were made to the linear system solvers available in all packages. First, in the serial case, an
interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the multi-threaded version
of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the serial version of the N_-
Vector module. As part of these additions, a sparse matrix (CSC format) structure was added to CVODE.

KINSOL

Two major additions were made to the globalization strategy options (KINSol argument strategy). One is fixed-point
iteration, and the other is Picard iteration. Both can be accelerated by use of the Anderson acceleration method. See
the relevant paragraphs in Chapter Mathematical Considerations.

An interface to the Flexible GMRES iterative linear solver was added.

Bug Fixes

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerRwere changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and example programs.

In the LAPACK banded linear solver interfaces, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml
to correct an illegal input error for to DGBTRF and DGBTRS.

In all Fortran examples, integer declarations were revised so that those which must match a C type long int are
declared INTEGER*8, and a comment was added about the type match. All other integer declarations are just INTEGER.
Corresponding minor corrections were made to the user guide.

CVODE and CVODES

In cvRootFind, a minor bug was corrected, where the input array was ignored, and a line was added to break out of
root-search loop if the initial interval size is below the tolerance ttol.

Two minor bugs were fixed regarding the testing of input on the first call to CVode – one involving tstop and one
involving the initialization of *tret.

The example program cvAdvDiff_diag_p was added to illustrate the use of in parallel.

In the FCVODE optional input routines FCVSETIIN and FCVSETRIN, the optional fourth argument key_length was
removed, with hardcoded key string lengths passed to all tests.

In order to eliminate or minimize the differences between the sources for private functions in CVODE and CVODES,
the names of many private functions were changed from CV* to cv* and a few other names were also changed.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian. With a call to
CVDlsSetDenseJacFnBS or CVDlsSetBandJacFnBS, the user can specify a user-supplied Jacobian function of type
CVDls***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

In CVodeQuadSensInit, the line cv_mem->cv_fQS_data = ... was corrected (missing Q).
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In the CVODES User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph was added
in Section 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was revised to include the use
of CVodeGetAdjY.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward sensitivities, options
have been added to allow for user-supplied pset, psolve, and jtimes functions.

In the example cvsHessian_ASA_FSA, an error was corrected in the function fB2, y2 in place of y3 in the third term
of Ith(yBdot,6).

IDA and IDAS

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line was added to
break out of root-search loop if the initial interval size is below the tolerance ttol.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve().

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional fourth argument key_-
length was removed, with hardcoded key string lengths passed to all strncmp tests.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian. With a call to
IDADlsSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-supplied Jacobian function of
type IDADls***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

KINSOL

In function KINStop, two return values were corrected to make the values of uu and fval consistent.

A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user calls to KINSol
with no intervening call to KINSetMaxNewtonStep.

A bug in the increments for difference quotient Jacobian approximations was fixed in function kinDlsBandDQJac.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.

In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional fourth argument
key_length was removed, with hardcoded key string lengths passed to all strncmp tests.

14.44 Changes to SUNDIALS in release 2.5.0

Integer Type Change

One significant design change was made with this release, the problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output lsflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray / NewLintArray, for int
and long int arrays, respectively.

Bug Fixes

In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_MATH, so that the parameter
GENERIC_MATH_LIB is either defined (with no value) or not defined.

In all packages, after the solver memory is created, it is set to zero before being filled.

In each linear solver interface function, the linear solver memory is freed on an error return, and the function now
includes a line setting to NULL the main memory pointer to the linear solver memory.

Rootfinding

In CVODE(S) and IDA(S), in the functions Rcheck1 and Rcheck2, when an exact zero is found, the array glo of g
values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.

512 Chapter 14. Changelog



User Documentation for IDAS, v6.3.0

CVODE and CVODES

In CVSetTqBDF, the logic was changed to avoid a divide by zero.

In a minor change to the CVODES user interface, the type of the index which was changed from long int to int.

Errors in the logic for the integration of backward problems in CVODES were identified and fixed.

IDA and IDAS

To be consistent with IDAS, IDA uses the function IDAGetDky for optional output retrieval.

A memory leak was fixed in two of the IDASp***Free functions.

A missing vector pointer setting was added in IDASensLineSrch.

In IDACompleteStep, conditionals around lines loading a new column of three auxiliary divided difference arrays,
for a possible order increase, were fixed.

KINSOL

Three major logic bugs were fixed - involving updating the solution vector, updating the linesearch parameter, and a
missing error return.

Three minor errors were fixed - involving setting etachoice in the Matlab/KINSOL interface, a missing error case in
KINPrintInfo, and avoiding an exponential overflow in the evaluation of omega.

14.45 Changes to SUNDIALS in release 2.4.0

Added a CMake-based build option in addition to the one based on autotools.

The user interface has been further refined. Some of the API changes involve:

(a) a reorganization of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including new LAPACK-based ones, were also organized into a direct
family);

(b) maintaining a single pointer to user data, optionally specified through a Set-type function; and

(c) a general streamlining of the preconditioner modules distributed with the solvers.

Added interfaces to LAPACK linear solvers for dense and banded matrices to all packages.

An option was added to specify which direction of zero-crossing is to be monitored while performing rootfinding in
CVODE(S) and IDA(S).

CVODES includes several new features related to sensitivity analysis, among which are:

(a) support for integration of quadrature equations depending on both the states and forward sensitivity (and thus
support for forward sensitivity analysis of quadrature equations),

(b) support for simultaneous integration of multiple backward problems based on the same underlying ODE (e.g.,
for use in an forward-over-adjoint method for computing second order derivative information),

(c) support for backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and

(d) support for reinitialization of the adjoint module.

Moreover, the prototypes of all functions related to integration of backward problems were modified to support the
simultaneous integration of multiple problems.

All backward problems defined by the user are internally managed through a linked list and identified in the user
interface through a unique identifier.
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14.46 Changes to SUNDIALS in release 2.3.0

New Features and Enhancements

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree. At the user interface
level, the main impact is in the mechanism of including SUNDIALS header files which must now include the relative
path e.g., #include <cvode/cvode.h> as all exported header files are now installed in separate subdirectories of the
installation include directory.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m × n matrices (m ≤ n), while the factorization and solution functions were renamed to
DenseGETRF / denGETRF and DenseGETRS / denGETRS, respectively. The factorization and solution functions in
the generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.

In IDA, the user interface to the consistent initial conditions calculations was modified. The IDACalcIC() arguments
t0, yy0, and yp0 were removed and a new function, IDAGetConsistentIC() is provided.

Bug Fixes

In the CVODES adjoint solver module, the following two bugs were fixed:

• In CVodeF the solver was sometimes incorrectly taking an additional step before returning control to the user (in
CV_NORMAL mode) thus leading to a failure in the interpolated output function.

• In CVodeB, while searching for the current check point, the solver was sometimes reaching outside the integration
interval resulting in a segmentation fault.

In IDA, a bug was fixed in the internal difference-quotient dense and banded Jacobian approximations, related to
the estimation of the perturbation (which could have led to a failure of the linear solver when zero components with
sufficiently small absolute tolerances were present).

14.47 Changes to SUNDIALS in release 2.2.0

New Header Files Names

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes (e.g.,
cvode_ and sundials_). When using the default installation procedure, the header files are exported under various
subdirectories of the target include directory. For more details see Appendix §11.

Build System Changes

Updated configure script and Makefiles for Fortran examples to avoid C++ compiler errors (now use CC and MPICC to
link only if necessary).

The shared object files are now linked into each SUNDIALS library rater than into a separate libsundials_shared
library.

New Features and Enhancements

Deallocation functions now take the address of the respective memory block pointer as the input argument.

Interfaces to the Scaled Preconditioned Bi-CGstab (SPBCG) and Scaled Preconditioned Transpose-Free Quasi-
Minimal Residual (SPTFQMR) linear solver modules have been added to all packages. At the same time, function
type names for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector
and preconditioner setup and solve functions. Additionally, in KINSOL interfaces have been added to the SUNDIALS
DENSE, and BAND linear solvers and include support for nonlinear residual monitoring which can be used to control
Jacobian updating.

A new interpolation method was added to the CVODES adjoint module. The function CVadjMalloc has an additional
argument which can be used to select the desired interpolation scheme.
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FIDA, a Fortran-C interface module, was added.

The rootfinding feature was added to IDA, whereby the roots of a set of given functions may be computed during the
integration of the DAE system.

In IDA a user-callable routine was added to access the estimated local error vector.

In the KINSOL Fortran interface module, FKINSOL, optional inputs are now set using FKINSETIIN (integer inputs),
FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are still obtained from the IOUT and
ROUT arrays which are owned by the user and passed as arguments to FKINMALLOC.

14.48 Changes to SUNDIALS in release 2.1.1

The function N_VCloneEmpty was added to the global vector operations table.

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

14.49 Changes to SUNDIALS in release 2.1.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one.

In CVODE(S) and IDA, an optional user-supplied routine for setting the error weight vector was added.

Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user data right after its use.

The build systems has been further improved to make it more robust.

14.50 Changes to SUNDIALS in release 2.0.2

Fixed autoconf-related bug to allow configuration with the PGI Fortran compiler.

Modified the build system to use customized detection of the Fortran name mangling scheme (autoconf’s AC_F77_-
WRAPPERS routine is problematic on some platforms).

A bug was fixed in the CVode function that was potentially leading to erroneous behavior of the rootfinding procedure
on the integration first step.

A new chapter in the User Guide was added - with constants that appear in the user interface.

14.51 Changes to SUNDIALS in release 2.0.1

Build System

Changed the order of compiler directives in header files to avoid compilation errors when using a C++ compiler.

Changed the method of generating sundials_config.h to avoid potential warnings of redefinition of preprocessor
symbols.

New Features

In CVODES the option of activating and deactivating forward sensitivity calculations on successive runs without mem-
ory allocation and deallocation.

Bug Fixes
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In CVODES bug fixes related to forward sensitivity computations (possible loss of accuracy on a BDF order increase
and incorrect logic in testing user-supplied absolute tolerances) were made.

14.52 Changes to SUNDIALS in release 2.0.0

Installation of all of SUNDIALS packages has been completely redesigned and is now based on configure scripts.

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, packages now provide Set functions to change the default values for various
quantities controlling the solver and Get functions to extract statistics after return from the main solver routine.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians and preconditioner in-
formation) were simplified by reducing the number of arguments. The same information that was previously accessible
through such arguments can now be obtained through Get-type functions.

In CVODE and CVODES a rootfinding feature was added, whereby the roots of a set of given functions may be com-
puted during the integration of the ODE system.

Changes to the NVector:

• Removed machEnv, redefined table of vector operations (now contained in the N_Vector structure itself).

• All SUNDIALS functions create new N_Vector variables through cloning, using an N_Vector passed by the
user as a template.

• A particular vector implementation is supposed to provide user-callable constructor and destructor functions.

• Removed the following functions from the structure of vector operations: N_VNew, N_VNew_S, N_VFree, N_-
VFree_S, N_VMake, N_VDispose, N_VGetData, N_VSetData, N_VConstrProdPos, and N_VOneMask.

• Added the following functions to the structure of vector operations: N_VClone, N_VDestroy, N_VSpace, N_-
VGetArrayPointer, N_VSetArrayPointer, and N_VWrmsNormMask.

• Note that nvec_ser and nvec_par are now separate modules outside the shared SUNDIALS module.

Changes to the linear solvers:

• In SPGMR, added a dummy N_Vector argument to be used as a template for cloning.

• In SPGMR, removed N (problem dimension) from the argument list of SpgmrMalloc.

• Replaced iterativ.{c,h} with iterative.{c,h}.

• Modified constant names in iterative.h (preconditioner types are prefixed with PREC_).

• Changed numerical values for MODIFIED_GS (from 0 to 1) and CLASSICAL_GS (from 1 to 2).

Changes to sundialsmath submodule:

• Replaced the internal routine for estimating unit roundoff with definition of unit roundoff from float.h.

• Modified functions to call the appropriate math routines given the precision level specified by the user.

Changes to sundialstypes submodule:

• Removed integertype.

• Added definitions for BIG_REAL, SMALL_REAL, and UNIT_ROUNDOFF using values from float.h based on the
precision.

• Changed definition of macro RCONST to depend on the precision level specified by the user.
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